固体物理_第一至第七章总复习
- 格式:ppt
- 大小:5.24 MB
- 文档页数:42
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
第1章晶体结构和晶体衍射一、晶格结构的周期性与对称性:1.原胞(初基晶胞)、惯用晶胞的定义:原胞:晶格具有三维周期性,三维晶格中体积最小的重复单元称为固体物理学原胞,简称原胞。
惯用晶胞:为了反映晶体的周期性和对称性,所取的重复单元不一定是最小的。
结点不仅可以在顶角上,还可以在体心或面心上,这种最小重复单元称为惯用晶胞(也叫作布拉维晶胞)2.晶向与晶面指数的定义晶向:布拉维格子上任何两格点连一直线称为晶列,晶列的取向称为晶向。
晶向指数:R=l1a1+l2a2+l3a3,将l1,l2,l3化为互质整数,用l1,l2,l3表示晶列的方向,这三个互质整数称为晶向指数。
晶面指数:晶面族在基矢上的截距系数的倒数,化成与之具有相同比率的三个互质的整数h,k,l。
二、什么是布拉维点阵(格子)?为什么说布拉维点阵是晶体结构的数学抽象?描述点阵与晶体结构的区别?1.如果晶体由一种原子组成,且基元中只包含一个原子,则相应的网格就称为布拉维格子。
如果晶体虽由一种原子组成,但若基元中包含两个原子,或晶体由多种原子组成,则每一种原子都可以构成一个布拉维格子。
2.布拉维格子是一个无限延伸的点阵,它忽略了实际晶体中表面、结构缺陷的存在,以及T≠0时原子瞬时位置相对于平衡位置小的偏离。
但它反映了晶体结构中原子周期性的规则排列。
即平移任意格矢R n,晶体保持不变的特性,是实际晶体的一个理想抽象。
3.晶体结构=点阵+基元三、典型的晶体结构、对应的布拉菲点阵及其最小基元是什么?晶体结构:1.氯化钠(NaCl)结构该结构的布拉维点阵是fcc,初基基元为一个Na+离子和一个Cl-离子。
2.氯化铯(CsCl)结构该结构的布拉维点阵是sc(简单立方),初基基元为一个Na+离子和一个Cl-离子。
3.六角密堆积(hcp)结构该结构的布拉维晶格点阵是简单六角,初基基元包含两个原子,原子位置:(0 0 0),(2/3,1/3,1/2)。
4.金刚石结构金刚石型结构的晶格类型属于fcc晶格点阵(该结构可以看作是两个fcc晶格格点上放上同种原子沿立方体的体对角线错开1/4对角线长而得到。
"固体物理"根本概念和知识点第一章根本概念和知识点1) 什么是晶体、非晶体和多晶?(H)*晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。
由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。
2) 什么是原胞和晶胞?(H)*原胞是一个晶格最小的周期性单元,在有些情况下不能反响晶格的对称性;为了反响晶格的对称性,选取的较大的周期单元,称为晶胞。
3) 晶体共有几种晶系和布拉伐格子?(H)*按构造划分,晶体可分为7大晶系, 共14布拉伐格子。
4) 立方晶系有几种布拉伐格子?画出相应的格子。
(H)*立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。
5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。
(H)*简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。
碱金属具有体心立方晶格构造;Au、Ag和Cu具有面心立方晶格构造,它们均为简单晶格复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成一样的简单晶格,复式格子由它们的子晶格相套而成。
一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是一样原子但几何位置不等价的原子构成的晶体,如:具有金刚石构造的C、Si、Ge等6) 钛酸钡是由几个何种简单晶格穿套形成的?(H)BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。
三组氧(OI,OII,*3OIII)周围的情况各不一样,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方构造子晶格(共5个)套构而成的。
7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(H)*金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。
第一章 晶体结构1.晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构;eg :单晶硅。
晶体具有的典型物理性质:均匀性、各向异性、自发的形成多面体外形、有明显确定的熔点、有特定的对称性、使X 射线产生衍射。
非晶体:组成固体的粒子只有短程序,但无长程周期性;eg :非晶硅、玻璃准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性,不具备晶体的平移对称性;eg :快速冷却的铝锰合金2.三维晶体中存在7种晶系14种布拉菲格子;对于简单格子晶胞里有几个原子就有几个原胞,复式格子中包含两个或更多的格子。
3.典型格子特点:sc bcc fcc hcp Diamond 晶胞体积3a 3a 3a 32a 3a 每晶胞包含的格点数1 2 4 6 8 原胞体积3a 321a 341a 332a 341a 最近邻数(配位数)6 8 12 12 4 填充因子0.524 0.68 0.74 0.74 0.34 典型晶体 NaCl CaO Li K Cu Au Zn Mg Si Ge4.sc 正格子基矢:k a a j a a i a a ===321,,;sc 倒格子基矢:k ab j a i a πππ2,2b ,2b 321===; fcc 正格子基矢:)2),2),2321j i a a k i a a k j a a +=+=+=(((; fcc 倒格子基矢:)2),2),2b 321k j i ab k j i a b k j i a -+=+-=++-=(((πππ; bcc 正格子基矢: )2),2),2321k j i a a k j i a a k j i a a -+=+-=++-=(((; bcc 倒格子基矢:)2),2),2b 321j i a b k i a b k j a +=+=+=(((πππ; 倒格子原胞基V a a )(2b 321⨯=π,V a a )(2b 132⨯=π,Va a )(2b 213⨯=π 正格子和倒格子的基矢关系为ij a πδ2b j i =⋅;设正格子原胞体积为V,倒格子原胞体积为Vc ,则3)2(V c V π=⨯。
第一章 晶体结构 名词解释:1. 晶体:原子按一定的周期排列规则的固体(长程有序)。
例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。
2. 晶体结构:晶体中原子的具体排列形式称为晶体结构。
晶体结构=基元+布拉菲点阵。
3. 平移周期性:4. 元胞:一个晶格中的最小重复单元(体积最小)。
5. 晶胞(单胞?):为了反应晶格的对称性,常取最小重复单元的几倍作为重复单元。
6. 基元:由不等价分人原子组成的最小重复单元。
7. 布拉菲点阵:为了简单明确地描述晶体内部结构的周期性,常把基元抽象成一点,这个基元的代表点称为格点。
格点在空间的周期性排列就构成布拉菲点阵(格子)。
8. 倒易点阵:倒点阵是正点阵的傅里叶变换,它是与坐标空间联系的傅里叶空间中的周期性阵列。
9. 倒易格矢: 10. 基矢:倒格子基矢与原胞基矢有如下关系:原胞体积:11. 晶格常数:晶格常数指的就是晶胞的边长,也就是每一个立方格子的边长。
12. 复式格子:基元(格点)含有2种或2种以上的原子。
13. 简单格子(布拉菲格子):基元(格点)只有一个原子的晶格。
14. 维格纳-塞茨原胞:由某一个格点为中心,做出最近各点和次近各点连线的中垂面,这些所包围的空间为维格纳-塞茨原胞。
15. 晶面指数:以基矢a 1、a 2、a 3为坐标系,从原点算起第一个晶面的截距的倒数h 1、h 2、h 3去标记这一簇晶面,记为(h 1h 2h 3),称为晶面指数。
16. 米勒指数:以单胞的三条棱a 、b 、c 为坐标系,决定的指数,称为米勒指数,记为(hkl )。
17. 晶向指数:如果从一个结点沿某晶列方向到最近邻结点的平移矢量为R l =l 1a 1+l 2a 2+l 3a 3,则用l 1、l 2、l 3来标志该晶列所对应的晶向,记为[l 1,l 2,l 3],称为晶向指数。
18. 金刚石结构: 19. 六角密排结构: 20. 立方密排结构: 21. NaCl 结构:22. 几种对称操作及相应对称元素:对称操作所凭借的几何元素—对称元素。
固体电子学导论纲要1.第一章1理解自由电子气体模型的意义 (1)自由电子气体模型:○1自由电子近似:忽略电子和离子实之间的相互作用。
○2独立电子近似(单电子近似):忽略电子和电子间的相互作用。
○3弛豫时间近似:讨论输运现象时引进的。
(2)模型的意义:自由电子气体模型是有关金属的最简单的模型。
金属,特别是简单金属的许多物理性质可以通过它得到相当好的理解。
它可以解释金属作为电和热的良导体的原因(可以解释金属遵从欧姆定律,电导率和热导率成线性关系,)(ωσ的低频段行为,以及金属对可见光高的反射率等)。
2掌握单电子的基态性质 单电子的状态用波函数)(r ψ描述rk i eVr∙=1)(ψ电子能量为22222122)(mv m p m k k === ε其中λπ2=k3理解自由电子气体的简并在统计物理学中,体系与经典行为的偏离,常称为简并性。
在0=T 时,金属自由电子气体是完全简并的。
由于F T 很高,在室温下,电子气体也是高度简并的。
4理解费米面、费米能级在k 空间中把占据态和未占据态分开的界面叫做费米面。
k 空间中的态密度为381πV k =∆ 费米面上单电子态的能量称为费米能量。
mk FF 222 =ε其中费米波矢n k F 233π=。
另费米动量F F k p =,费米速度m k v F F =,费米温度BF F k T ε=(B k 为波尔兹曼常量)。
5理解自由电子气体的热性质温度0>T 时,电子在本征态上的分布由费米-狄拉克分布函数给出11/)(+=-T k i B i e f με其中i f 是电子占据本征态i ε的几率,μ是系统的化学势。
])(121[22FB F T k επεμ-=电子比热FBV T T nk T C 22πγ== 6了解顺磁性简而言之:电子自旋产生磁场,分子中有不成对电子时,各单电子平行自旋,磁场加强。
这时物质呈顺磁性。
7理解准经典模型在自由、独立电子近似的基础上,进一步假定: ○1电子会受到散射,或经受碰撞。