带电粒子在磁场中运动最小面积问题教学内容
- 格式:doc
- 大小:519.00 KB
- 文档页数:13
第3节 带电粒子在匀强磁场中的运动核心素养导学一、带电粒子在匀强磁场中的运动1.带电粒子沿着与磁场垂直的方向射入匀强磁场,由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 的平面内。
所以,粒子只能在该平面内运动。
2.洛伦兹力总是与粒子运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
3.粒子速度大小不变,粒子在匀强磁场中所受洛伦兹力大小也不改变,洛伦兹力提供粒子做圆周运动的向心力,粒子做 运动。
带电粒子在匀强磁场中做匀速圆周运动,带电粒子的重力忽略不计,洛伦兹力提供向心力。
二、带电粒子在磁场中做圆周运动的半径和周期1.半径公式由洛伦兹力提供向心力q v B =m v 2r ,可得圆周运动的半径r = 。
2.周期公式匀速圆周运动的周期T =2πr v ,将r =m v qB 代入,可得T = 。
1.电子以某一速度进入洛伦兹力演示仪中。
(1)励磁线圈通电前后电子的运动情况相同吗?提示:①通电前,电子做匀速直线运动。
②通电后,电子做匀速圆周运动。
(2)电子在洛伦兹力演示仪中做匀速圆周运动时,什么力提供向心力?提示:洛伦兹力提供向心力。
2.如图,带电粒子在匀强磁场中做匀速圆周运动。
判断下列说法的正误。
(1)运动电荷在匀强磁场中做匀速圆周运动的周期与速度有关。
( )(2)带电粒子做匀速圆周运动的半径与带电粒子进入匀强磁场时速度的大小有关。
( )(3)带电粒子若垂直进入非匀强磁场后做半径不断变化的运动。
( )新知学习(一)⎪⎪⎪带电粒子做圆周运动的半径和周期[任务驱动]美丽的极光是由来自太阳的高能带电粒子流进入地球高空大气层出现的现象。
科学家发现并证实,向地球两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与哪些因素有关?提示:一方面磁场在不断增强,另一方面由于大气阻力粒子速度不断减小,根据r =m v qB,半径r 是不断减小的。
[重点释解]1.由公式r =m v qB 可知,带电粒子在匀强磁场中做圆周运动的半径r 与比荷q m 成反比,与速度v 成正比,与磁感应强度B 成反比。
带电粒子在电磁场中的运动重点内容解读孝感三中陈继芳带电粒子在电磁场中运动是高中物理中研究的重点之一,也是高考命题重点之一。
近几年高考题中的压轴题都是这类题型;高考对带电粒子在电磁场中运动的考查每年每份试卷都有2个以上的题,分值占总分的12~20%。
高考对带电粒子在电磁场中运动的考查涉及的知识点主要是:电场力、电势差、洛伦兹力、带电粒子在电场中的加速和类平抛运动、带电粒子在磁场中的匀速圆周运动等。
核心考点一、带电粒子在电场中加速、在匀强电场中的类平抛运动与磁场中的圆周运动【核心考点解读】带电粒子在电场中的类平抛运动可按照运动分解把带电粒子的运动分解为垂直电场方向的匀速直线运动和沿电场方向的匀变速直线运动。
带电粒子在电场中加速利用动能定理列方程解答,在磁场中的匀速圆周运动可依据洛仑兹力提供向心力列方程解答。
题1如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°。
已知偏转电场中金属板长L=23cm,圆形匀强磁场的半径R=103cm,重力忽略不计。
求:(1)带电微粒经U1=100V的电场加速后的速率;(2)两金属板间偏转电场的电场强度E;(3)匀强磁场的磁感应强度的大小。
解析:略【名师点评】此题通过带电粒子在电场中加速、在匀强电场中的类平抛运动与磁场中的圆周运动,综合考查对动能定理、平抛运动规律迁移、电场力、速度分解与合成,洛伦兹力、牛顿第二定律、圆周运动等知识的掌握情况。
题2.如图所示,MN 是相距为d 的两平行金属板,O 、O '为两金属板中心处正对的两个小孔,N 板的右侧空间有磁感应强度大小均为B 且方向相反的两匀强磁场区,图中虚线CD 为两磁场的分界线,CD 线与N 板的距离也为d.在磁场区内适当位置放置一平行磁场方向的薄挡板PQ ,并使之与O 、O '连线处于同一平面内.现将电动势为E 的直流电源的正负极按图示接法接到两金属板上,有O 点静止释放的带电粒子(重力不计)经MN 板间的电场加速后进入磁场区,最后恰好垂直撞上挡板PQ 而停止运动。
磁场中的最小面积及动态圆积问题因带电粒子在磁场中做匀速圆周运动轨迹的特殊性,时常出现最小面积问题,常见的有圆形、矩形和三角形等等,以下仅就此类问题进行专题性演练。
【例1】如图所示,一质量为m 重力不计电量为q 的带电质点, 以平行于ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
为了使该质点能从x 轴上的b 点以垂直于ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求此圆形磁场区域的最小半径。
【解析】由牛顿第二定律有:2v qvB m R = 可得mv R qB = 圆形磁场区域面积最小的圆是带电粒子在穿越磁场过程中以入射点 和出射点为直径的圆,故22r R = 其最小面积是:222222m v S r q B ππ== 【例2】如图,质量为m 重力不计带电量为q 的带电粒子以速度0v 从O点沿y 轴正向射入垂直于纸面、磁感强度为B 的圆形匀强磁场区域,粒子飞出磁场区域后从b 处穿过x 轴,速度方向与x 轴正向夹角为30°。
试求:(1)圆形磁场区的最小面积;(2)粒子从o 到b 经历的时间。
【解析】(1)由牛顿第二定律有:200v qv B m R = 可得0mv R qB= 如图,圆形磁场区域面积最小的圆是带电粒子以入射点和出射点为直径的圆,其半径°cos30r R =故其最小面积为:22202234m v S r q B ππ== (2)粒子从o 到b 经历的时间为:0132(3)33r m t T v qB π=+=+ 【例3】图为可测定带电粒子比荷装置的简化示意图,在第一象限区域内有垂直于纸面向里磁感应强度-32.010B T =⨯的匀强磁场,在x 轴上距坐标原点0.50L m =的P 处为离子的入射口,在y 上安放接收器,现将一重力不计的带正电的粒子以43.510/v m s =⨯的速率从P 处射入磁场,若粒子在y 轴上距坐标原点0.50L m =的M处被观测到,且运动轨迹半径恰好最小,试求:(1)该带电粒子的比荷q m; (2)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以限制在一个以PM 为边界的矩形区域内,求此矩形磁场区域的最小面积。
带电粒子在磁场中运动之磁场最小范围问题剖析江苏省扬中高级中学刘风华近年来在考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。
其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。
下面我们以实例对此类问题进行分析。
一、磁场范围为圆形例1 一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30?,如图1所示(粒子重力忽略不计)。
试求:(1)圆形磁场区的最小面积;(2)粒子从O点进入磁场区到达点所经历的时间;(3)点的坐标。
解析:(1)由题可知,粒子不可能直接由,点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。
可知,其离开磁场时的临界点与,点都在圆周上,到圆心的距离必相等。
如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。
由,得。
弦长为:,要使圆形磁场区域面积最小,半径应为的一半,即:,面积0 (2)粒子运动的圆心角为120,时间。
(3)距离,故点的坐标为(,0)。
点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。
二、磁场范围为矩形例2 如图3所示,直角坐标系第一象限的区域存在沿轴正方向的匀强电场。
现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点,并沿轴的正方向运动,不计电子的重力。
带电粒子在磁场中运动最小面积问题例1.在xOy平面内有许多电子(质量为m,电荷量为e),从坐标原点O不断以相同大小的速度v0沿不同的方向射入第一象限,如图所示.现加上一个垂直于xOy平面的磁感应强度为B的匀强磁场,要求这些电子穿过该磁场后都能沿平行于x轴正方向运动,试求出符合条件的磁场最小面积.例2.一质量为m、带电荷量为q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角30°,如图所示(粒子重力忽略不计).试求:(1)圆形磁场区域的最小面积.(2)粒子从O点进入磁场区域到达b点所经历的时间.(3)b点的坐标.例3.一个质量为m,带+q电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。
为了使该粒子能在AC边上的N点图示 (CM=CN)垂直于AC边飞出三角形ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场.若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力.试求:(1)粒子在磁场里运动的轨迹半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形磁场区域的最小边长;针对训练1.(09年海南高考)如图甲所示,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A点射出磁场.不计重力,求:(1)此匀强磁场区域中磁感应强度的大小和方向.(2)此匀强磁场区域的最小面积.2.(09年福建卷)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X 轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y 轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。
带电粒子在匀强磁场中的运动教案带电粒子在匀强磁场中的运动教案1带电粒子在磁场中的圆周运动历来都是高考考查的重要内容!该课程的内容包括两部分:一、带电粒子在匀强磁场中的运动。
二、带电粒子在匀强磁场中的运动的实际应用———质谱仪和回旋加速器。
具体的教学目标是:①知道带电粒子垂直匀强磁场的运动轨迹是个圆,知道其半径与粒子的速度和磁感应强度有关。
②能从理论上分析带电粒子垂直于匀强磁场运动是匀速圆周运动,能推导做圆周运动的半径和周期公式。
③了解质谱仪和回旋加速器的工作原理。
由于前两部分内容都是教学的重点。
并且本节内容和以前的力学知识紧密结合,综合性较强,构成教学的难点。
在本节课的落实上,我采用了具体如下的实施。
1. 针对学生基础比较薄弱的实际情况,以复习洛伦兹力的大小和方向判断作为引子,引入新课,提出:“带电粒子在匀强磁场中将做什么运动?”。
从易到难,为学生学习本节课打基础、做铺垫。
其中在复习公式上,采用了学生上黑板板书的措施落实复习回顾。
2.有了必备的知识和方法作为基础,让学生先从力和运动的分析方法入手,结合课本与实验视频,让学生知道带电粒子垂直于磁场方向的运动轨迹是个圆,并且是匀速圆周运动,然后我指明带电粒子在磁场中做匀速圆周运动的条件,进而让学生在教师的指点下能用学过的力学方法逐步的推导其运动半径和周期。
其中推导做圆周运动的半径和周期公式时,我让两名推导过程比较规范的学生上黑板板书与讲解的措施。
这样,既能锻炼讲解的学生的逻辑思维的能力和语言的表达能力,也能把学生之间的思维拉近,便于理解,之后通过相关的达标训练予以练习巩固;达到分解难点、消化重点的目的。
带电粒子在匀强磁场中的运动教案2教学目标知识目标1、理解带电粒子在匀强电场中的运动规律——只受电场力,带电粒子做匀变速运动.重点掌握初速度与场强方向垂直的带电粒子在电场中的运动——类平抛运动.2、知道示波管的构造和原理.能力目标1、渗透物理学方法的教育,让学生学习运用理想化方法,突出主要因素,忽略次要因素的科学的研究方法.2、提高学生的分析推理能力.情感目标通过本节内容的学习,培养学生科学研究的意志品质.教学建议本节内容是电场一章中非常重要的知识点,里面涉及到电学与力学知识的综合运用,因此教师在讲解时,一是注意对力学知识的有效复习,以便于知识的迁移,另外,由于带电粒子在电场中的运动公式比较复杂,所以教学中需要注意使学生掌握解题的思维和方法,而不要一味的强调公式的记忆.在讲解时要渗透物理学方法的教育,让学生学习运用理想化方法、突出主要因素、忽略次要因素(忽略带电粒子的重力)的科学的研究方法.关于示波管的讲解,教材中介绍的非常详细,教师需要重点强调其工作原理,让学生理解加速和偏转问题——带电粒子在电场中加速偏转的实际应用.--示例第九节带电粒子在匀强电场中的运动1、带电粒子的加速教师讲解:这节课我们研究带电粒子在匀强电场中的运动,关于运动,在前面的学习中我们已经研究过了:物体在力的作用下,运动状态发生了改变,同样,对于电场中的带电粒子而言,受到电场力的作用,那么它的运动情况又是怎样的呢?带电粒子在电场中运动的过程中,电场力做的功大小为,带电粒子到达极板时动能,根据动能定理,,这个公式是利用能量关系得到的,不仅使用于匀强电场,而且适用于任何其它电场.分析课本113页的例题1.2、带电粒子的偏转根据能量的关系,我们可以得到带电粒子在任何电场中的运动的初末状态,下面,我们针对匀强电场具体研究一下带电粒子在电场中的运动情况.(教师出示图片)为了方便研究,我们选用匀强电场:平行两个带电极板之间的电场就是匀强电场.①若带电粒子在电场中所受合力为零时,即时,粒子将保持静止状态或匀速直线运动状态.带电粒子处于静止状态,,,所受重力竖直向下,场强方向竖直向下,带电体带负电,所以所受电场力竖直向上.②若且与初速度方向在同一直线上,带电粒子将做加速或减速直线运动.(变速直线运动)A、打入正电荷,将做匀加速直线运动.B、打入负电荷,由于重力极小,可以忽略,电荷只受到电场力作用,将做匀减速直线运动.③若,且与初速度方向有夹角,带电粒子将做曲线运动.,合外力竖直向下,带电粒子做匀变速曲线运动.(如下图所示) 注意:若不计重力,初速度,带电粒子将在电场中做类平抛运动.复习:物体在只受重力的作用下,以一定水平速度抛出,物体的实际运动为这两种运动的合运动.水平方向上不受力作用,做匀速直线运动,竖直方向上只受重力,做初速度为零的自由落体运动.水平方向:竖直方向:与此相似,当忽略带电粒子的重力时,且,带电粒子在电场中将做类平抛运动.与平抛运动区别的只是在沿着电场方向上,带电粒子做加速度为的匀变速直线运动.例题讲解:已知,平行两个电极板间距为d,板长为l,初速度,板间电压为U,带电粒子质量为m,带电量为+q.分析带电粒子的运动情况:①粒子在与电场方向垂直的方向上做匀速直线运动,;在沿电场方向做初速度为零的匀加速直线运动,,称为侧移.若粒子能穿过电场,而不打在极板上,侧移量为多少呢?②射出时的末速度与初速度的夹角称为偏向角.③反向延长线与延长线的交点在处.证明:.注意:以上结论均适用于带电粒子能从电场中穿出的情况.如果带电粒子没有从电场中穿出,此时不再等于板长l,应根据情况进行分析.得到了带电粒子在匀强电场中的基本运动情况,下面,我们看看其实际的应用示例.3、示波管的原理:学生首先自己研究,对照例题,自学完成,教师可以通过放映有关示波器的视频资料加深学生对本节内容的理解.4、教师总结:教师讲解:本节内容是关于带电粒子在匀强电场中的运动情况,是电学和力学知识的综合,带电粒子在电场中的运动,常见的有加速、减速、偏转、圆运动等等,规律跟力学是相同的,只是在分析物体受力时,注意分析电场力,同时注意:为了方便问题的研究,对于微观粒子的电荷,因为重力非常小,我们可以忽略不计.对于示波管,实际就是带电粒子在电场中的加速偏转问题的实际应用.5、布置课后作业带电粒子在匀强磁场中的运动教案3一、教学目标(一)知识与技能1、理解洛伦兹力对粒子不做功.2、理解带电粒子的初速度方向与磁感应强度的方向垂直时,粒子在匀磁场中做匀速圆周运动.3、会推导带电粒子在匀强磁场中做匀速圆周运动的半径、周期公式,并会用它们解答有关问题. 知道质谱仪的工作原理。
1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
a、带电粒子在穿过磁场时的偏向角可由求出;(θ、r和R见图标)b、带电粒子在磁场中经历的时间由得出。
1.给定有界磁场(1)确定入射速度的大小和方向,判定带电粒子出射点或其它1. 【例1】(2001年江苏省高考试题)如图5所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁感应强度为B。
一带正电的粒子以速度v0从O 点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ。
一模型界定带电粒子在有界磁场中运动时,要完成题目要求的运动过程,空间中有粒子必须经过的一个磁场区域,按照题目要求的边界形状或由粒子临界状态下的运动轨迹所决定的有界磁场区域,其面积存在着一个最小值,此模型着重归纳有界磁场最小面积的确定与计算方法.二模型破解在涉及最小磁场面积的题目中,主要有两种类型,一种是单一粒子的运动中所经过磁场的最小面积,这种类型的题目通常对磁场区域的形状有明确的要求,如矩形、圆形、三角形;另一种类型是大量粒子经过磁场的运动,由临界状态下的粒子运动轨迹及对粒子的特定运动形式要求所产生的对磁场边界形状的特定要求,从而形成有界磁场的面积的极值问题.(i)确定粒子在磁场运动的轨迹半径粒子在磁场运动的轨迹半径通常是已知的或是能够由题目中条件计算得出的,也可在未知时先将半径假设出来.(ii)确定粒子在有界磁场中的入射方向和出射方向粒子在有界磁场中的入射方向和出射方向通常也是由题目给出或能够从题目中条件分析得出.(iii)确定粒子在有界磁场中运动时的入射点与出射点的位置当题目中没有给定粒子在进出磁场的位置时,先延长粒子的入射方向与出射方向所在的直线得到一个交点,粒子在磁场中运动的轨迹圆心必在这两条直线所形成的两对夹角中的其中一条夹角平分线上,由粒子经过磁场前后的运动要求确定圆心所在的夹角平分线;再在此夹角平分线上取一点O,过该点作粒子入射方向、出射方向所在直线的垂线,使O点到两直线的垂直距离等于粒子的运动轨迹半径,则两垂足即分别为粒子进出磁场时的入射点与出射点.(iv)确定有界磁场的边界连接入射点与出射点得到一条线段或直线,并作出粒子在磁场处于入射点与出射点之间的一段运动轨迹圆,再由题目对磁场边界形状的要求确定磁场边界线的位置或圆形磁场的最小半径.①圆形有界磁场(I)当题目对圆形磁场区域的圆心位置有规定时,连接圆心与粒子在磁场中的出射点即得到磁场区域的半径.但是这种情况下磁场区域的大小是固定的.(II)当题目对圆形磁场区域的圆心位置无规定时,若粒子在磁场中转过的圆弧为一段劣弧时,将连接入射点a与出射点b所得的线段作为磁场区域的直径,则所得圆即为最小面积的圆形磁场区域,如图1所示.图中几何关系为θsin R r=②半圆形有界磁场(I)当粒子在磁场中运动轨迹是一段劣弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以ab 为直径作出的半圆弧即为所求,如图2甲所示.图中几何关系为θsin R r =(II)当粒子在磁场中运动轨迹是一段优弧时,连接入射点a 与出射点b 所得直线与半圆形边界的直边重合,以其中点为圆心作出与粒子运动轨迹相切的圆弧,此圆弧即为半圆形磁场区域的曲线边界,如图2乙所示.图中几何关系为)cos 1(θ+=R r(III)当粒子在磁场中运动轨迹是一个半圆弧时,磁场圆形边界与粒子运动轨迹重合.③矩形有界磁场(I)当题目对矩形磁场区域边界某个边有规定时,过入射点或过出射点作已知边界线的平行线或垂线,再作与已知边界线平行或垂直的、与粒子在磁场中运动轨迹相切的直线,则所得矩形即为题目要求的最小矩形.(II)当题目对矩形磁场区域边界无规定时,第一步:连接入射点a 与出射点b 得一条直线ab;第二步:作ab 的平行线且使其与粒子运动轨迹圆相切;图2 图1第三步:作ab 的两条垂线,若粒子在磁场中转过的是一个优弧时,应使这两条垂线也与粒子运动轨迹圆弧相切,如图3甲所示;若粒子在磁场转过的是一段劣弧时,两条垂线应分别过入射点a 和出射点b,如图3乙所示.所得矩形即为题目要求的最小矩形.甲图中几何关系为)cos 1(1θ+=R L 、R L 22=乙图中几何关系为)cos 1(1θ-=R L 、θsin 22R L =○4正三角形有界磁场 当粒子在磁场中转过的圆心角超过1200时,先作入射点a 、出射点b 连线的中垂线,再从中垂线上某点作粒子运动轨迹圆的两条切线,且使两切线间的夹角为600,则此三条直线所组成的三角形即为题目所要求的最小三角形,如图4甲所示.当粒子在磁场中转过的圆心角不超过1200时,也是先作入射点a 、出射点b 连线的中垂线,再从中垂线上某点连接入射点a 与出射点b,使其与ab 组成一正三角形,此正三角形即为所示如图4乙所示.甲图中几何关系为θcos30sin30cos 00R R L +=;乙图中几何关系为θsin 2R L =. 例1.一质量为m 、带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强大小为大小为E ,方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方c 点,如图所示,已知 b 到O 的距离为L ,粒子的重力不计,试求:图4 图3⑴磁感应强度B⑵圆形匀强磁场区域的最小面积;⑶c 点到b 点的距离【答案】(1)qL mv B3=(2)22min 12L S r ππ==(3)Eq mv s 2034=30° v obcv 0x yyEO 例1题图例2.如图所示,在直角坐标xOy 平面y 轴左侧(含y 轴)有一沿y 轴负方向的匀强电场,一质量为m ,电荷量为q 的带正电的粒子从x 轴上P 处发速度v0沿x 轴正方向进入电场,从y轴上Q 点离开电场时速度方向与y轴负方向间夹角θ=300,Q 点坐标为(0,-d),在y轴右侧有一与坐标平面垂直的有界匀强磁场区域(图中未画出),磁场磁感应强度大小qd mv B 0=,粒子能从坐标原点O 沿x轴负方向再进入电场,不计粒子重力,求:(1)电场强度大小E(2)如果有界匀强磁场区域为半圆形,求磁场区域的最小面积(3)粒子从P 点运动到O 点的总时间【答案】(1)qdmv E 2320=(2)24.5d π(3)0(1338d π+) 学*科网 【解析】:(1)设粒子从Q 点离开电场时速度大小v 由粒子在匀强电场中做类平抛运动得:02v v = 由动能定理得 2022121mv mv qEd -= (2分) 例2题图解得qd mv E 2320=(1分)学*科网(3)设粒子在匀强电场中运动时间为1t粒子从Q 点离开电场时沿y 轴负向速度大小为y v 有03v v y =例2答图例3.如图所示,第三象限内存在互相垂直的匀强电场和匀强磁场,匀强磁场方向向里,大小为B 0,匀强电场场强为E 。
带电粒子在磁场中运动最小面积问题带电粒子在磁场中运动最小面积问题例1.在xOy平面内有许多电子(质量为m,电荷量为e),从坐标原点O不断以相同大小的速度v0沿不同的方向射入第一象限,如图所示.现加上一个垂直于xOy平面的磁感应强度为B的匀强磁场,要求这些电子穿过该磁场后都能沿平行于x轴正方向运动,试求出符合条件的磁场最小面积.例2.一质量为m、带电荷量为q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B 的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向夹角30°,如图所示(粒子重力忽略不计).试求:(1)圆形磁场区域的最小面积.(2)粒子从O点进入磁场区域到达b点所经历的时间.(3)b点的坐标.例3.一个质量为m,带+q电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。
为了使该粒子能在AC边上的N点图示 (CM=CN)垂直于AC边飞出三角形ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场.若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力.试求:(1)粒子在磁场里运动的轨迹半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形磁场区域的最小边长;针对训练1.(09年海南高考)如图甲所示,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC边上的任意点入射,都只能从A点射出磁场.不计重力,求:(1)此匀强磁场区域中磁感应强度的大小和方向.(2)此匀强磁场区域的最小面积.2.(09年福建卷)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X轴上距坐标原点L=0.50m的P处为离子的入射口,在Y上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s的速率从P处射入磁场,若粒子在y轴上距坐标原点L=0.50m的M处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。
(1)求上述粒子的比荷q/m(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
3、(1994年全国高考试题)如图12所示,一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。
为了使该质点能从x 轴上的b 点以垂直于Ox 轴的速度v 射出,可在适当的地方加一个垂直于xy 平面、磁感应强度为B 的匀强磁场。
若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。
重力忽略不计。
4.[2010·宁波模拟] 如图甲所示,水平放置的平行金属板A 和B 间的距离为d ,板长L =23d ,B 板的右侧边缘恰好是倾斜挡板NM 上的一个小孔K ,NM 与水平挡板NP 成60°角,K 与N 间的距离K N =a.现有质量为m 、带正电且电荷量为q 的粒子组成的粒子束,从AB 的中点O 以平行于金属板方向OO′的速度v 0不断射入,不计粒子所受的重力.(1)若在A 、B 板上加一恒定电压U =U 0,则要使粒子穿过金属板后恰好打到小孔K ,求U 0的大小.(2)若在A 、B 板上加上如图乙所示的电压,电压为正表示A 板比B 板的电势高,其中T =2Lv 0,且粒子只在0~T2时间内入射,则能打到小孔K 的粒子在何时从O 点射入?(3)在NM 和NP 两挡板所夹的某一区域存在一垂直纸面向里的匀强磁场,使满足条件(2)从小孔K 飞入的粒子经过磁场偏转后能垂直打到水平挡板NP 上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值.5.如图,一带电粒子以某一速度在竖直平面内做匀速直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的最小的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场,电场强度大小为E,方向竖直向上.当粒子穿出电场时速率变为原来的 2 倍.已知带电粒子的质量为m,电荷量为q,重力不计.粒子进入磁场前的速度与水平方向成θ=60°角.试回答:(1)粒子带什么电?(2)带电粒子在磁场中运动时速度多大?(3)该最小的圆形磁场区域的面积为多大?参考答案例1.在xOy平面内有许多电子(质量为m,电荷量为e),从坐标原点O不断以相同大小的速度v0沿不同的方向射入第一象限,如图所示.现加上一个垂直于xOy平面的磁感应强度为B的匀强磁场,要求这些电子穿过该磁场后都能沿平行于x轴正方向运动,试求出符合条件的磁场最小面积.解:由于电子在磁场中作匀速圆周运动的半径R=mv0/Be是确定的,设磁场区域足够大,作出电子可能的运动轨道如图所示,因为电子只能向第一象限平面内发射,所以电子运动的最上面一条轨迹必为圆O1,它就是磁场的上边界。
其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O1O2O n。
由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识有电子的飞出点必为每条可能轨迹的最高点。
如对图中任一轨迹圆O2而言,要使电子能平行于x轴向右飞出磁场,过O2作弦的垂线O 2A,则电子必将从点A飞出,相当于将此轨迹的圆心O2沿y方向平移了半径R即为此电子的出场位置。
由此可见我们将轨迹的圆心组成的圆弧O1O2O n沿y方向向上平移了半径R后所在的位置即为磁场的下边界,图中圆弧OAP示。
综上所述,要求的磁场的最小区域为弧OAP 与弧OBP所围。
利用正方形OO1PC的面积减去扇形OO1P的面积即为OBPC的面积;即R2-πR2/4。
根据几何关系有最小磁场区域的面积为S=2(R2-πR2/4)=(π/2 -1)(mv0/Be)2。
例2. 一质量为m 、带电荷量为q 的粒子以速度v0从O 点沿y 轴正方向射入磁感应强度为B 的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区域后,从b 处穿过x 轴,速度方向与x 轴正方向夹角30°,如图所示(粒子重力忽略不计).试求: (1)圆形磁场区域的最小面积.(2)粒子从O 点进入磁场区域到达b 点所经历的时间. (3)b 点的坐标.解析:(1)带电粒子在磁场中做匀速圆周运动的半径R =mv 0qB由图可知∠aO′b=60° 磁场区域最小半径r =Rcos 30°=3mv 02qB磁场区域最小面积S =πr 2=3πm 2v 204q 2B2.(2)由O 到a 过程所经历的时间t 1=2πm3Bq由几何关系得ab =3R =3mv 0Bq粒子由a 到b 所经历的时间t 2=ab v 0=3mBq∴粒子从O 点进入磁场区域到达b 点所经历的时间t =t 1+t 2=m Bq (23π+3).(3)因为sin 30°=RO′b,∴O′b=2R 得Ob =3R =3mv 0Bq故b 点的坐标为(3mv 0qB,0).例3、一个质量为m,带+q电量的粒子在BC边上的M点以速度v垂直于BC边飞入正三角形ABC。
为了使该粒子能在AC边上的N点图示 (CM=CN)垂直于AC边飞出三角形ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁场.若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力.试求:(1)粒子在磁场里运动的轨迹半径r及周期T;(2)该粒子在磁场里运动的时间t;(3)该正三角形磁场区域的最小边长;针对训练1.如图甲所示,ABCD是边长为a的正方形.质量为m、电荷量为e的电子以大小为v0的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:甲(1)此匀强磁场区域中磁感应强度的大小和方向. (2)此匀强磁场区域的最小面积.【答案】(1)mv 0ea 方向垂直纸面向外 (2)π-22a 22.(09年福建卷)22.(20分)图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=2.0×10-3T,在X 轴上距坐标原点L=0.50m 的P 处为离子的入射口,在Y 上安放接收器,现将一带正电荷的粒子以v=3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L=0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m,电量为q,不记其重力。
(1)求上述粒子的比荷qm ;(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。
答案(1)m q=4.9×710C/kg (或5.0×710C/kg );(2)s t 6109.7-⨯= ; (3)225.0m S = 解析:第(1)问本题考查带电粒子在磁场中的运动。
第(2)问涉及到复合场(速度选择器模型)第(3)问是带电粒子在有界磁场(矩形区域)中的运动。
(1)设粒子在磁场中的运动半径为r 。
如图甲,依题意M 、P 连线即为该粒子在磁场中作匀速圆周运动的直径,由几何关系得 22Lr =①由洛伦兹力提供粒子在磁场中作匀速圆周运动的向心力,可得r v mqvB 2= ② 联立①②并代入数据得 m q=4.9×710C/kg (或5.0×710C/kg ) ③(2)设所加电场的场强大小为E 。
如图乙,当粒子子经过Q 点时,速度沿y 轴正方向,依题意,在此时加入沿x 轴正方向的匀强电场,电场力与此时洛伦兹力平衡,则有 qvB qE = ④ 代入数据得C N E /70= ⑤所加电场的长枪方向沿x 轴正方向。
由几何关系可知,圆弧PQ 所对应的圆心角为45°,设带点粒子做匀速圆周运动的周期为T ,所求时间为t ,则有T t 0036045= ⑥v rT π2=⑦ 联立①⑥⑦并代入数据得s t 6109.7-⨯= ⑧(3)如图丙,所求的最小矩形是P P MM 11,该区域面积22r S = ⑨ 联立①⑨并代入数据得225.0m S =矩形如图丙中P P MM 11(虚线)、3、(1994年全国高考试题)如图12所示,一带电质点,质量为m ,电量为q ,以平行于Ox 轴的速度v 从y 轴上的a 点射入图中第一象限所示的区域。