Parallelized approximation algorithms for minimum routing cost spanning trees
- 格式:pdf
- 大小:257.32 KB
- 文档页数:20
高吞吐量QC-LDPC码分层译码设计徐斌; 贺玉成【期刊名称】《《计算机工程》》【年(卷),期】2019(045)007【总页数】6页(P121-125,133)【关键词】低存储量; 并行分层; 高吞吐量; 校验节点自更新算法; 译码器【作者】徐斌; 贺玉成【作者单位】华侨大学厦门市移动多媒体通信重点实验室福建厦门361021【正文语种】中文【中图分类】TP3990 概述低密度奇偶校验码(Low Density Parity-check Codes,LDPC)是线性分组码,其译码简单、性能接近容量限[1]。
文献[2-4]通过分层译码算法构造LDPC译码器,使其无需存储变量节点信息,降低了存储资源耗费,且译码收敛速度比最小和(Min-Sum,MS)算法快。
文献[5-6]提出一种双修正型最小和积译码算法,该算法译码复杂度较低,但吞吐量有一定的损失。
文献[7-8]提出的交替译码框架,能在同一时刻同时更新一帧校验消息和一帧变量消息,两帧交替更新,提高了吞吐量,但需消耗较多的存储资源。
本文在分层MS译码算法的基础上,提出校验节点自更新译码算法,并采用一种新的QC-LDPC码分层译码器结构,以降低存储资源消耗和提高吞吐量。
1 分层译码算法QC-LDPC码具有准循环特性,其校验矩阵可表示为分块矩阵[9]。
(1)其中,B表示分块矩阵Q(pij)的阶数,0≤pij≤B,i=1,2,…,s,j=1,2,…,j。
当pij=0时,Q(pij)表示一个B阶全零矩阵;当1≤pij≤B时,Q(pij)表示B阶单位矩阵IB循环右移pi,j位后得到的矩阵,特别地,Q(B)=IB。
因此,每个子块列重最大为1。
H是一个sB×tB矩阵,列重最大为s,码长为n=tB,设计码率为R=(t-s)/t。
根据每个子块的列重量分布,可校验矩阵H按上述分块形式划分为s层,每层对应B 个校验节点ci,h(i=1,2,…,s,h=1,2,…,B)。
doi:10.3969/j.issn.1003-3114.2023.06.015引用格式:彭牧尧,魏建军,王乾舟,等.基于最大最小蚂蚁系统的容迟网络缓存机制[J].无线电通信技术,2023,49(6): 1095-1103.[PENG Muyao,WEI Jianjun,WANG Qianzhou,et al.Caching Mechanism Based on Max-Min Ant System in Delay Tolerant Network[J].Radio Communications Technology,2023,49(6):1095-1103.]基于最大最小蚂蚁系统的容迟网络缓存机制彭牧尧1,魏建军1,王乾舟2,王㊀琨3(1.西安电子科技大学通信工程学院,陕西西安710071;2.西安电子科技大学杭州研究院,浙江杭州311231;3.西安电子科技大学计算机科学与技术学院,陕西西安710071)摘㊀要:容迟网络(Delay Tolerant Network,DTN)是指节点资源紧张㊁网络延迟较大或链接频繁中断的网络结构㊂为保障消息到达率,DTN采用了缓存机制,导致网络开销大幅提升㊂为了在提升消息到达率的同时降低网络开销,通过考虑消息类别,将蚁群算法引入容迟网络缓存机制中,提出了基于最大最小蚂蚁系统的容迟网络缓存机制㊂在该机制中,节点致力于维护消息的信息素浓度,依据消息的类别及自身属性得到消息的丢弃权重,进而实现容迟网络的消息丢弃㊂实验结果表明,与基于传统蚁群算法的容迟网络缓存机制相比,所提的容迟网络缓存机制提高了7.7%的消息到达率并降低了5.4%的网络开销㊂关键词:容迟网络;缓存机制;最大最小蚂蚁系统;消息类别;信息素浓度中图分类号:TN391㊀㊀㊀文献标志码:A㊀㊀㊀开放科学(资源服务)标识码(OSID):文章编号:1003-3114(2023)06-1095-09Caching Mechanism Based on Max-Min Ant System inDelay Tolerant NetworkPENG Muyao1,WEI Jianjun1,WANG Qianzhou2,WANG Kun3(1.School of Telecommunication Engineering,Xidian University,Xi an710071,China;2.Hangzhou Institute of Technology,Xidian University,Hangzhou311231,China;3.School of Computer Science and Technology,Xidian University,Xi an710071,China) Abstract:Delay Tolerant Network(DTN)indicates a network structure where node resources are scarce,network latency is high, or links are frequently interrupted.To guarantee message delivery,DTN employs a caching mechanism which leads to an extra increase of network overhead.To improve message delivery rate and reduce network overhead,this paper considers message categories,and utili-zes an ant colony algorithm to improve DTN caching mechanism.The proposed DTN caching mechanism is termed as maximum mini-mum ant system.In this mechanism,nodes focus on maintaining the pheromone concentration of the message.Specifically,nodes deter-mine the discarding weight of message based on its category and own attributes to discard messages in the DTN.Experimental results demonstrate that compared with the DTN caching mechanism based on traditional ant colony algorithms,the proposed DTN caching mechanism increases the message delivery rate by7.7%and reduces network overhead by5.4%.Keywords:DTN;caching mechanism;max-min ant system;message category;pheromone concentration收稿日期:2023-07-12基金项目:国家自然科学基金联合基金重点项目(U21A20446)Foundation Item:Joint Funds of the National Natural Science Foundation of China(U21A20446)0㊀引言难以估计的链接范围与成本巨大的硬件覆盖导致了容迟网络(Delay Tolerant Network,DTN)的出现㊂容迟网络具有网络资源有限㊁难以维持端到端的长时间稳定链接以及网络拓扑动态变化的特征,广泛存在于智慧城市网络[1]㊁深空通信网络[2-4]和野生动物追踪网络[5]等实际应用中㊂容迟网络的特性使得在该网络中信息的传递难以依赖传统的TCP/IP协议㊂为了进行消息的传递与交互,容迟网络通过 存储-携带-转发 的方式,在存储待传递消息的节点与目的节点相遇时进行消息传递㊂这种消息传递方式需要节点进行消息存储,从而导致网络中存在同一消息的多个副本,消息副本的增多将导致网络开销的增长,需设计合理的缓存管理方法,以进行消息副本的存储丢弃管理㊂本文考虑信息的不同类别,提出了一种基于最大最小蚂蚁系统的容迟网络缓存机制(Cache Man-agement Strategy Based on Max-Min Ant Colony Sys-tem in Delay Tolerant Network)㊂基于消息的转发次数㊁消息大小与剩余生存时间等自身特征,定义不同类别信息的信息素浓度表达式㊂当节点缓存已满且有新的消息进入时,根据信息素浓度计算丢弃权重,并丢弃权重最小的消息㊂本算法考虑了消息自身的特征,并结合历史信息实现容迟网络中的缓存管理㊂1㊀相关工作1.1㊀容迟网络缓存机制近年来,国内外有许多针对容迟网络缓存机制的研究㊂文献[6-7]阐述了现有的国内外容迟网络缓存机制,其中常用且具有代表性的机制包括:①先进先出(First In First Out,FIFO)或丢弃最先进入缓存中的消息(Drop Front,DF)算法㊂如果节点缓存已满且有新的消息到达,DF算法将丢弃最先进入缓存的消息㊂②随机丢弃(Drop Random,DR)算法㊂如果节点缓存已满且有新的消息到达,DR算法将随机丢弃缓存中的消息㊂③丢弃最少生存时间消息(Drop Oldest,DO)算法㊂如果节点缓存已满且有新的消息到达,DO算法将丢弃缓存中剩余生存时间最小的消息㊂对比以上的容迟网络缓存机制,DF和DO具有最好的效果,并且这两种容迟网络缓存机制被广泛应用于容迟网络中㊂国内,崔苑茹等人[8]提出基于校园机会网络的协作小组缓存调度策略,结合校园协作学习背景,有效降低了消息的冗余程度并减少了由于缓存空间不足而出现的消息传输失败等问题㊂通过实验表明,该算法具有较优的网络指标㊂郑啸等人[9]提出了一个新的度量节点在协作缓存中重要程度的指标,即节点重要度㊂基于此指标,利用贪心算法选择初始缓存节点㊂同时,利用缓存节点相遇的机会,进行缓存数据的主动再分配,并且通过实验验证了提出的缓存协议能够有效提高数据访问效率㊂Zhang等人[10]基于分布式存储的思想提出了一种容迟网络缓存机制,当节点存在缓存压力时,将利用其可通信节点来存放接收的消息,仿真证明该算法可以有效增加消息到达率和缓存利用率㊂国外,基于广义概率转发模型和拥塞指标, Goudar等人[11]通过预测网络中的拥塞点,自适应地调整节点的消息复制率,减少了不必要的缓存,防止数据包丢失;通过显示的数学公式对相遇概率㊁传递概率等进行了表述㊂N n u等人[12]提出了一种名为 MaxDelivery 的方法,该方法有效释放了节点中的缓存,但是该方法引入了ACK确认机制,将导致网络中产生额外的ACK消息,使得网络开销增加㊂以上两种方法为了获得网络中更加多样化信息用于决策消息的丢弃,需要节点间交互额外的信息,这将导致网络开销的增加㊂文献[13]提出了一种基于多社区模型的资源优化协议,即社交相似度和优化资源(Social Similarity And Optimized Resource, SSAOR)协议,以有效利用容迟网络中的资源㊂该协议基于源节点和目标节点之间的位置关系,使用两种不同的策略来确定转发消息的顺序㊂1.2㊀蚁群算法蚁群算法的提出,为解决组合优化问题提供了新的思路,并且被逐渐应用到其他的优化问题中㊂但蚁群算法存在易陷入局部最优的问题,成为现有国内外学者研究的重点㊂Akande等人[14]将蝠群算法与蚁群算法相结合,并通过仿真证明融合算法效果好于单一算法㊂但融合算法仍然存在陷入局部最优的问题㊂Ye等人[15]对蚁群算法的负反馈机制进行了改进,利用其提高解的多样性㊂同时,根据历史搜索信息,不断获取故障经验,解决了蚁群算法容易陷入局部最优的问题㊂李宪强等人[16]把蚁群算法应用于解决无人机三维路径规划问题,将蚁群算法与人工势场算法相结合,有效解决了蚁群算法易陷入局部最优和容易忽视节点周围障碍物的问题㊂Ding等人[17]将Q-learning算法引入蚁群算法当中,通过添加量子位启发因子避免蚁群算法陷入局部最优当中,提高了算法的优化能力和收敛速度;然而该算法仍然存在实际应用的挑战和问题㊂赵晶蕊等人[18]基于蚁群算法实现了负载均衡下的QoS保障路由算法㊂仿真结果表明,该算法能够有效实现网络负载的均衡,且同时在端到端时延㊁丢包率㊁剩余带宽等QoS需求的性能上有明显提升㊂Stutzle[19]利用最大最小蚂蚁系统解决二次规划问题,并且取得了不错的效果㊂最大最小蚁群算法相较于蚁群算法有如下的改进:①最大最小蚂蚁系统规定了信息素浓度的上下界,设定最小信息素浓度有助于增加对更优解探索的可能性,设定最大信息素浓度保证经验对于蚁群的启发性㊂②信息素浓度初始值为信息素取值区间的上限,并伴随一个较小的信息素衰减系数㊂③只允许迭代最优蚂蚁,或者至今最优蚂蚁释放信息素㊂最大最小蚂蚁系统可以有效地减少蚁群算法局部收敛的问题,得到了广泛的应用㊂通过查阅文献,有以下三点发现:①基于多效用值考虑的缓存管理机制有助于提升容迟网络性能㊂②蚁群算法在解决优化问题上有着优异的表现,可以很好地应用于容迟网络性能优化问题,但需要考虑其易陷入局部最优的问题㊂③现有容迟网络缓存机制及蚁群算法少有考虑消息的类别㊂将消息分类引入容迟网络缓存机制,有助于将同类消息集中于特定的节点之上,便于为之分配特定资源,提升网络性能㊂基于以上发现,本文将最大最小蚂蚁系统应用于容迟网络缓存机制当中,节点综合考量单条信息的信息素浓度与节点上同类信息的信息素浓度,自主地依照所求权重丢弃相应的消息,提高网络整体消息到达率并减少网络开销㊂2㊀算法介绍2.1㊀蚁群信息素浓度定义本节定义了消息信息素浓度㊁同类消息信息素浓度以及丢弃权重的表达式㊂蚁群信息素浓度依赖于消息的相关特征,特征如下:①剩余生存时间(Time Till Lifetime,TTL)㊂剩余生存时间反映了消息在网络中可能继续被转发的概率㊂一般地,剩余生存时间越短,消息越难以被交付到目标节点㊂②缓存占用率(Cache Usage)㊂本机制定义缓存占用率为消息的大小与所到达节点缓存大小的比值,如式(1)所示㊂对于消息而言,缓存占用率越大,会使得消息所到达的节点更容易产生拥塞并丢弃缓存中原有消息,从而导致网络消息到达率下降㊂Cache_Usage i,j=Size iNode_Cache j,(1)式中:Cache_Usage i,j表示消息i在节点j的消息占用率,Size i表示消息i的大小,Node_Cache j表示节点j的缓存大小㊂③消息的转发次数㊂在本机制中,消息的转发次数被定义为消息经过的跳数㊂如果消息的转发次数越高,该消息在网络中则会具有更多的副本数㊂丢弃副本数较多的消息,对网络整体的消息到达率影响较小㊂本机制认为单条消息的信息素浓度取决于上述三种特征㊂因此,使用式(2)定义单条消息的信息素浓度(Pheromone Concentration of Message,PCM):PCM t,i,j=TTL t,iHops t,iˑCache_Usage i,j,(2)式中:PCM t,i,j表示t时刻进入节点j的第i条消息的信息素浓度,TTL t,i表示t时刻进入节点j的第i条消息的剩余生存时间,Hops t,i表示t时刻进入节点j的第i条消息的转发次数㊂如式(3)所示,本机制认为节点在t时刻的同类消息信息素浓度(Pheromone Concentration of the Same Category,PCSC)取决于t-1时刻的衰减后同类消息信息素浓度,与t时刻进入节点的同一类别的N条消息的信息素浓度㊂PCSC t=τmax,PCSC tȡτmax (1-ρ)PCSC t-1+ðN i=0PCM t,i,j,PCSC tɪ(τmin,τmax)τmin,PCSC tɤτmin ìîíïïïï,(3)式中:ρ表示历史信息素浓度的衰减系数,N表示t时刻进入节点的同一类别消息的数量,τmin表示信息素浓度范围的下限,τmax表示信息素浓度范围的上限㊂如式(4)所示,总信息素浓度(Total Pheromone Concentration),即丢弃权重,决定了消息丢弃的优先级㊂丢弃权重越低的消息越容易被丢弃㊂Weight t,i=PCM t,i,j+PCSC t-1,(4)式中:Weight t,i表示t时刻第i条消息的丢弃权重㊂2.2㊀基于蚁群算法的容迟网络缓存机制本节提出的缓存机制引入蚁群算法,机制有效考虑了信息的分类㊂节点维护不同类别信息的信息素浓度值㊂缓存机制流程如图1所示㊂缓存机制流程的具体步骤如下㊂步骤一:当有新消息到来时,会检查节点中的缓存是否已满㊂若缓存未满,则直接跳至步骤四;若缓存已满,则跳至步骤二㊂步骤二:利用式(4)计算该条消息的丢弃权重,其中计算同类消息信息素浓度时不设定上下限㊂步骤三:将步骤二中计算所得的丢弃权重与当前缓存中消息的丢弃权重进行比较,若新消息的权重为最小,则丢弃新消息;若不为最小,则丢弃缓存中原有消息中具有最小权重的消息并跳至步骤四㊂步骤四:新消息进入缓存㊂步骤五:利用式(3)更新缓存节点中的同类消息信息素浓度㊂图1㊀基于蚁群算法的容迟网络图缓存机制流程示意图Fig.1㊀Flow diagram of delay tolerant network cache man-agement strategy based on ant colony algorithm 2.3㊀基于最大最小蚂蚁系统的容迟网络缓存机制基于2.2节所提容迟网络缓存机制,将最大最小蚂蚁系统与缓存机制相结合,将节点上的同类信息素浓度限定在一定的范围内㊂基于最大最小蚂蚁系统的容迟网络缓存机制流程如图2所示㊂缓存机制流程的具体步骤如下㊂步骤一:按照消息的到达节点对消息进行分类㊂步骤二:当有新消息到来时,步骤二会检查节点中的缓存是否已满㊂若缓存未满,则直接跳至步骤五;若缓存已满,则跳至步骤三㊂步骤三:利用式(4)计算该条消息的丢弃权重㊂步骤四:将步骤二中计算所得的丢弃权重与当前缓存中消息的丢弃权重进行比较,若新消息的权重为最小,则丢弃新消息;若不为最小,则丢弃缓存中原有消息中具有最小权重的消息并跳至步骤五㊂步骤五:新消息进入缓存㊂步骤六:利用式(3)更新缓存节点中的同类消息信息素浓度㊂当更新后的同类消息信息素浓度超出给定范围时,若超出上限,取给定信息素浓度范围的上限;若超出下限,取给定信息素浓度范围的下限㊂图2㊀基于最大最小蚂蚁系统的容迟网络缓存机制流程示意图Fig.2㊀Flow diagram of delay tolerant network cache man-agement strategy based on max-min ant system3㊀仿真及分析3.1㊀仿真环境本文使用由赫尔辛基大学开发的ONE网络仿真平台进行仿真㊂仿真在4500mˑ3400m的区域内进行,持续7200s㊂网络中消息产生的间隔为25~35s㊂实验中,将所有的节点分为4组,其中,A组和B组节点代表步行或奔跑的行人,其移动速度为1~5m/s;C组节点代表电动车或自行车,移动速度为5~7m/s;D组为有轨电车,移动速度为7~10m/s,拥有高速通信接口㊂具体参数设置如表1所示㊂表1㊀仿真参数Tab.1㊀Simulation parameters类别参数参数值A剩余生存时间/s250消息大小100kByte~1MByte节点数量60移动模型Shortest Path Map BaesdMovement通信距离/m15通信带宽/(kbit/s)300节点移动速度/(m/s)1~4B剩余生存时间/s300消息大小100kByte~1MByte节点数量30移动模型Shortest Path Map BaesdMovement通信距离/m15通信带宽/(kbit/s)300节点移动速度/(m/s)2~5C剩余生存时间/s350消息大小100kByte~1MByte节点数量15移动模型Shortest Path Map BaesdMovement通信距离/m15通信带宽/(kbit/s)300节点移动速度/(m/s)5~7D剩余生存时间/s300消息大小100kByte~1MByte节点数量4移动模型Map Route Movement通信距离/m15通信带宽/(kbit/s)300高速接口通信范围/m1000高速接口通信带宽/(Mbit/s)10节点移动速度/(m/s)7~10㊀㊀本文期望实现每类消息在适应自己的优势路径中传输㊂其中优势路径是指适应某类消息生存的中继节点所组成的路径,且不同类别消息之间的优势路径应该尽量减少重合,以减少不同类别消息间的资源竞争㊂为了简化分类标准,直接根据源节点与目的节点的不同来进行消息分类,就可以为不同类别消息赋予地域上的差异,使得不同类别消息形成各自的优势路径㊂因此,本文依照源节点与目的节点不同将消息分为16类㊂同时,缓存大小及传输带宽都是网络拥塞的重要影响因素,因此本实验将讨论缓存大小以及传输带宽对消息到达率以及网络开销的影响㊂3.2㊀结果及分析网络指标随缓存及带宽大小变化如图3~图5所示,具体数值如表2和表3所示㊂(a)消息到达率随节点缓存大小变化㊀㊀㊀(b)网络开销随节点缓存大小变化图3㊀网络指标随节点缓存大小变化Fig.3㊀Relationship between network indicators and cache size ofnodes (a)消息到达率随带宽大小变化㊀㊀㊀(b)网络开销随带宽大小变化图4㊀网络指标随带宽大小变化Fig.4㊀Relationship between network indicators andbandwidth (a)平均消息到达率随时间变化关系㊀㊀㊀(b)平均网络开销随时间变化关系图5㊀网络指标随时间变化关系Fig.5㊀Relationship between network indicators andtime㊀㊀从图3可以看出,4种缓存方法在消息到达率㊁网络开销方面的趋势相似㊂随着缓存大小的增加,消息到达率随之增高,网络开销随之变小㊂这是因为当缓存区大小变大时,节点的缓存中可以存储更多的信息,使得网络中同一个消息的副本数增加,进而增加了消息成功到达目标节点的概率㊂同时,缓存增加,缓存当中可以容纳更多消息,消息被丢弃的概率降低,重传的次数减少,使得网络开销减少㊂从图4可以看出,随着带宽的增加,消息到达率与网络开销都随之增高㊂这是因为当传输带宽变大时,网络中的节点更加活跃,消息更容易在网络中进行传递,故而消息的到达率更高㊂因为更活跃,消息在网络中将进行更多次的传递,故而网络开销增加㊂由图5可知,提出的基于最大最小蚂蚁系统的缓存管理机制明显优于其他机制㊂这是因为随着时间的推移,特定节点上某些类型消息的信息素浓度将继续增加,使这些节点更容易成为某些类型消息传输的中继节点,其他类型的消息将难以抢占此节点的缓存㊂这将使网络中的节点更难拥塞并丢弃消息,从而提高消息传递率㊂同时,基于最大最小蚂蚁系统的容迟网络缓存机制有效解决了蚁群算法易陷入局部最优的问题,随着时间的推移,基于普通蚂蚁系统的容迟网络缓存机制的性能在大约220min达到收敛,而基于最大最小蚂蚁系统的容迟网络缓存算法在大约260min达到收敛㊂初始时刻,基于最大最小蚂蚁系统的容迟网络缓存机制相较于基于普通蚂蚁系统的容迟网络缓存机制在网络指标上表现较差,这是因为根据经验选取的初始信息素浓度值使得某些节点在初始时刻已经成为 最优 ,陷入了局部最优,导致网络指标变差㊂后续工作将在已有研究的基础上探究利用网络及消息自身的相关指标对初始浓度设置,使得初始值浓度能够自适应地进行选取㊂表2展示了当节点缓存大小为10MByte和50MByte时,4种缓存机制的网络指标的具体值㊂由表2可知,当缓存大小为10MByte时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了4.0%,在网络开销方面减少了8.4%;当缓存大小为50MByte时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了10.5%,在网络开销方面减少了10.0%㊂表2㊀不同缓存大小情况下网络指标具体值Tab.2㊀Specific values of network indicators under different cache sizes缓存大小/MByte算法名称消息到达率/%网络开销/Hops10Max-Min Ant64.46 3.2880Ant61.96 3.5880DF36.96 4.8421DO27.99 6.1410 50Max-Min Ant73.56 2.3652Ant66.58 2.6274DF53.80 2.5954DO52.45 2.6314㊀㊀表3展示了当带宽大小为50kbit/s和500kbit/s 时,4种缓存机制的网络指标的具体值㊂由表3可知,当带宽大小为50kbit/s时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了13.2%,在网络开销方面减少了4.8%;当带宽大小为500kbit/s时,基于最大最小蚂蚁系统的容迟网络缓存机制比普通蚂蚁系统缓存机制在消息到达率方面提高了2.7%,在网络开销方面减少了2.6%㊂表3㊀不同带宽大小情况下网络指标具体值Tab.3㊀Specific values of network indicators under different bandwidth sizes带宽大小/(kbit/s)算法名称消息到达率/%网络开销/Hops50Max-Min Ant14.46 1.2269Ant12.77 1.2889DF10.87 1.1814DO11.41 1.2171 500Max-Min Ant75.66 3.7792Ant73.64 3.8792DF42.12 5.4892DO32.88 6.87114 结束语本文提出了一种基于最大最小蚂蚁系统的容迟网络缓存机制㊂该机制考虑信息的分类,使得同类别消息更容易通过同类信息素浓度高的节点进行传输㊂同时,本文定义了消息的信息素浓度㊁同类消息信息素浓度和总信息素浓度(丢弃权重)表达式,并利用总信息素浓度定义消息丢弃的优先级㊂仿真分析表明,基于最大最小蚂蚁系统的容迟网络缓存机制在消息到达率㊁网络开销方面具有比传统容迟网络算法更好的性能㊂本文所提缓存机制只考虑了同类消息信息素对于网络指标的影响,并没有考到不同类别信息的信息素之间的影响㊂下一步工作将从以下三方面进行改进:①考虑不同类别消息的信息素之间的影响对容迟网络指标的影响;②结合实际场景对消息进行分类,使得分类标准更加明确,有效区别各类消息;③对初始信息素浓度范围的取值进行研究㊂依据网络中的各类因素设置合适的信息素浓度初始值,避免基于最大最小蚂蚁系统的容迟网络缓存机制因初始信息素浓度过高而陷入局部最优㊂参考文献[1]㊀DEMIROGLOU V,MAMATAS L,TSAOUSSIDIS V.Adaptive NDN,DTN and NoD Deployment in Smart-cityNetworks Using SDN[C]ʊProceedings of2023IEEE20th Consumer Communications&Networking Conference(CCNC).Las Vegas:IEEE,2023:1092-1097. [2]㊀王洋,杨宏,陈晓光,等.面向深空通信的DTN网络跨层包大小的优化设计[J].宇航学报,2017,38(5):533-541.[3]㊀MADOERY P G,KURT G K,YANIKOMEROGLU H.Routing Heterogeneous Traffic in Delay Tolerant SatelliteNetworks[C]ʊProceedings of2022IEEE InternationalConference on Wireless for Space and Extreme Environ-ments(WiSEE).Winnipeg:IEEE,2022:99-104. [4]㊀聂宇雷,彭锋彬,张更新,等.深空通信中容迟容断网络协议体系应用研究[J].无线电通信技术,2016,42(3):22-25.[5]㊀NAKAGAWA K,SHIMOTOKU D,KAWASE J,et al.Sus-tainable Wildlife DTN:Wearable Animal Resource Opti-mization Through Intergenerational Multi-hop NetworkSimulation[C]ʊProceedings of202117th InternationalConference on Wireless and Mobile Computing,Networ-king and Communications(WiMob).Bologna:IEEE,2021:193-199.[6]㊀EZIFE F,LI W,YANG S H.A Survey of Buffer Manage-ment Strategies in Delay Tolerant Networks[C]ʊProcee-dings of2017IEEE14th International Conference onMobile Ad Hoc and Sensor Systems(MASS).Orlando:IEEE,2017:599-603.[7]㊀LIUF J,BAI X Y.Research on the Buffer ManagementAlgorithm in DTN[C]ʊProceedings of20152nd Inter-national Conference on Information Science and ControlEngineering.Shanghai:IEEE,2015:442-446. [8]㊀崔苑茹,李鹏,刘宏,等.基于校园机会网络的协作小组缓存调度策略[J].电子学报,2021,49(12):2399-2406.[9]㊀郑啸,高汉,王修君,等.移动机会网络中接触时间感知的协作缓存策略[J].计算机研究与发展,2018,55(2):338-345.[10]ZHANG Y,ZHANG T.Cache Management Strategy Basedon Distributed Storage in Delay/Disruption Tolerant Net-work[C]ʊProceedings of2019IEEE19th InternationalConference on Communication Technology(ICCT).Xi a n:IEEE,2019:1337-1341.[11]GOUDAR G,BATABYAL S.Optimizing Bulk TransferSize and Scheduling for Efficient Buffer Management inMobile Opportunistic Networks[J].IEEE Transactions onMobile Computing,2022,21(12):4471-4487. [12]NǍNǍU C S.MaxDelivery:A New Approach to a DTNBuffer Management[C]ʊProceedings of2020IEEE21stInternational Symposium on A World of Wireless,Mobileand Multimedia Networks (WoWMoM).Cork:IEEE,2020:60-61.[13]WANG T,TANG M B,CAO Y.Resource OptimizationProtocol Based on Multicommunity Model for Intermi-ttently Connected Mobile Networks[J].IEEE SystemsJournal,2020,14(1):410-421.[14]AKANDE H B,ABIKOYE O C,AKANDEO N.ImprovingOptimization Prowess of Ant Colony Algorithm Using BatInspired Algorithm[C]ʊProceedings of20225th Infor-mation Technology for Education and Development(ITED).Abuja:IEEE,2022:1-5.[15]YE K,ZHANG C S,NING J X,et al.Ant-colony Algo-rithm with a Strengthened Negative-feedback Mechanismfor Constraint-satisfaction Problems[J].Information Sci-ences,2017,406(c):29-41.[16]李宪强,马戎,张伸,等.蚁群算法的改进设计及在航迹规划中的应用[J].航空学报,2020,41(S2):213-219.[17]DING Y M,ZHAO Y,GAO Y X,et al.Q-learning Quan-tum Ant Colony Routing Algorithm for Micro-Nano Satel-lite Network[C]ʊProceedings of2021IEEE6th Interna-tional Conference on Computer and Communication Sys-tems(ICCCS).Chengdu:IEEE,2021:949-954. [18]赵晶蕊,刘江,张然,等.基于蚁群算法的LEO卫星网络QoS优化路由[J].无线电通信技术,2021,47(5):590-595.[19]STUTZLE T.Max-Min Ant System[J].Future GenerationComputer Systems,2000,16(8):889-914.作者简介:彭牧尧㊀男,(1999 ),硕士研究生㊂主要研究方向:容迟网络㊁深度学习和计算机视觉㊂魏建军男,(1978 ),博士,副教授㊂主要研究方向:物联网㊁通信芯片设计㊂王乾舟男,(1997 ),硕士研究生㊂主要研究方向:容迟网络㊁计算机视觉和深度学习㊂王㊀琨男,(1973 ),博士,副教授㊂主要研究方向:大数据分析㊁物联网与计算机网络㊂。
第27卷第11期2021年11月计算机集成制造系统Vol.27No.11 Computer Integrated Manufacturing Systems Nov.2021DOI:10.13196/j.cims.2021.11.016基于Kriging模型的自适应多阶段并行代理优化算法乐春宇,马义中+(南京理工大学经济管理学院,江苏南京210094)摘要:为了充分利用计算资源,减少迭代次数,提出一种可以批量加点的代理优化算法。
该算法分别采用期望改进准则和WB2(Watson and Barnes)准则探索存在的最优解并开发已存在最优解的区域,利用可行性概率和多目标优化框架刻画约束边界。
在探索和开发阶段,设计了两种对应的多点填充算法,并根据新样本点和已知样本点的距离关系,设计了两个阶段的自适应切换策略。
通过3个不同类型算例和一个工程实例验证算法性能,结果表明,该算法收敛更快,其结果具有较好的精确性和稳健性。
关键词:Kriging模型;代理优化;加点准则;可行性概率;多点填充中图分类号:O212.6文献标识码:AParallel surrogate-based optimization algorithm based on Kriging model usingadaptive multi-phases strategyYUE Chunyu,MA Yizhong+(School o£Economics and Management,Nanjing University of Science and Technology,Nanjing210094,China) Abstract:To make full use of computing resources and reduce the number of iterations,a surrogate-based optimization algorithm which could add batch points was proposed.To explore the optimum solution and to exploit its area, the expected improvement and the WB2criterion were used correspondingly.The constraint boundary was characterized by using the probability of feasibility and the multi-objective optimization framework.Two corresponding multi-points infilling algorithms were designed in the exploration and exploitation phases and an adaptive switching strategy for this two phases was designed according to the distance between new sample points and known sample points.The performance of the algorithm was verified by three different types of numerical and one engineering benchmarks.The results showed that the proposed algorithm was more efficient in convergence and the solution was more precise and robust.Keywords:Kriging model;surrogate-based optimization;infill sampling criteria;probabil让y of feasibility;multipoints infill0引言现代工程优化设计中,常采用高精度仿真模型获取数据,如有限元分析和流体动力学等E,如何在优化过程中尽可能少地调用高精度仿真模型,以提高优化效率,显得尤为重要。
计算机网络第四版(课后练习+答案)第 1 章概述1.假设你已经将你的狗Berníe 训练成可以携带一箱3 盒8mm 的磁带,而不是一小瓶内哇地. (当你的磁盘满了的时候,你可能会认为这是一次紧急事件。
)每盒磁带的窑最为7GB 字节;无论你在哪里,狗跑向你的速度是18km/h 。
请问,在什么距离范围内Berníe的数据传输速率会超过一条数据速率为150Mbps的传输线?答:狗能携带21千兆字节或者168千兆位的数据。
18 公里/小时的速度等于0.005 公里/秒,走过x公里的时间为x / 0.005 = 200x秒,产生的数据传输速度为168/200x Gbps或者840 /x Mbps。
因此,与通信线路相比较,若x<5.6 公里,狗有更高的速度。
6. 一个客户·服务器系统使用了卫星网络,卫星的高度为40 000km. 在对一个请求进行响应的时候,最佳情形下的延迟是什么?答:由于请求和应答都必须通过卫星,因此传输总路径长度为160,000千米。
在空气和真空中的光速为300,000 公里/秒,因此最佳的传播延迟为160,000/300,000秒,约533 msec。
9. 在一个集中式的二叉树上,有2n -1 个路出器相互连接起来:每个树节点上都布一个路由器。
路由器i 为了与路由器j 进行通信,它要给树的根发送一条消息。
然后树根将消息送下来给j 。
假设所有的路由器对都是等概率出现的,请推导出当n很大时,每条消息的平均跳数的一个近似表达式。
答:这意味着,从路由器到路由器的路径长度相当于路由器到根的两倍。
若在树中,根深度为1,深度为n,从根到第n层需要n-1跳,在该层的路由器为0.50。
从根到n-1 层的路径有router的0.25和n-2跳步。
因此,路径长度l为:18.OSI 的哪一层分别处理以下问题?答:把传输的比特流划分为帧——数据链路层决定使用哪条路径通过子网——网络层.28. 一幅图像的分辨率为1024X 768 像素,每个像素用3 字节来表示。
克里斯托菲德斯算法(Christofides algorithm)是一种应用于旅行商问题(TSP,Traveling Salesman Problem)的近似算法。
该算法在度量空间(即距离对称且满足三角不等式)上进行求解,可以保证找到的相对最优哈密尔顿回路长度有3/2的近似比。
克里斯托菲德斯算法的基本思想是在一个有权图中寻找一个哈密顿回路(即经过所有顶点的回路),并通过构造最小生成树来得到近似解。
算法的主要步骤如下:
1. 初始化:随机生成一个源顶点,将其作为起始点。
2. 构造最小生成树:使用Prim或Kruskal算法构建最小生成树。
3. 寻找哈密顿回路:从起始点开始,沿着最小生成树进行遍历,尝试寻找一个哈密顿回路。
4. 优化:如果找到的哈密顿回路长度大于当前最优解,则替换最优解。
需要注意的是,克里斯托菲德�算法依赖于图的性质,例如度数、连通性等。
在实际应用中,算法的结果可能受到初始化策略和最小生成树构建算法的影响。
因此,有时需要对算法进行多次运行,以获得更好的近似解。
截至2017年,克里斯托菲德斯算法仍然是一般性旅行商问题算法中近似比最好的结果。
在实际应用中,该算法在解决大规模旅行商问题时表现出较好的性能。
∙以太帧格式∙VLAN帧格式∙QinQ帧格式∙PPP帧格式∙PPPoE报文格式∙HDLC帧格式∙ATM信元格式∙STP/RSTP/MSTP帧格式∙RPR帧格式∙RRPP帧封装格式∙LACP报文格式∙以太OAM报文格式∙ERPS帧格式∙LLDP报文格式∙IS-IS报文格式以太帧格式∙Ethernet Ⅱ以太帧∙Netware以太帧格式∙802.3 SAP以太帧∙802.3 LLC SNAP以太帧格式∙ARP/RARP报文格式∙GRE报文格式∙ICMP报文格式∙ICMPv6报文格式∙IGMP报文格式∙IP in IP报文格式∙IP报文格式∙IPv6报文格式∙IPv6 in IP (6to4)报文格式∙MLD报文格式∙OSPF报文格式∙OSPFv3报文格式∙PIM报文格式∙RSVP报文格式∙VRRP报文格式Ethernet Ⅱ以太帧帧格式图1 Ethernet Ⅱ帧格式帧示例QinQ帧格式QinQ报文有固定的格式,就是在802.1Q的标签之上再打一层802.1Q标签,QinQ报文比802.1Q报文多四个字节。
VLAN帧最小帧长为68字节。
帧格式图1 QinQ帧格式帧示例图2 QinQ帧VLAN帧格式帧格式IEEE 802.1Q标准对Ethernet帧格式进行了修改,在源MAC地址字段和协议类型字段之间加入4字节的802.1Q Tag。
VLAN帧最小帧长为64字节。
图1 VLAN帧格式帧示例图2 VLAN帧STP/RSTP/MSTP帧格式STP帧格式图1 STP帧格式RSTP帧格式在BPDU的格式上,除了保证和STP格式基本一致之外,RSTP作了一些小的变化。
一个是在Type字段,配置BPDU类型不再是0而是2,版本号也变成了2。
所以运行STP的交换机收到该类BPDU时会丢弃。
另一个变化是在Flag字段,把原来保留的中间6位使用起来。
这样改变了的配置BPDU叫做RST BPDU。
RSTP Flag字段格式:∙Bit7:TCA∙Bit6:Agreement∙Bit5:Forwarding∙Bit4:Learning∙Bit3和Bit2:端口角色▪00:未知▪01:根端口▪10:Alternate / Backup▪11:指定端口∙Bit1:Proposal∙Bit0:TCMSTP帧格式多生成树协议MSTP是生成树协议的一种,用于消除网络环路,它兼容生成树协议STP和快速生成树RSTP协议,并且弥补了两者的缺陷。
Parallelized approximation algorithms for minimumrouting cost spanning treesChing-Lueh Chang ∗Yuh-Dauh Lyuu †February 5,2008AbstractLet G =(V,E )be an undirected graph with a nonnegativeedge-weightfunction w.The routing cost of a spanning tree T of G is u,v ∈V d T (u,v ),where d T (u,v )denotes the weight of the simple u -v path in T.The Mini-mum Routing Cost Spanning Tree (MRCT)problem [WLB +00]asks for a spanning tree of G with the minimum routing cost.In this paper,we parallelize several previously proposed approximation algorithms for the MRCT problem and some of its variants.Let >0be an arbitrary con-stant.When the edge-weight function w is given in unary,we parallelize the (4/3+ )-approximation algorithm for the MRCT problem [WCT00b]by implementing it using an RN C circuit.There are other variants of the MRCT problem.In the Sum-Requirement Optimal Communication Spanning Tree (SROCT)problem [WCT00a],each vertex u is associated with a requirement r (u )≥0.The objective is to find a spanning tree T of G minimizing u,v ∈V (r (u )+r (v ))d T (u,v ).When the edge-weight func-tion w and the vertex-requirement function r are given in unary,we paral-lelize the 2-approximation algorithm for the SROCT problem [WCT00a]by realizing it using RN C circuits,with a slight degradation in the ap-proximation ratio from 2to 2+o (1).In the weighted 2-MRCT problem[Wu02],we have additional inputs s 1,s 2∈Vand λ≥1.The objective isto find aspanning tree T of G minimizing v ∈V λd T (s 1,v )+d T (s 2,v ).When the edge-weight function w is given in unary,we parallelize the 2-approximation algorithm [Wu02]into RN C circuits,with a slight degra-dation in the approximation ratio from 2to 2+o (1).To the best of our knowledge,our results are the first parallelized approximation algorithms for the MRCT problem and its variants.1IntroductionLet G =(V,E )be an undirected graph with a nonnegative edge-weight functionw.The routing cost of a spanning tree T of G is u,v ∈V d T (u,v )where d T (u,v )is the weight of any shortest u -v path in T,or equivalently,the weight of the ∗Department of Computer Science and Information Engineering,National Taiwan Univer-sity,Taipei,Taiwan.Email:Email:d95007@.tw†Department of Computer Science and Information Engineering,National Taiwan Univer-sity,Taipei,Taiwan.Email:lyuu@.twa r X i v :0705.2125v 2 [c s .D S ] 4 J u l 2007simple u -v path in T.The Minimum Routing Cost Spanning Tree (MRCT)problem [WLB +00]asks for a spanning tree T of G with the minimum routing cost.It is also known as the Shortest Total Path Length Spanning Tree problem.The MRCT problem is first proposed by Hu [Hu74],who referred to the problem as the Optimum Distance Spanning Tree Problem .In Hu’s formulation of the more general Optimum Communication Spanning Tree (OCT)problem [Hu74],an additional value τu,v ≥0is given for each pair (u,v )of vertices.The communication cost [Hu74]of a spanning tree T of G is u,v ∈V τu,v d T (u,v ).The OCT problem asks for a spanning tree of G with the minimum communication cost.When G is a complete graph and the edge-weight function w obeys the triangle inequality,a randomized O (log |V |)-approximation algorithm is known for the OCT problem [Bar98,CCGG98,WLB +00,FRT03].The MRCT problem is the special case of the OCT problem when τu,v =1for all u,v ∈V.The MRCT problem has applications in network design [Hu74,JLK78]as well as multiple sequences alignment in computational biology [FD87,Pev92,Gus93,BLP94,WLB +00].Unfortunately,it is shown to be N P -hard [JLK78],and it is N P -hard even when all edge weights are equal [JLK78,GJ79]or when the edge-weight function obeys the triangle inequality [WLB +00].Exact and approximation algorithms for the MRCT problem have been extensively researched [BFW73,Hoa73,DF79,Won80,WCT00b,WLB +00,FLS02].Boyce et al.[BFW73],Hoang [Hoa73]and Dionne and Florian [DF79]study branch-and-bound algorithms as well as heuristic approximation algo-rithms for the Optimal Network Design problem [BFW73],which includes the MRCT problem as a special case.Fischetti et al.[FLS02]give exact algo-rithms for the MRCT problem while avoiding exhaustive search.Wong [Won80]gives a polynomial-time 2-approximation algorithm for the MRCT problem.That is,he gives a polynomial-time algorithm that,given a graph G =(V,E )with a nonnegative edge-weight function w,outputs a spanning tree of G whose routing cost is at most 2times the minimum.Subsequent work by Wu et al.[WCT00b]shows a different polynomial-time 2-approximation algorithm as well as polynomial-time 15/8,3/2and (4/3+ )-approximation algorithms for the MRCT problem,where >0is an arbitrary constant.Their results are later improved by Wu et al.[WLB +00]to give a polynomial-time approximation scheme (PTAS)[CLRS01]for the MRCT problem.That is,a polynomial-time (1+ )-approximation algorithm is given for any constant >0.There are other variants of the MRCT problem that also have applica-tions in network design [WLB +00,WCT00a,WCT00c,Wu02].In the Sum-Requirement Optimal Communication Spanning Tree (SROCT)prob-lem [WCT00a],each vertex u is associated with a requirement r (u )≥0.The ob-jective is to find a spanning tree T of G minimizing u,v ∈V (r (u )+r (v ))d T (u,v ).The Product-Requirement Optimal Communication Spanning Tree (PROCT)[WCT00a]problem is to find a spanning tree T of G minimizing u,v ∈V r (u )r (v )d T (u,v ).The SROCT and PROCT problems are clearly gen-eralizations of the MRCT problem.Wu et al.[WCT00a]give a 2-approximation algorithm for the SROCT problem.They also propose a 1.577-approximation algorithm [WCT00a]forthe PROCT problem.The result is improved by Wu et al.[WCT00c]to yield a polynomial-time approximation scheme (PTAS)for the PROCT problem.Another variant of the MRCT problem is the 2-MRCT problem [Wu02].In this problem,except for G =(V,E )and w :E →R +0,we are given two source vertices s 1,s 2∈V.The objective is to find a spanning tree T of G minimizing v ∈V d T (s 1,v )+d T (s 2,v ).This problem is N P -hard even when w obeys the triangle inequality [Wu02].Wu [Wu02]shows a 2-approximation algorithm as well as a PTAS for this problem.A variant of the 2-MRCT problem is the weighted 2-MRCT problem [Wu02]where an additional λ≥1is given as input.The objective is to find a spanning tree T of G minimizing v ∈V λd T (s 1,v )+d T (s 2,v ).Wu [Wu02]proposes a 2-approximation algorithm for the weighted 2-MRCT problem.When the edge-weight function w obeys the triangle inequality,there is a PTAS for the weighted 2-MRCT problem [Wu02].In this paper,however,we will focus on parallelizing the approximation algorithms for the above problems.We first describe our results concerning the MRCT problem.For an arbitrary >0and when the edge-weight function w is given in unary,we show that the (4/3+ )-approximation algorithm proposed by Wu et al.[WCT00b]can be implemented by an RN C circuit.That is,the approximation algorithm can be performed by a uniform polynomial-size circuit[Pap94]with random gates and poly-logarithmic depth.Indeed,with a small probability our parallelized algorithm may fail to find a (4/3+ )-approximate solution,in which case it outputs “fail.”Thus,our algorithm does not fail (to find a (4/3+ )-approximate solution)without ever knowing that it fails,which is a desirable property for randomized algorithms with a small probability of failure.We now turn to describe our results concerning the SROCT problem.When the edge-weight and the vertex-requirement functions are given in unary,we parallelize the 2-approximation algorithm [WCT00a]by realizing it using RN C circuits,with a slight degradation in the approximation ratio (from the currently best 2to our 2+o (1)).Still,with a small probability our algorithm may fail to output a (2+o (1))-approximate solution,in which case it knows the failure and outputs “fail.”Finally,for the weighted 2-MRCT problem with the edge-weight function given in unary,we parallelize the 2-approximation algorithm [Wu02]into RN C circuits,with a slight degradation in the approximation ratio (from the currently best 2to our 2+o (1)).Again,there is a small probability that our algorithm fails to find a (2+o (1))-approximate solution,in which case it outputs “fail.”To the best of our knowledge,our results are the first efforts towards paral-lelized approximation algorithms for the MRCT problem and its variants.Our results open up new opportunities to compute approximate solutions to the above problems in parallel poly-logarithmic time.In the applications of the MRCT problem to network design [Hu74,JLK78]as well as the applications of the SROCT and PROCT problems to network design [WCT00a,WCT00c],the network is often modeled as a graph with a nonnegative edge-weight func-tion representing the distances between pairs of nodes.Although approximate solutions to the aforementioned problems (MRCT,SROCT,PROCT,weighted 2-MRCT)are attainable in polynomial time,in any real networking environ-ment,however,the cost of traffic between any pair of nodes may vary over time.Thus,it is highly desirable to be able to compute approximate solutions to these problems as fast as possible,so as to reduce the risk that the traffic costs change during the computation.Our results imply that approximate so-lutions to the MRCT,SROCT and weighted2-MRCT problems can indeed by computed in parallel poly-logarithmic time on multiprocessors.For other applications of the MRCT problem where the data does not change quickly over time,for example multiple sequences alignment in computational biology[FD87,Pev92,Gus93,BLP94,WLB+00],being able to compute ap-proximate solutions to the MRCT problem in parallel sublinear time is still beneficial.Indeed,Fischer[Fis01]argues that in many practical applications today,the input size is so large that even performing linear-time computations is too time-consuming.Certainly,multiple sequences alignment in computa-tional biology constitutes a good example where the input size is usually too large.It is therefore a desirable property that our algorithms operate in parallel sublinear time,and in fact poly-logarithmic time.The main idea underlying our proofs is that many of the previously proposed approximation algorithms for the MRCT,SROCT and weighted2-MRCT prob-lems rely heavily onfinding shortest paths between pairs of vertices in a graph. This motivates applying the well-known result that N L⊆N C to parallelize these algorithms since we can guess a path(possibly the shortest one)between two vertices of a graph in nondeterministic logarithmic space.There is the com-plication that,in our proofs,we will often need to generate the same shortest path between two vertices u,v,whenever a shortest u-v path is needed.For this purpose,we use the isolation technique[Wig94,GW96,RA00]to slightly modify the edge-weight function of the input graph,so that there is exactly one shortest path between each pair of vertices with high probability.We then apply the double-counting technique[RA00]to decide whether the input graph (with the modified edge-weight function)exhibits a unique shortest path be-tween each pair u,v of vertices.If so,we are able use the double counting technique to generate the unique shortest u-v path whenever it is needed.The whole procedure runs in unambiguous logarithmic space and our results follow by UL⊆N L⊆N C.The approximation ratio would be slightly degraded.The degradation comes from randomly modifying the edge-weight function when we apply the isolation technique.Our paper is organized as follows.Section2provides the basic defini-tions.Section3presents the parallelized(4/3+ )-approximation algorithm for the MRCT problem.Section4–5describe our parallelized approximation algorithms for the SROCT and the weighted2-MRCT problems,respectively. Section6concludes the paper.Proofs are given in the appendix for references. 2Notations and basic factsThroughout this paper,graphs are simple undirected graphs[Wes01].That is, we disallow parallel edges and self-loops.There will always be a nonnegative edge-weight function mapping each edge to a nonnegative real number.For agraph G,V (G )is its vertex set and E (G )is its edge set.Let R be a subgraph of G.A path P connects a vertex v to R (or V (R ))if one endpoint of P is v and the other is in V (R ).An edge connecting two vertices u and v is denoted uv.A path connecting two vertices u and v is said to be a u -v path.A path (v 0,...,v k )is one which traverses v 0,...,v k ,in that order.A simple path is a path that traverses each vertex at most once [Wes01].A graph G contains another graph G if G is a subgraph of G.The set of nonnegative real numbers is denoted R +0.Definition 1.Let G =(V,E )be an undirected graph and w :E →R +0be a nonnegative edge-weight function.The lexicographical ordering on V is that of the encodings of the vertices in V,assuming any reasonable encoding of a graph.Let u,v ∈V and R be a subgraph of G.The sum of edge weights of R is denoted w (R ).When R is a path,w (R )is called the weight or length of R.For x,y ∈V,we use d G (x,y )to denote the weight of any shortest x -y path.We use d G (x,R )(or d G (x,V (R )))for min z ∈V (R )d G (x,z ).The lexicographically first vertex x ∈V (R )satisfying d G (x,x )=d G (x,R )is denoted closest (x,R )(or closest (x,V (R ))).The set of all shortest paths connecting u and v is denoted SP G (u,v ).SP G (u,R )(or SP G (u,V (R )))is the set of shortest paths connecting u and R.That is,SP G (u,R )is the set of paths that connect u and R and have weight equal to d G (u,R ).For k ∈N ,S k,u denotes the set of vertices reachablefrom u with at most k edges.SP (k )u,v denotes the set of all shortest paths amongthose u -v paths with at most k edges.That is,SP (k )u,v is the set of u -v paths withat most k edges whose weight is not larger than any other path with at most k edges.The union of two graphs G 1=(V 1,E 1)and G 2=(V 2,E 2)is the graph (V 1∪V 2,E 1∪E 2).The graph G is strongly min-unique with respect to w if for all k ∈N and u,v ∈V,we have SP (k )u,v ≤1.When w is clear from the context,we may simply say that G is strongly min-unique without referring to w.In Definition 1,it is not hard to show that G =(V,E )is strongly min-unique if SP (k )u,v ≤1for all k ∈{0,...,|V |−1}and u,v ∈V,provided |V |≥3.The MRCT of a graph,standing for its M inimum R outing C ost spanningT ree,is defined below.Definition 2.([WC04])Given a connected graph G =(V,E )with a nonneg-ative edge-weight function w :E →R +0,the routing cost c w (T )of a spanningtree T of G is u,v ∈V d T (u,v ).A spanning tree of G with the minimum routing cost is an MRCT of G,which is denoted by MRCT (G )for convenience.The MRCT problem asks for MRCT(G )on input G,w.The following fact shows that the routing cost of a tree can be computed efficiently.Fact 3.([WC04])Let G be a graph with a nonnegative edge-weight function w :E (T )→R +0and T be a spanning tree of G.For each edge e ∈E (T ),let T e,1and T e,2be the two trees formed by removing e from T.We have c w (T )= e ∈E (T )2|V (T e,1)||V (T e,2)|w (e )and c w (T )≤|V (T )|3/2·max e ∈E (T )w (e ).To ease the description,we introduce the following definition.Definition4.([RA00])A nondeterministic Turing machine M outputs a string s unambiguously on input x if it outputs s on exactly one non-rejecting com-putation branch,and rejects x on all other computation branches.The unam-biguously output string s is also denoted M(x).Throughout this paper,when a nondeterministic Turing machine A runs or simulates another nondeterministic machine B,it means that A runs B and make nondeterministic branches as B does.It does not mean that A enumerates all computation branches of B and simulate them deterministically. For convenience,A does not necessarily have to output B’s output.Instead,it may extract portions of B’s output for output.We will need the notion of a general star to introduce the approximation algorithms for the MRCT problem.Definition5.([WC04])Let G be a connected graph with a nonnegative edge-weight function w:E→R+0and S be a subtree of G.A spanning tree T containing S is a general star with core S if each vertex u∈V satisfies d T(u,S)=d G(u,S).When V(S)={v}is a singleton,a general star with core S is also called a shortest path tree rooted at v.Given any subtree S of G=(V,E),a general star with core S exists [WCT00b].This follows by observing that for any shortest path P connect-ing u∈V and S,the part of P from any vertex x∈V(P)to S constitutes a shortest path connecting x and S.The notion of a metric graph is defined below.Definition 6.([WLB+00])A complete graph G with a non-negative edge-weight function w is metric if w(xy)+w(yz)≥w(xz)for all x,y,z∈V(G). 3A parallelized(4/3+ )-approximation for MRCT We begin with the following form of the famous isolation lemma.It is implicit in some previous works[Wig94,GW96,RA00].Theorem7.([RA00])Let G=(V,E)be a graph with a nonnegative edge-weight w:E→R+0.Let w r:E→R+0assign the weight of each e∈E independently and randomly from the uniform distribution over a set W⊆R+0. With probability at least1−|V|5/(2|W|),the graph G is strongly min-unique with respect to w+w r.The following theorem is implicit in[RA00].It uses the double counting technique[RA00]similar to the inductive counting technique used to prove the Immerman-Szelepcs´e nyi theorem[Imm88,Sze88].Theorem8.([RA00])There is a nondeterministic logarithmic-space Turing machine FIND-PATH that,on input a graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)}and two vertices s,t∈V, satisfies the following conditions.1.If G is not strongly min-unique,then FIND-PATH outputs“not stronglymin-unique”unambiguously.2.If G is strongly min-unique and has an s-t path,then FIND-PATH outputsthe unique path P∈SP G(s,t)and its weight w(P)unambiguously.The edges in P are output in the direction going from s to t.3.If G is strongly min-unique and does not have an s-t path,then FIND-PATH has no accepting computation branches.The following theorem is due to Wu et al.[WCT00b].Theorem9.([WCT00b])Let r∈N be a constant and G=(V,E)be a connected,strongly min-unique graph with a nonnegative edge-weight function w:E→R+0.For1≤k≤r+4and S=(v1,...,v k)∈V k,let R1,S be the subgraph of G containing only v1.For2≤i≤k,let R i,S=R i−1,S∪P i,S where P i,S∈SP G(v i,closest(v i,R i−1,S)))is the unique shortest path connecting v i and closest(v i,R i−1,S).For some1≤k≤r+4and S∈V k,every general star T with core R k,S satisfiesc w(T)≤43+89r+2c w(MRCT(G)).That R i,S in Theorem9is a subtree of G for2≤i≤k is easily shown because w(e)>0for each e∈E by the strong min-uniqueness of G.The core R k,S in Theorem9is unambiguously computable in logarithmic space on strongly min-unique connected graphs.To show this,we need the following lemma.Lemma10.There is a nondeterministic logarithmic-space Turing machine ADD-PATH that,on input a strongly min-unique connected graph G=(V,E) with a nonnegative edge-weight function w:E→{0,...,poly(|V|)},a subgraphR of G and a vertex v∈V,outputs the unique path P∈SP G(v,closest(v,R)) unambiguously.With Lemma10,we are able to compute the core R k,S in Theorem9un-ambiguously in logarithmic space on strongly min-unique connected graphs. Lemma11.Let r∈N be a constant.There is a nondeterministic logarithmic-space Turing machine CORE that,on input a strongly min-unique connected graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)} and S=(v1,...,v k)∈V k where1≤k≤r+4,unambiguously outputs R k,Sdefined below.R1,S is the subgraph of G containing only v1.For2≤i≤k,R i,S=R i−1,S∪P i,S whereP i,S∈SP G(v i,closest(v i,R i−1,S))is the unique shortest path connecting v i and closest(v i,R i−1,S).With Theorem9and Lemma11,it is not hard to show the following fact.Fact12.Let r∈N be a constant and G=(V,E)be a strongly min-unique,con-nected graph with a nonnegative edge-weight function w:E→{0,...,poly(|V|)}. For a sequence S of at most r+4vertices in V,let C S=CORE(G,w,S)and P u∈SP G(u,closest(u,C S))for u∈V\V(C S).ThenT S=C S∪u∈V\V(C S)P uis a general star with core S,andc w(T S)<43+89r+12·c w(MRCT(G))for some S.The general star with a core in Fact12can be computed unambiguously in logarithmic space,as the next lemma shows.Lemma13.Let r∈N be a constant.There is a nondeterministic logarithmic-space Turing machine STAR that,on input a strongly min-unique connected graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)} and a sequence S of at most r+4vertices in V,outputs C S=CORE(G,w,S)and each unique path in SP G(u,closest(u,C S))for u∈V\V(C S)unambigu-ously.The following lemma allows unambiguous logarithmic-space computation ofthe routing cost of a tree.Lemma14.There is a nondeterministic logarithmic-space Turing machine ROUT-PAIR that,on input a tree T with a nonnegative edge-weight functionw:E(T)→{0,...,poly(|V(T)|)}and s,t∈V(T),unambiguously outputs the unique simple path P∗connecting s and t in T and w(P∗).Combining Fact12and Lemmas13–14gives the following lemma.Lemma15.Let r∈N be a constant.There exists a nondeterministic logarithmic-space Turing machine APPROX that,on input a strongly min-unique con-nected graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)},unambiguously outputs a spanning tree T of G withc w(T)<43+89r+12·c w(MRCT(G)).The following lemma will be useful.Lemma16.Letα>0be a constant.Let G=(V,E)be a graph with a nonnegative edge-weight function w:E→R+0,and the minimum nonzero weight assigned by w,if it exists,is at least1.Let T1and T2be spanning trees of G.Let w r assign to each edge e∈E a nonnegative weight w(e)≤1/|V|4and w =w+w r.Thenc w (T1)≤αc w (T2)(1)impliesc w(T1)≤α(1+12|V|)c w(T2)(2)for sufficiently large|V|.Combining Theorem7and Lemma15–16yields the following theorem.Theorem17.Let >0be a constant.There is an RN C2algorithm PARAL-LEL that,on input a weighted undirected graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)},satisfies the following.1.If G is disconnected,then PARALLEL(G,w)outputs“disconnected.”2.If G is connected,then PARALLEL(G,w)outputs a spanning tree ofG unambiguously or outputs“fail”unambiguously.The probability thatPARALLEL(G)outputs a spanning tree of G unambiguously is at least 1−1/(2|V|).If PARALLEL(G)outputs a spanning tree T of G unam-biguously,thenc w(T)≤43+·c w(MRCT(G)).4The SROCT problemWe begin this section with the following definition.Definition18.([WCT00a,Wu02])Let G=(V,E)be a graph with a non-negative edge-weight function w:E→R+0and r:V→R+0be a requirement function on vertices.Let s1,s2∈V be two vertices of G and T be a spanning tree of G.The sum-requirement communication(s.r.c.)cost of T isc(s)w(T)=u,v∈V(r(u)+r(v))d T(u,v).The Sum-Requirement Optimal Communication Spanning Tree(SROCT) problem is tofind a spanning tree T of G with the minimum value of c(s)w(T) over all spanning trees of G.We use SROCT(G)to denote an arbitrary span-ning tree of G with the minimum s.r.c.cost.The two-source routing cost of T with sources s1,s2isc(2)w(T,s1,s2)=v∈V(d T(s1,v)+d T(s2,v)).The2-MRCT problem is tofind a spanning tree T of G with the minimum value of c(2)w(T,s1,s2)over all spanning trees of G(in this problem s1and s2are part of the input).We use2-MRCT(G)to denote an arbitrary spanning tree of G with the minimum two-source routing cost when the sources s1,s2are clear fromthe context.Letλ≥1.The weighted two-source routing cost of T with sourcess1,s2and weightλisc(2)w(T,s1,s2,λ)=(λd T(s1,v)+d T(s2,v)).v∈VThe weighted2-MRCT problem is tofind a spanning tree T of G with the mini-mum value of c(2)w(T,s1,s2,λ)over all spanning trees of G(in this problem s1,s2 andλare part of the input).We use W-2-MRCT(G)to denote an arbitrary spanning tree of G with the minimum weighted two-source routing cost whenλand the sources s1,s2are clear from the context.The SROCT,2-MRCT and weighted2-MRCT problems are all N P-hard, even on metric graphs[WLB+00,WCT00a,WCT00c,Wu02].The following theorem gives a2-approximation solution to the SROCT prob-lem.Theorem19.([WCT00a])Let G=(V,E)be a connected graph with a non-negative edge-weight function w and a nonnegative vertex-requirement function r.There exists a vertex x∈V such that any shortest path tree T rooted at x satisfiesc(s)w(T)≤2c(s)w(SROCT(G)).Theorems7–8,19and Lemma14give the following parallelized2-approximation solution to the SROCT problem.Theorem20.There is an RN C2algorithm PARALLEL-SROCT that,on in-put a connected graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)}and a nonnegative vertex-requirement function r:V→{0,...,poly(|V|)},outputs a spanning T of G withc(s)w(T)≤(2+o(1))c(s)w(SROCT(G))with high probability.If PARALLEL-SROCT does not output such a spanning tree,it outputs“fail.”5Weighted2-MRCT problemFor the weighted2-MRCT problem,we can assume without loss of generality that the two sources s1,s2are such that d G(s1,s2)>0,where G is the input graph.Otherwise,the problem reduces tofinding a shortest path tree rootedat s1,which was implicitly done in the proof of Theorem20.Wu[Wu02]has the following2-approximation solution for the weighted2-MRCT problem. Theorem21.([Wu02])Let G=(V,E)be a connected graph with a nonnega-tive edge-weight function w:E→R+0,two sources s1,s2∈V with d G(s1,s2)>0andλ≥1.DenoteD1(v)=(λ+1)d G(v,s1)+d G(s1,s2)andD2(v)=(λ+1)d G(v,s2)+λd G(s1,s2)for v∈V.Let Z w1={v|D1(v)≤D2(v)}and Z w2=V\Z w1.Let Q∈SP G(s1,s2) be arbitrary.DenoteQ=(q0=s1,...,q j,q j+1,...,s2)where q j+1is thefirst vertex on Q(in the direction from s1to s2)that is not in Z w1(it is easy to see that s1∈Z w1).For each v∈V,let P v,s1∈SP G(v,s1)and P v,s2∈SP G(v,s2)be arbitrary.If T1=v∈Z w1P v,s1and T2=v∈Z w2P v,s2are trees,then T=T1∪T2∪q j q j+1is a spanning tree of G andc(2)w(T)≤2c(2)w(W-2-MRCT(G)).Theorems7–8and21and Lemma14yield the following theorem. Theorem22.There is an RN C2algorithm WEIGHTED-2-MRCT that,on input a graph G=(V,E)with a nonnegative edge-weight function w:E→{0,...,poly(|V|)},s1,s2∈V andλ≥1,with high probability outputs a spanning tree T withc(2)w(T)≤(2+o(1))c(2)w(W-2-MRCT(G)).If WEIGHTED-2-MRCT does not output such a spanning tree,it outputs“fail.”We make the following concluding remark.All our algorithms are shown to be RN C2-computable by showing that they run in unambiguous logarithmic space and succeed in giving an approximate solution when the random input specifies an edge-weight function w r such that G is strongly min-unique with respect to w+w r.By a method similar to that in[RA00],we can also turn the random weight assignment into polynomially long advices.This is summarized below.Corollary23.Let >0be a constant.There are UL/poly algorithms for (4/3+ )-approximating the MRCT problem,(2+o(1))-approximating the SROCT problem and(2+o(1))-approximating the weighted2-MRCT problem,where the respective edge-weight and vertex-requirement functions are given in unary.6ConclusionWe have given parallelized approximation algorithms for the minimum routing cost spanning tree problem and some of its variants.Our results show that,by exhibiting multiple processors,we can compute approximate solutions to the considered problems in parallel poly-logarithmic time.We hope this will shed light on the many areas in which the considered problems are concerned,for example network design[Hu74,JLK78]and multiple sequences alignment in computational biology[FD87,Pev92,Gus93,BLP94,WLB+00].。