3.1直线和圆的位置关系(3)
- 格式:ppt
- 大小:357.50 KB
- 文档页数:17
直线与圆的位置关系—知识讲解责编:常春芳【学习目标】1.理解并掌握直线与圆的三种位置关系;2.理解切线的判定定理和性质定理.【要点梳理】要点一、直线与圆的位置关系1.直线和圆的三种位置关系:(1) 相交:当直线与圆有两个公共点时,叫做直线与圆相交.(2) 相切:当直线与圆有唯一公共点时,叫做直线与圆相切.这条直线叫做圆的切线,公共点叫做切点.(3) 相离:当直线与圆没有公共点时,叫做直线与圆相离.2.直线与圆的位置关系的判定和性质.直线与圆的位置关系能否像点与圆的位置关系一样通过一些条件来进行分析判断呢?由于圆心确定圆的位置,半径确定圆的大小,因此研究直线和圆的位置关系,就可以转化为直线和点(圆心)的位置关系.下面图(1)中直线与圆心的距离小于半径;图(2)中直线与圆心的距离等于半径;图(3)中直线与圆心的距离大于半径.一般地,直线与圆的位置关系有以下定理:如果⊙O的半径为r,圆心O到直线l的距离为d,那么,(1)d<r直线l与⊙O相交;(2)d=r直线l与⊙O相切;(3)d>r直线l与⊙O相离.要点诠释:这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.要点二、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可. 2.切线的性质定理:经过切点的半径垂直于圆的切线.【典型例题】类型一、直线与圆的位置关系【高清ID号:356966 关联的位置名称(播放点名称):经典例题1-2】1.在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米; (2)r=2.4厘米; (3)r=3厘米【答案与解析】解:过点C作CD⊥AB于D,在Rt△ABC中,∠C=90°, AC=3,BC=4,得AB=5,,∴AB·CD=AC·BC,∴AC BC34CD===2.4AB5∙⨯(cm),(1)当r=2cm时,CD>r,∴圆C与AB相离;(2)当r=2.4cm时,CD=r,∴圆C与AB相切;(3)当r=3cm时,CD<r,∴圆C与AB相交.【总结升华】欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.举一反三:【变式】已知⊙O的半径为10cm,如果一条直线和圆心O的距离为10cm,那么这条直线和这个圆的位置关系为()A. 相离B. 相切C. 相交D. 相交或相离【答案】B.类型二、切线的判定与性质2.如图所示,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC是⊙D的切线.【思路点拨】作垂直,证半径.【答案与解析】证明:过D作DF⊥AC于F.∵∠B=90°,∴DB⊥AB.又AD平分∠BAC,∴ DF=BD=半径.∴ AC与⊙D相切.【总结升华】如果已知条件中不知道直线与圆有公共点,其证法是过圆心作直线的垂线段,再证明垂线段的长等于半径的长即可.3.(2016•三明)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【思路点拨】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x 的方程,求出方程的得到x的值,即可确定出DE的长.【答案与解析】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【总结升华】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.4.如图,AB为⊙O的直径,AC为⊙O的弦,AD平分∠BAC,交⊙O于点D,DE⊥AC,交AC的延长线于点E.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AE=8,⊙O的半径为5,求DE的长.【思路点拨】(1)连接OD,证明OD∥AD即可;(2)作DF⊥AB于F,证明△EAD≌△FAD,将DE转化成DF来求.【答案与解析】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵AD平分∠BAC,∴∠EAD=∠OAD.∵OA=OD,∴∠ODA=∠OAD.∴∠ODA=EAD.∴EA∥OD.∵DE⊥EA,∴DE⊥OD.又∵点D在⊙O上,∴直线DE与⊙O相切.(2)如上图,作DF⊥AB,垂足为F.∴∠DFA=∠DEA=90°.∵∠EAD=∠FAD,AD=AD,∴△EAD≌△FAD.∴AF=AE=8,DF=DE.∵OA=OD=5,∴OF=3.。
精心整理直线和圆的位置关系1、直线与圆的位置关系(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交<====>d<r;直线l与⊙O相切<====>d=r;直线l与⊙O相离<====>d>r;2、切线的判定和性质(1)、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)、切线的性质定理:圆的切线垂直于经过切点的半径。
如右图中,OD垂直于切线。
4、切线长定理(1)、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
(2)、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
(3)、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
(4)、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。
如图圆O是△A'B'C'的内切圆。
三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
基础训练1.填表:直线与圆的图形公共点公共点圆心到直线的距离直线的位置关系个数名称d与圆的半径r的名称关系相交相切相离2.若直线a与⊙O交于A,B两点,O到直线a•的距离为6,•AB=•16,•则⊙O•的半径为_____.3.在△ABC中,已知∠ACB=90°,BC=AC=10,以C为圆心,分别以5,52,8为半径作图,那么直线AB与圆的位置关系分别是______,_______,_______.4.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为()A.相离B.相切C.相交D.内含5.下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③B.①②C.②③D.③6.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB 的位置关系是()A.相离B.相切C.相交D.相交或相切7.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切?8.如图,⊙O的半径为3cm,弦AC=42cm,AB=4cm,若以O为圆心,•再作一个圆与AC相切,则这个圆的半径为多少?这个圆与AB的位置关系如何?◆提高训练9.如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M 与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.10.如图,△ABC中,AB=AC=5cm,BC=8cm,以A为圆心,3cm•长为半径的圆与直线BC的位置关系是_______.11.如图,正方形ABCD的边长为2,AC和BD相交于点O,过O作EF∥AB,交BC于E,交AD于F,则以点B为圆心,2长为半径的圆与直线AC,EF,CD的位置关系分别是什么?12.已知⊙O 的半径为5cm ,点O 到直线L 的距离OP 为7cm ,如图所示.(1)怎样平移直线L ,才能使L 与⊙O 相切?(2)要使直线L 与⊙O 相交,应把直线L 向上平移多少cm ?13.如图,Rt △ABC 中,∠C=90°,AC=3,AB=5,若以C 为圆心,r 为半径作圆,•那么:(1)当直线AB 与⊙C 相切时,求r 的取值范围;(2)当直线AB 与⊙C 相离时,求r 的取值范围;(314.在南部沿海某气象站A 测得一热带风暴从A 的南偏东30•°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,•若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B 是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.九年级下册直线和圆的位置关系练习题一、选择题:1.若∠OAB=30°,OA=10cm ,则以O 为圆心,6cm 为半径的圆与射线AB 的位置关系是()A .相交B .相切C .相离D .不能确定2.Rt △ABC 中,∠C=90°,AB=10,AC=6,以C 为圆心作⊙C 和AB 相切,则⊙C 的半径长为()A .8B .4C .9.6D .4.83.⊙O 内最长弦长为m ,直线l 与⊙O 相离,设点O 到l 的距离为d ,则d 与m 的关系是()A .d =mB .d >mC .d >2mD .d <2m 4.以三角形的一边长为直径的圆切三角形的另一边,则该三角形为()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 5.菱形对角线的交点为O ,以O 为圆心,以O 到菱形一边的距离为半径的圆与其他几边的关系为()A .相交B .相切C .相离D .不能确定 6.⊙O 的半径为6,⊙O 的一条弦AB 为63,以3为半径的同心圆与直线AB 的位置关系是()A .相离B .相交C .相切D .不能确定7.下列四边形中一定有内切圆的是()A .直角梯形B .等腰梯形C .矩形D .菱形8.已知△ABC 的内切圆O 与各边相切于D 、E 、F ,那么点O 是△DEF 的()A .三条中线交点B .三条高的交点C .三条角平分线交点D .三条边的垂直平分线的交点9.给出下列命题:①任一个三角形一定有一个外接圆,并且只有一个外接圆;②任一个圆一定有一个内接三角形,并且只有一个内接三角形;③任一个三角形一定有一个内切圆,并且只有一个内切圆;④任一个圆一定有一个外切三角形,并且只有一个外切三角形.其中真命题共有()A.1个B.2个C.3个D.4个二、证明题1.如图,已知⊙O中,AB是直径,过B点作⊙O的切线BC,连结CO.若AD∥OC交⊙O于D.求证:CD是⊙O的切线.2.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.3.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.(1)当圆心O与C重合时,⊙O与AB的位置关系怎样?(2)若点O沿CA移动时,当OC为多少时?⊙C与AB相切?4.如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?5.设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2d x+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系.6.如图,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))7.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是多少?8.如图,有一块锐角三角形木板,现在要把它截成半圆形板块(圆心在BC上),问怎样截取才能使截出的半圆形面积最大?(要求说明理由)9.如图,直线ι1、ι2、ι3表示相互交叉的公路.现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有几处?答案:一.1-5ADCBB;6-9CDDB二.1.提示:连结OC,证△AOC与△BOC全等2.作垂直证半径,弦心距相等3.①垂直三角形的高,用面积方法求;②△AOE∽△ABC即可4.用角平分线定理证明EF=EA=EB即可5.做三角形的内切圆6.①DE与⊙O相切,AB=BC,DE2+CE2=CD2,∠C+∠CDE=90°②BC是⊙O的切线,有DE=1/2AB等.7.R=2.4或3<R≤48.∠A角平分线与BC的交点为圆心O,O到AC的距离为半径做圆9.4。
直线与圆、圆与圆的位置关系一、直线与圆的位置关系:1、直线与圆的位置关系有三种:如图所示. (1)直线与圆相交:有两个公共点; (2)直线与圆相切:有一个公共点; (3)直线与圆相离:没有公共点.2、直线与圆的位置关系的判定的两种方法:直线l 和圆C 的方程分别为:Ax+By+C=0,x 2+y 2+Dx+Ey+F=0. 1)代数法判断直线与圆的位置关系:由l 和C 的方程联立方程组220Ax By C x y Dx Ey F ++=⎧⎨++++=⎩, ①若方程有两个不相等的实数根(△>0),则直线与圆相交; ②若方程有两个相等的实数根(△=0),则直线与圆相切; ③若方程无实数根(△<0),则直线与圆相离.2)几何法判断直线与圆的位置关系:圆心C(a ,b)到直线的距离d=22||Aa Bb C A B+++与半径r 作比较①若d<r 时,直线l 和圆C 相交;②若d=r 时,直线l 和圆C 相切;③若d>r 时,直线l 和圆C 相离. 3、圆的切线的求法:(1)当点(x 0,y 0)在圆x 2+y 2=r 2上时,切线方程为x 0x+y 0y=r 2;(2)若点(x 0,y 0)在圆(x -a)2+(y -b)2=r 2上时,切线方程为(x 0-a)(x -a)+(y 0-b)(y -b)=r 2; (3)斜率为k 且与圆x 2+y 2=r 2相切的切线方程为21y kx k =±+;斜率为k 且与圆(x -a)2+(y -b)2=r 2相切的切线方程的求法:先设切线方程为y=kx+m ,然后变成一般 式kx -y+m=0,利用圆心到切线的距离等于半径来列出方程求m ;(4)点(x 0,y 0)在圆外面,则切线方程为y -y 0=k(x -x 0),再变成一般式,因为与圆相切,利用圆心到直线距离 等于半径,解出k ,注意若此方程只有一个实根,则还有一条斜率不存在的直线,务必要补上. 4、直线与圆相交的弦长公式1)平面几何法求弦长公式:如图所示,直线l 与圆相交于两点A 、B ,线段AB 的长 即为直线l 与圆相交的弦长.设弦心距为d ,圆的半径为r ,弦长为AB ,则有 222()2AB d r +=,即AB=222r d - . 2)解析法求弦长公式:如图所示,直线l 与圆相交于两点A(x 1,y 1),B(x 2,y 2),当直线AB 的倾斜角存在时,联 立方程组,消元得到一个关于x 的一元二次方程,求得x 1+x 2和x 1x 2.于是2121212||()4x x x x x x -=+-,这样就求得2121221||1||1||AB k x x y y k=+-=+-。
直线与圆的位置关系主要有三种:相切、相交、相离.判断直线与圆的位置关系问题的常见命题形式有:(1)根据直线与圆的方程判断二者的位置关系;(2)根据直线与圆的位置关系求参数的值或取值范围.解题的关键在于明确直线与圆的位置关系,建立代数或几何关系.下面主要谈一谈解答直线与圆的位置关系问题的三种方法.一、几何法运用几何法求解直线与圆的位置关系问题,需先根据圆的方程确定圆心、半径;然后根据点到直线的距离公式求得圆心到直线的距离,或根据圆的半径、弦心距、弦长之间的关系,利用勾股定理求得圆心到直线的距离;再判断圆心到直线距离d 与半径r 的大小关系.一般地,①当r >d 时,直线与圆相交;②当r =d 时,直线与圆相切;③当r <d 时,直线与圆相离.例1.直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y+3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是().A.相交B.相切C.相离D.不确定解:因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以圆的圆心为(-2,1),半径为2,因为直线l 与圆C 相切.所以||-2k -1+1k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离:d =2+0-1=3,所以直线l 与圆D 相交.故选A 项.由于直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,所以可以直接根据圆心到直线的距离等于半径,来建立关系,求得k 的值,即可求得直线l 的方程.根据点到直线的距离公式,求得圆D :(x -2)2+y 2=3的圆心到直线l 的距离,比较该距离与圆D 的半径之间的大小,即可判断出直线l 与圆D 的位置关系.例2.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值范围是().A.[-2,2]B.[-22,22]C.[-2-1,2-1]D.[-22-1,22-1]解:因为圆C 的标准方程为(x -2)2+(y -1)2=4,所以圆的圆心为(2,1),半径为2,由点到直线的距离公式可得圆心到直线的距离d =||2-1+m 2,若直线与圆恒有公共点,则直线与圆相交或相切,所以||2-1+m 2≤2,解得-22-1≤m ≤22-1,故选D 项.要使直线与圆恒有公共点,需使直线与圆相交或相切,那么圆心到直线的距离需小于或等于半径,即d ≤r .根据点到直线的距离公式建立不等关系式,即可求得参数m 的取值范围.例3.已知圆M :()x +cos θ2+()y -sin θ2=1,直线l :y =kx .下面四个命题:(1)对任意实数k 与θ,直线l 和圆M 相切;(2)对任意实数k 与θ,直线l 和圆M 有公共点;(3)对任意实数θ,必存在实数k ,使得直线l 和圆M 相切;(4)对任意实数k ,必存在实数θ,使得直线l 和圆M 相切.其中说法正确的有_______.解:因为圆M :()x +cos θ2+()y -sin θ2=1,所以圆的圆心M ()-cos θ,sin θ,半径为1,所以M 到直线l 的距离d M -l =||-k cos θ-sin θk 2+1,则d2M -l-1=()k cos θ+sin θ2-k 2-1k 2+1=k 2cos 2θ+2sin θcos θ⋅k +sin 2θ-k 2-1k 2+1刘艳林43。