北京市北达资源中学2016届九年级数学上学期周练试卷(1)(含解析)新人教版
- 格式:doc
- 大小:247.50 KB
- 文档页数:12
(分数:120分 时间:120分钟)一、选择题(每小题3分,共30分)1.在△ABC 中,∠C=90°,BC=3,AB=5,则sinA 的值是A .53B .54C .34D .43 【答案】A考点:锐角三角函数2.如图,△ABC 内接于⊙O ,若o 100AOB ∠=,则∠ACB 的度数是A .40°B .50°C .60°D .80°【答案】B【解析】试题分析:因为∠ACB 和∠AOB 是AB 所对的圆周角和圆心角,所以∠ACB=12∠AOB=12×100°=50°,故选:B.考点:圆周角定理3.抛物线2(2)1y x =-+的顶点坐标是A .(21)--,B .(21)-,C .(21)-,D .(21),【答案】D【解析】试题分析:因为抛物线2()y a x h k =-+的顶点坐标是(h ,k ),所以抛物线2(2)1y x =-+的顶点坐标是(21),,故选:D.考点:抛物线的顶点坐标4.若点A (a ,b )在双曲线3y x=上,则代数式ab-4的值为 A .12- B .7- C .1- D .1【答案】C【解析】试题分析:因为点A (a ,b )在双曲线3y x =上,所以ab=3,所以ab-4=3-4=-1,故选:C. 考点:反比例函数的性质5.如图,在ABCD 中,E 是AB 的中点,EC 交BD 于点F ,则△BEF 与△DCF 的面积比为 A .49 B .19 C .14 D .12【答案】C考点:1.平行四边形的性质2.相似三角形的判定与性质.6.抛物线22y x =向左平移1个单位,再向下平移3个单位,则平移后的抛物线的解析式为A .()2213y x =++B .()2213y x =+-C .()2213y x =--D .()2213y x =-+【答案】B【解析】试题分析:根据抛物线的平移规律:左加右减,上加下减,可知:抛物线22y x =向左平移1个单位,得()221y x =+,再向下平移3个单位,得()2213y x =+-,故选:C. 考点:抛物线的平移7.已知点(11,x y )、(22,x y )、(33,x y )在双曲线1y x=上,当3210x x x <<<时,1y 、2y 、3y 的大小关系是 A .321y y y << B .231y y y << C .213y y y << D .132y y y <<【答案】B【解析】试题分析:因为k=1>0,所以双曲线1y x=在每一象限内,y 随x 的增大而减小,因为3210x x x <<<,所以1y <0,且320y y <<,所以231y y y <<,故选:B.考点:双曲线的性质.8.如图,AB 是⊙O 的直径,C 、D 是圆上的两点.若BC=8,2cos 3D =,则AB 的长为 A.163 CD .12【答案】D考点:1.圆周角定理及其推论2.锐角三角函数.9.在平面直角坐标系xOy 中,A 为双曲线6y x =-上一点,点B 的坐标为(4,0).若△AOB 的面积为6,则点A 的坐标为A .(4-,32) B .(4,32-) C .(2-,3)或(2,3-) D .(3-,2)或(3,2-) 【答案】C【解析】试题分析:设点A 的坐标为(x ,y ),因为点B 的坐标为(4,0),所以OB=4,又△AOB 的面积=6,所以162AOB S OB y =⋅⋅=,所以1462y ⨯=,所以3y =,所以3y =±,因为A 为双曲线6y x =-上一点,所以当y=3时,x=-2,当y=-3时,x=2,所以点A 的坐标为(2-,3)或(2,3-),故选:C. 考点:反比例函数10.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴只有一个交点M ,与平行于x 轴的直线l 交于A 、B 两点.若AB=3,则点M 到直线l 的距离为A .52B .94C .2D .74【答案】B【解析】试题分析:因为抛物线2y x bx c =++与x 轴只有一个交点M ,所以240b c ∆=-=,所以24b c =,设直线l 为y=m ,则抛物线2y x bx c =++与直线y=m 交于点A 、B ,设点A 、B 的坐标分别为(1x ,m )(2x ,m ),则12,x x 是方程2x bx c m ++=的两根,所以1212,x x b x x c m +=-=-,又AB=21x x -=3,所以22211212()()49x x x x x x -=+-=,所以24()9b c m --=,又24b c =,所以4m=9,所以m=94,即点M 到直线l 的距离为94,故选:B. 考点:二次函数与一元二次方程的关系.二、填空题(本题共18分,每小题3分)11.请写出一个图象在第二、四象限的反比例函数解析式 . 【答案】1y x=- (答案不唯一)考点:反比例函数的图象的性质12.已知关于x 的方程260x x m -+= 有两个不相等的实数根,则m 的取值范围是 .【答案】9m <【解析】试题分析:因为方程260x x m -+= 有两个不相等的实数根,所以2(6)4364m m ∆=--=->0,所以9m <.考点:一元二次方程根的判别式.13.如图,在平面直角坐标系xOy 中,△ABC 与△'''A B C 顶点的横、 纵坐标都是整数.若△ABC 与△'''A B C 是位似图形,则位似中心的坐标是 .【答案】(8,0)【解析】试题分析:连结',','AA BB CC 并延长,它们的交点即为位似中心,观察可得位似中心的坐标是(8,0). 考点:点的坐标与图形的变换14.正比例函数1y k x =与反比例函数2k y x=的图象交于A 、B 两点,若点A 的坐标是(1,2),则点B 的坐标是___________.【答案】(1,2)--考点:正比例函数的图象与反比例函数的图象对称性.15.古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为 .【答案】222(2)(4)x x x -+-=【解析】试题分析:因为设竿长为x 尺,所以这个门的宽为x - 4尺,长为x - 2尺,根据勾股定理可得222(2)(4)x x x -+-=.考点:1.一元二次方程的应用2. 勾股定理16.正方形CEDF 的顶点D 、E 、F 分别在△ABC 的边AB 、BC 、AC 上.(1)如图,若tan 2B =,则BEBC 的值为 ;(2)将△ABC 绕点D 旋转得到△'''A B C ,连接'BB 、'CC .若''CC BB =,则tan B 的值为 .【答案】13(1);(2)34 【解析】试题分析:(1)因为四边形CEDF 是正方形,所以CE=DE, ∠C=∠BED=90°,因为tan DE B BE ==2,所以CE BE =2,所以BE BC =13;(2)如图:连结DC,DC ′,易证△BB ′D ∽△CC ′D,∴C DB C D BB C '='=,设DC=,则DE=3x ,DB=5x ,∴BE=4x ,∴tan ∠B=tan ∠BDE=3344DE x BE x ==.考点:1.正方形的性质2.相似三角形的判定与性质3.图形的旋转4.锐角三角函数.三、解答题(本题共72分,第17~26题,每小题5分,第27题6分,第28题8分,第29题8分)17.计算:2sin 303tan 60cos 45︒+︒-︒.【答案】考点:特殊角的三角函数值18.解方程:2250x x +-=. 【答案】161-=x ,162--=x 【解析】试题分析:可以用配方法解方程也可以用公式法解方程.试题解析:解法一:522=+x x .15122+=++x x .6)1(2=+x . 61±=+x . 16-±=x . ∴161-=x ,162--=x .解法二:521-===c b a ,,.∆=ac b 42-)5(1422-⨯⨯-=204+==240>.∴x ===1=-±. ∴161-=x ,162--=x .考点:解一元二次方程19.如图,D 是AC 上一点,DE ∥AB ,∠B=∠DAE .求证:△ABC ∽△DAE .【答案】证明见解析考点:相似三角形的判定.20.已知m 是方程210x x +-=的一个根,求代数式2(1)(1)(1)m m m +++-的值.【答案】2【解析】试题分析:先根据条件m 是方程210x x +-=的一个根,得出21m m +=,然后把所给的代数式化简为222m m +,代入21m m +=计算即可.试题解析:∵m 是方程210x x +-=的一个根,∴210m m +-=.∴21m m +=.∴22211m m m =+++-原式222m m =+2=.考点:1.一元二次方程的根2.化简求值.21.已知二次函数28y x bx =++的图象与x 轴交于A 、B 两点,点A 的坐标为(2,0)-,求点B 的坐标.【答案】(4,0)-【解析】试题分析:先把点A 的坐标(2,0)-代入28y x bx =++,得出b=6,从而得出二次函数解析式,然后令y=0,可求出点B 的坐标.试题解析:∵二次函数28y x bx =++的图象与x 轴交于点A (2,0)-,∴0428b =-+.∴6b =.∴二次函数解析式为268y x x =++.即(2)(4)y x x =++ .∴二次函数(2)(4)y x x =++与x 轴的交点B 的坐标为(4,0)-.考点:二次函数22.如图,矩形ABCD 为某中学课外活动小组围建的一个生物苗圃园,其中两边靠墙(墙足够长),另外两边用长度为16米的篱笆(虚线部分)围成.设AB 边的长度为x 米,矩形ABCD 的面积为y 平方米.(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围);(2)求矩形ABCD 的最大面积.【答案】(1)216y x x =-+;(2)64平方米【解析】试题分析:(1)因为设AB 边的长度为x 米,所以可得BC=(16-x )米,然后代入y=AB.BC 化简即可;(2)把函数解析式配方化为顶点式,确定出顶点坐标即可得出结论. 试题解析:(1)216y x x =-+;(2)∵216y x x =-+,∴2(8)64y x =--+.∵016x <<,∴当8x =时,y 的最大值为64.答:矩形ABCD 的最大面积为64平方米.考点:二次函数的应用.23.如图,在△ABC 中,∠ACB=90︒,D 为AC 上一点,DE ⊥AB 于点E ,AC=12,BC=5.A(1)求cos ADE ∠的值;(2)当DE DC =时,求AD 的长.【答案】(1)513(2)263. 试题解析:解法一:如图,(1)∵DE ⊥AB ,∴∠DEA=90°.∴∠A+∠ADE=90°.∵∠ACB=90︒,∴∠A+∠B=90°.∴∠ADE=∠B .在Rt △ABC 中,∵AC=12,BC=5,∴AB=13. ∴5cos 13BC B AB ==. ∴5cos cos 13ADE B ∠==. (2)由(1)得5cos 13DE ADE AD ∠==, 设AD 为x ,则513DE DC x ==. ∵ 12AC AD CD =+=,∴ 51213x x +=. 解得263x =. ∴ 263AD =. 解法二:(1) ∵90DE AB C ⊥∠=︒,,∴90DEA C ∠=∠=︒.∵A A ∠=∠,∴△ADE ∽△ABC .∴ADE B ∠=∠.在Rt △ABC 中,∵12,5AC BC ==,∴13.AB = ∴5cos .13BC B AB == ∴5cos cos .13ADE B ∠==(2) 由(1)可知 △ADE ∽△ABC .∴ .DE AD BC AB= 设AD x =,则12DE DC x ==-. ∴12513x x -=. 解得263x =. ∴263AD =.考点:1.锐角三角函数2.相似三角形的判定与性质.24.如图,在平面直角坐标系xOy 中,双曲线x m y =与直线2-=kx y 交于点A (3,1). (1)求直线和双曲线的解析式;(2)直线2-=kx y 与x 轴交于点B ,点P 是双曲线x my =上一点,过点P 作直线PC ∥x 轴,交y 轴于点C ,交直线2-=kx y 于点D .若DC=2OB ,直接写出点P 的坐标为 .【答案】(1)直线的解析式为2y x =-.双曲线的解析式为3y x =.(2)3,22⎛⎫ ⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭.试题解析:(1) ∵直线2-=kx y 过点A (3, 1),∴132k =-.∴1k =.∴直线的解析式为2y x =-. ∵双曲线x m y =过点A (3,1), ∴3m =. ∴双曲线的解析式为3y x=. (2)3,22⎛⎫⎪⎝⎭或1,62⎛⎫-- ⎪⎝⎭.考点:1.待定系数法求函数解析式2.双曲线与直线的关系.25.如图,小嘉利用测角仪测量塔高,他分别站在A 、B 两点测得塔顶的仰角45,50.αβ=︒=︒AB 为10米.已知小嘉的眼睛距地面的高度AC 为1.5米,计算塔的高度.(参考数据:sin 50︒取0.8,cos50︒取0.6,tan 50︒取1.2)【答案】5.61米.依题意,可得10==AB CD ,5.1==AC FG ,︒=∠90EFC .在Rt △EFD 中,∵β=50︒,2.1tan ==FDEF β, ∴FD EF 2.1=.在Rt △EFC 中,∵α=45︒,∴FD EF CF 2.1==.∵10=-=FD CF CD ,∴50=FD .∴602.1==FD EF .∴5.615.160=+=+=FG EF EG .答:塔的高度为5.61米.考点:解直角三角形的应用.26.如图,△ABC 内接于⊙O ,过点B 作⊙O 的切线DE ,F 为射线BD 上一点,连接CF(1)求证:CBE A ∠=∠;(2)若⊙O 的错误!未指定书签。
2016年北京市高级中等学校招生考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本题共30分,每小题3分)第1~10题均有四个选项,符合题意的选项只有一个.··1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为( )A.45°B.55°C.125°D.135°2.神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000 千米.将28 000用科学记数法表示应为( )A.2.8×103B.28×103C.2.8×104D.0.28×1053.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3C.a>-bD.a<-b4.内角和为540°的多边形是( )5.下图是某个几何体的三视图,该几何体是( )A.圆锥B.三棱锥C.圆柱D.三棱柱6.如果a+b=2,那么代数式(a-b2a )·aa-b的值是( )A.2B.-2C.12D.-127.甲骨文是我国的一种古代文字,是汉字的早期形式.下列甲骨文中,不是··轴对称图形的是( )8.在1~7月份, 某种水果的每斤进价与每斤售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A.3月份B.4月份C.5月份D.6月份9.如图,直线m⊥n.在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为( )A.O1B.O2C.O3D.O410.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示.下面有四个推断:①年用水量不超过180 m3的该市居民家庭按第一档水价交费②年用水量超过240 m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180其中合理的是( )A.①③B.①④C.②③D.②④第Ⅱ卷(非选择题,共90分)二、填空题(本题共18分,每小题3分)有意义,那么x的取值范围是.11.如果分式2x-112.下图中的四边形均为矩形.根据图形,写出一个正确的等式: .13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n10001500250040008000150002000030000成活的棵数m 8651356222035007056131701758026430成活的频率mn 0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m.已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为m.15.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.请回答:该作图的依据是.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明、演算步骤或证明过程.17.计算:(3-π)0+4sin 45°-√8+|1-√3|.18.解不等式组:{2x+5>3(x-1), 4x>x+72.19.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.如图,在平面直角坐标系xOy中,过点A(-6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.22.调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:m3)家庭人数 2 3 4 5用气量14 19 21 26表2 抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数 2 2 2 3 3 3 3 3 3 3 3 3 3 3 4用气量1111513141515171718181818222表3 抽样调查小区15户家庭5月份用气量统计表(单位:m3) 家庭人数 2 2 3 3 3 3 3 3 3 4 4 4 4 5 5用气量112131417171819222226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1 938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2 189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化创意产业实现增加值2 406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2 794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3 072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局) 根据以上材料解答下列问题:(1)用折线图将2011—2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由是.25.如图,AB为☉O的直径,F为弦AC的中点,连接OF并延长交AC⏜于点D,过点D作☉O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x 的几组对应值.x … 1 2 3 5 7 9 …y … 1.98 3.95 2.63 1.58 1.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质: .27.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC 的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验,提出猜想:在点P,Q运动的过程中,始终有PA=PM.小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证PA=PM,只需证△APM是等边三角形.想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证△ANP≌△PCM.想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK. ……请你参考上面的想法,帮助小茹证明PA=PM.(一种方法即可)29.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”.下图为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上.若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)☉O的半径为√2,点M的坐标为(m,3).若在☉O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.答案全解全析:一、选择题1.B 由题图可知,∠AOB=55°.2.C 28 000=2.8×104.故选C.3.D 由数轴可知,-3<a<-2,1<b<2,所以选项A,B错误;因为1<b<2,所以-2<-b<-1,所以a<-b,所以选项C错误,D正确.故选D.评析本题考查了数轴与不等式,需要通过数轴确定a,b的取值范围,再由不等式的基本性质推出数量关系,属容易题.4.C 由多边形内角和公式得(n-2)×180°=540°,解得n=5,所以该多边形为五边形,故选C.5.D 由主视图是矩形,知选项A,B不符合题意;由俯视图是三角形,知选项C不符合题意.故选D.6.A 原式=a2-b2a ·aa-b=(a+b)(a-b)a·aa-b=a+b,∵a+b=2,∴原式=2.7.D 选项A、B、C都是轴对称图形,故选D.8.B 利润=售价-进价.在题图中,每一个月的两个点间的距离越大,说明利润越大.距离最大的是4月份的两个点,故4月份利润最大.故选B.9.A 因为点A的坐标为(-4,2),所以原点在点A右侧4个单位,且在点A下方2个单位处;因为点B 的坐标为(2,-4),所以原点在点B左侧2个单位,且在点B上方4个单位处,如图,只有点O1符合.故选A.评析本题考查平面直角坐标系,属中档题.10.B 由统计图可知:年用水量不超过180 m3的该市居民家庭共有4万户,占总体的80%,按第一档水价交费,故①正确;年用水量超过240 m3的该市居民家庭共有0.35万户,占总体的7%,超过5%,故②错误;该市居民家庭年用水量的中位数为120 m3左右,故③错误;由统计图可知,该市居民家庭年用=134.7 m3,134.7<180,故④正确.故选B.水量的平均数为0.25×45+0.75×75+…+0.05×3155评析本题考查了学生对统计图的理解.属中档题.二、填空题11.答案x≠1解析由分式有意义的条件,可得x-1≠0,所以x≠1.12.答案答案不唯一.如:m(a+b+c)=ma+mb+mc解析如图,S矩形ABEF=m(a+b+c),S矩形ABCH=ma,S矩形HCDG=mb,S矩形GDEF=mc,∵S矩形ABEF=S矩形+S矩形HCDG+S矩形GDEF,∴m(a+b+c)=ma+mb+mc.ABCH13.答案0.880(答案不唯一)解析由题意可知,移植成活的频率在0.880左右波动.用频率来估计概率,则成活的概率为0.880.14.答案 3解析如图,由题意可知,∠B=∠C=45°,AD⊥BC,∴BC=2AD=BF+FH+HC=1.8+2.7+1.5=6,∴AD=3.即路灯的高为3 m.15.答案 505解析 1~100这100个数的和是5 050,因为百子回归图的每行、每列、每条对角线的10个数的和都相等,所以这个和为5 050÷10=505.16.答案 三边分别相等的两个三角形全等;全等三角形的对应角相等;等腰三角形的顶角平分线与底边上的高重合;两点确定一条直线解析 连接PA 、QA 、PB 、QB.由题意可知PA=QA,PB=QB,又AB=AB, ∴△PAB ≌△QAB(三边分别相等的两个三角形全等), ∴∠PAB=∠QAB(全等三角形的对应角相等). 由两点确定一条直线作直线PQ. ∵PA=QA,∴AB ⊥PQ(等腰三角形的顶角平分线与底边上的高重合). 三、解答题17.解析 原式=1+4×√22-2√2+√3-1=√3. 18.解析 原不等式组为{2x +5>3(x -1),①4x >x+72.②解不等式①,得x<8. 解不等式②,得x>1.∴原不等式组的解集为1<x<8.19.证明 ∵四边形ABCD 为平行四边形,∴AB ∥CD.∴∠BAE=∠E.∵AE 平分∠BAD,∴∠BAE=∠DAE. ∴∠E=∠DAE,∴DA=DE.20.解析 (1)依题意,得Δ=(2m+1)2-4(m 2-1)=4m+5>0, 解得m>-54.(2)答案不唯一.如:m=1. 此时方程为x 2+3x=0. 解得x 1=-3,x 2=0.21.解析 (1)∵点B(m,4)在直线l 2:y=2x 上, ∴m=2.设直线l 1的表达式为y=kx+b(k ≠0). ∵直线l 1经过点A(-6,0),B(2,4), ∴{-6k +b =0,2k +b =4,解得{k =12,b =3. ∴直线l 1的表达式为y=12x+3. (2)n<2.22.解析 小芸的抽样调查的数据能较好地反映出该小区家庭5月份用气量情况. 小天的抽样调查的不足之处:抽样调查所抽取的家庭数量过少.小东的抽样调查的不足之处:抽样调查所抽取的15户家庭的平均人数明显小于3.4. 23.解析 (1)证明:在△ABC 中,∠ABC=90°,M 为AC 的中点, ∴BM=12AC. ∵N 为CD 的中点,∴MN=1AD.2∵AC=AD,∴BM=MN.(2)∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠CAD=30°.由BM=AM,可得∠BMC=2∠BAC=60°.由MN∥AD,可得∠CMN=∠CAD=30°.∴∠BMN=∠BMC+∠CMN=90°.∵AC=AD=2,∴BM=MN=1.在Rt△BMN中,BN=√BM2+MN2=√2.24.解析(1)(2)预估理由需包含折线图中提供的信息,且支撑预估的数据.评析本题考查折线统计图,以及借助统计图预估数据,属中档题.25.解析(1)证明:连接OC,如图.∵OA=OC,F为AC的中点,∴OD⊥AC.∵DE是☉O的切线,∴OD⊥DE.∴AC∥DE.(2)求解思路如下:①在Rt△ODE中,由OA=AE=OD=a,可得△ODE,△OFA为含30°角的直角三角形;②由∠ACD=1∠AOD=30°,可知CD∥OE;2③由AC∥DE,可知四边形ACDE是平行四边形;④由△ODE,△OFA为含有30°角的直角三角形,可求DE,DF的长,进而可求四边形ACDE的面积.26.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①x=4对应的函数值y约为1.98.②当x>2时,y随x的增大而减小.27.解析(1)y=mx2-2mx+m-1=m(x-1)2-1.∴抛物线的顶点坐标为(1,-1).(2)①当m=1时,抛物线的表达式为y=x 2-2x. 令y=0,解得x 1=0,x 2=2. ∴线段AB 上整点的个数为3. ②当抛物线经过点(-1,0)时,m=14. 当抛物线经过点(-2,0)时,m=19.结合函数的图象可知,m 的取值范围为19<m ≤14.28.解析 (1)∵△ABC 为等边三角形,∴∠B=60°.∴∠APC=∠BAP+∠B=80°.∵AP=AQ,∴∠AQB=∠APC=80°. (2)①补全的图形如图所示.②法1:证明:过点A 作AH ⊥BC 于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC.∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM.∴∠PAB=∠MAC,AM=AP.∴∠PAM=∠BAC=60°.∴△APM为等边三角形.∴PA=PM.法2:证明:在BA上取一点N,使BN=BP,连接PN,CM,如图.由△ABC为等边三角形,可得△BNP为等边三角形.∴AN=PC,∠ANP=120°.由AP=AQ,可得∠APB=∠AQC.又∵∠B=∠ACB=60°,∴△ABP≌△ACQ.∴BP=CQ.∵点Q,M关于直线AC对称,∴∠ACM=∠ACQ=60°,CM=CQ.∴NP=BP=CQ=CM.∵∠PCM=∠ACM+∠ACQ=120°,∴△ANP≌△PCM.∴PA=PM.法3:证明:将线段BP绕点B顺时针旋转60°,得到BK,连接KP,CK,MC,如图.∴△BPK为等边三角形.∴KB=BP=PK,∠KPB=∠KBP=60°.∴∠KPC=120°.由△ABC为等边三角形,可得△ABP≌△CBK.∴AP=CK.由AP=AQ,可得∠APB=∠AQC.∵AB=AC,∠ABC=∠ACB=60°,∴△ABP≌△ACQ.∴BP=CQ.∵点Q,M关于直线AC对称,∴∠BCM=2∠ACQ=120°,CQ=CM=PK.∴MC∥PK.∴四边形PKCM为平行四边形.∴CK=PM,∴PA=PM.29.解析(1)①如图,矩形AEBF为点A(1,0),B(3,1)的“相关矩形”.可得AE=2,BE=1.∴点A,B的“相关矩形”的面积为2.②由点A(1,0),点C在直线x=3上,点A,C的“相关矩形”AECF为正方形,可得AE=2.当点C在x轴上方时,CE=2,可得C(3,2).∴直线AC的表达式为y=x-1.当点C在x轴下方时,CE=2,可得C(3,-2).∴直线AC的表达式为y=-x+1.(2)由点M,N的“相关矩形”为正方形,可设直线MN为y=x+b或y=-x+b.(i)当直线MN为y=x+b时,可得m=3-b.由图可知,当直线MN平移至与☉O相切,且切点在第四象限时,b取得最小值,此时直线MN记为M1N1,其中N1为切点,T1为直线M1N1与y轴的交点.∵△ON1T1为等腰直角三角形,ON1=√2,∴OT1=2,∴b的最小值为-2.∴m的最大值为5.当直线MN平移至与☉O相切,且切点在第二象限时,b取得最大值,此时直线MN记为M2N2,其中N2为切点,T2为直线M2N2与y轴的交点.同理可得,b的最大值为2,m的最小值为1.∴m的取值范围为1≤m≤5.(ii)当直线MN为y=-x+b时,同理可得,m的取值范围为-5≤m≤-1.综上所述,m的取值范围为-5≤m≤-1或1≤m≤5.。
九年级上学期期中数学试卷一、选择题(本大题共8个小题,每小题3分,共24分。
在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项选出来并填在该题相应的括号内)1.如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2 B.1:4 C.1: D.2:12.在△ABC中,∠C=90°,sinA=,则sinB的值是()A.B.C.D.3.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°4.如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD •AB.其中单独能够判定△ABC∽△ACD的个数为()A.1 B.2 C.3 D.45.在△ABC中,若cosA=,tanB=,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,每个小正方形边长均为1,则下列图中的三角形与左图中△ABC相似的是()A.B.C.D.7.如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=4,PB=2,那么线段BC的长等于()A.3 B.4 C.5 D.68.如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=6;③sin∠AOB=;④四边形ABOC是菱形.其中正确结论的序号是()A.①③B.①②③④ C.②③④D.①③④二、填空题(本大题共6个小题,每小题3分,共18分,只要求填写最后结果,每小题填对得3分)9.等腰三角形底边长10cm,周长为36cm,则一底角的正切值为.10.弧长为6π的弧所对的圆心角为60°,则该弧所在圆的半径是.11.将一副三角尺如图所示叠放在一起,则的值是.12.如图,平行四边形ABCD中,E是边BC上的点,AE交BD于点F,如果,则= .13.如图,AB、AC是⊙O的两条切线,切点分别为B、C,D是优弧BC上的一点,已知∠BAC=80°,那么∠BDC= 度.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为.三、解答题(本大题共7个小题,共78分)解答应写出必要的证明过程或演算步骤15.计算:tan30°•sin60°+cos230°﹣sin245°•tan45°.16.如图,△ABC中,DE∥BC,DE=1,AD=2,DB=3,求BC的长.17.如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD ⊥AB交AB于D.已知cos∠ACD=,BC=4,求AC的长.18.如图,△ABC的三顶点分别为A(4,4),B(﹣2,2),C(3,0).请画出一个以原点O为位似中心,且与△ABC相似比为的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(只需画出一种情况,A1B1:AB=)19.如图1表示一个时钟的钟面垂直固定与水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直与桌面,A点距桌面的高度为10公分.如图2,若此钟面显示3点45分时,A点距离桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?20.如图,小明为测量某铁塔AB的高度,他在离塔底B的10米C处测得塔顶的仰角α=43°,已知小明的测角仪高CD=1.5米,求铁塔AB的高.(精确到0.1米)(参考数据:sin43°=0.6820,cos43°=0.7314,tan43°=0.9325)21.如图,以线段AB为直径的⊙O交线段AC于点E,点M是的中点,OM交AC于点D,∠BOE=60°,cosC=,BC=2.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.22.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)23.在矩形ABCD中,DC=2,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)当F为AD的中点时,求sin∠FBD的值及BC的长度.24.如图,在Rt△ABC中,斜边BC=12,∠C=30°,D为BC的中点,△ABD的外接圆⊙O与AC交于F点,过A作⊙O的切线AE交DF的延长线于E点.(1)求证:AE⊥DE;(2)计算:AC•AF的值.九年级上学期期中数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分。
2015-2016学年北京市北达资源中学九年级(上)期中数学模拟试卷一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列图形是中心对称图形的是()A.B. C. D.2.(3分)一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A.3,﹣4,﹣5 B.3,﹣4,5 C.3,4,5 D.3,4,﹣53.(3分)抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2 C.y=x2+1 D.y=x2﹣14.(3分)若点P(x,﹣3)与点Q(4,y)关于原点对称,则x+y等于()A.1 B.﹣1 C.7 D.﹣75.(3分)用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为()A.(x﹣1)2=4 B.(x﹣1)2=﹣4 C.(x+1)2=4 D.(x+1)2=﹣46.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=57°,则∠C等于()A.53°B.23°C.57°D.33°7.(3分)已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=38.(3分)已知扇形的半径为3,圆心角为120°,则这个扇形的面积为()A.9πB.6πC.3πD.2π9.(3分)在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1与y2的大小关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y210.(3分)如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C 作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(每小题3分,本题共18分,)11.(3分)方程x2﹣3x=0的根为.12.(3分)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为cm.13.(3分)如图,PA、PB分别与相切⊙O于点A、B,连接AB.∠APB=60°,AB=5,则⊙O的半径长为.14.(3分)若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.15.(3分)已知:⊙O的半径OA=4,点A、B、C在圆上,弦AB的长为4,则∠ACB=.16.(3分)如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=16°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为.三、解答题(本题共30分,每小题5分)17.(5分)解方程:x2+3x=5x+15.18.(5分)尺规作△ABC的外接圆.(请保留作图痕迹)19.(5分)已知二次函数的图象经过(4,3)点,且顶点坐标为(2,﹣1),求此二次函数的解析式.20.(5分)如图,四边形ABCD内接于⊙O,∠OAC=40°,求∠ABC的度数.21.(5分)若关于x的一元二次方程x2﹣4mx+2m2=0的一个根是x=2,求代数式2(m﹣2)2﹣5的值.22.(5分)列方程(组)解应用题:如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的,求小路的宽度.四、解答题(本题共20分,每小题5分)23.(5分)在如图所示的平面直角坐标系中,有△ABC.(1)将△ABC向x轴负半轴方向平移4个单位得到△A1B1C1,画出图形并写出对应点的坐标.(2)画出△ABC关于原点O的中心对称图形△A2B2C2,并写出对应点的坐标.24.(5分)已知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0).(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a的值.25.(5分)如图,在△ABC中,∠C=90°,O是BC上一点,以O为圆心,OC为半径的圆过AB上一点D.(1)若AD=AC,求证:AB是⊙O的切线;(2)若BE=4,BD=8,求CE和AD的长.26.(5分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;=15时,求该抛物线的表达式;(2)当S△ABC(3)在(2)的条件下,设直线l:y=b,将抛物线在直线l下方的部分沿直线l 翻折,与直线上方的部分组成个新函数的图象G.请结合图象回答:若G与直线y=2有4个公共点,求b的取值范围.28.(7分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是,证明你的结论;(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.29.(8分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P 为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.(1)若b=5,则点A坐标是;(2)在(1)的条件下,若OQ=8,求线段BQ的长;(3)若点P在函数y=x2(x>0)的图象上,且△BQP是等腰三角形.①直接写出实数a的取值范围:;②在,,这三个数中,线段PQ的长度可以为,并求出此时点B 的坐标.2015-2016学年北京市北达资源中学九年级(上)期中数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)下列图形是中心对称图形的是()A.B. C. D.【解答】解:A、该图形是中心对称图形,正确,B、该图形不是中心对称图形,错误;C、该图形不是中心对称图形,错误;D、该图形是轴对称图形,错误;故选:A.2.(3分)一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A.3,﹣4,﹣5 B.3,﹣4,5 C.3,4,5 D.3,4,﹣5【解答】解:一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是3,﹣4,﹣5.故选:A.3.(3分)抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2 C.y=x2+1 D.y=x2﹣1【解答】解:抛物线y=x2向下平移一个单位得到抛物线解析式为:y=x2﹣1.故选:D.4.(3分)若点P(x,﹣3)与点Q(4,y)关于原点对称,则x+y等于()A.1 B.﹣1 C.7 D.﹣7【解答】解:∵点P(x,﹣3)和点Q(4,y)关于原点对称,∴x=﹣4,y=3,∴x+y=﹣4+3=﹣1,故选:B.5.(3分)用配方法解方程x2﹣2x﹣3=0时,配方后得到的方程为()A.(x﹣1)2=4 B.(x﹣1)2=﹣4 C.(x+1)2=4 D.(x+1)2=﹣4【解答】解:把方程x2﹣2x﹣3=0的常数项移到等号的右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=4,配方得(x﹣1)2=4.故选:A.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=57°,则∠C等于()A.53°B.23°C.57°D.33°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,又∠ABD=57°,∴∠A=33°,由圆周角定理得,∠C=∠A=33°,故选:D.7.(3分)已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=3【解答】解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得t=3.即方程的另一根为3.故选:D.8.(3分)已知扇形的半径为3,圆心角为120°,则这个扇形的面积为()A.9πB.6πC.3πD.2π【解答】解:S==3π.扇形故选:C.9.(3分)在平面直角坐标系xOy中,函数y=x2的图象经过点M(x1,y1),N(x2,y2)两点,若﹣4<x1<﹣2,0<x2<2,则y1与y2的大小关系是()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y2【解答】解:抛物线y=x2的对称轴为y轴,而M(x1,y1)到y轴的距离比N(x2,y2)点到y轴的距离要远,所以y1>y2.故选:C.10.(3分)如图,C是半圆O的直径AB上的一个动点(不与A,B重合),过C 作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE.若AB=10,设AC=x,矩形DCOE的面积为y,则下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.【解答】解:根据题意结合图形,分情况讨论:如图,①当点C在半径OA上时,连接AD、BD;∵AB为半圆O的直径,∴∠ADB=90°,而DC⊥AB,∴DC2=AC•BC,而AC=x,BC=10﹣x,∴DC=,而OC=5﹣x,∴y=(5﹣x);②当点C在半径OB上,即点C′的位置时,同理可求:y=(x﹣5),综上所述,y与x的函数关系式为:y=.所以,y与x之间的函数关系可以用两段二次函数图象表示.故选:A.二、填空题(每小题3分,本题共18分,)11.(3分)方程x2﹣3x=0的根为x1=0,x2=3.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.12.(3分)⊙O的半径为10cm,弦AB=12cm,则圆心到AB的距离为8cm.【解答】解:∵OC⊥AB,∴AC=AB=6cm.在直角△AOC中,OC===8(cm).故答案是:8.13.(3分)如图,PA、PB分别与相切⊙O于点A、B,连接AB.∠APB=60°,AB=5,则⊙O的半径长为2.【解答】解:连接OA,OP,∵PA、PB分别与相切⊙O于点A、B,∴PA=PB,OA⊥AB,∵∠APB=60°,∴△ABP是等边三角形,∴PA=AB=6,∴∠APO=∠APB=×60°=30°,∴OA=AP•tan30°=6×=2.故答案为:2.14.(3分)若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为4.【解答】解:根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.15.(3分)已知:⊙O的半径OA=4,点A、B、C在圆上,弦AB的长为4,则∠ACB=45°或135°.【解答】解:如图,∵OA=OB=4,AB=4,∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,当点C在优弧上时,∠ACB=∠AOB=45°,点点C在劣弧上时,∠AC'B+∠ACB=180°,∴∠AC'B=180°﹣45°=135°,∴∠ACB=45°或135°,故答案为45°或135°.16.(3分)如图,正方形ABCD中,点G为对角线AC上一点,AG=AB.∠CAE=16°且AE=AC,连接GE.将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,则∠CAF的度数为29°或61°.【解答】解:∵线段AE绕点A逆时针旋转得到线段AF,∴AE=AF,∵四边形ABCD是正方形,∴AB=AD,∵AG=AB,∴AD=AG,在△AGE和△ADF中,,∴△AGE≌△ADF(SSS),∴∠DAF=∠CAE=16°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,点F在AD的下方时,∠CAF=∠CAD﹣∠DAF=45°﹣16°=29°,点F在AD的上方时,∠CAF=∠CAD+∠DAF=45°+16°=61°,综上所述,∠CAF的度数为29°或61°.故答案为:29°或61°.三、解答题(本题共30分,每小题5分)17.(5分)解方程:x2+3x=5x+15.【解答】解:x2+3x=5x+15,x2﹣2x﹣15=0,(x﹣5)(x+3)=0,x﹣5=0,x+3=0,解得:x1=5,x2=﹣3.18.(5分)尺规作△ABC的外接圆.(请保留作图痕迹)【解答】解:如图所示:19.(5分)已知二次函数的图象经过(4,3)点,且顶点坐标为(2,﹣1),求此二次函数的解析式.【解答】解:设二次函数解析式为y=a(x﹣2)2﹣1,把(4,3)代入得:4a﹣1=3,即a=1,则二次函数解析式为y=(x﹣2)2﹣1=x2﹣4x+3.20.(5分)如图,四边形ABCD内接于⊙O,∠OAC=40°,求∠ABC的度数.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,设∠ABC=x,∴∠ADC=180°﹣x,∴∠AOC=2∠ADC=360°﹣2x.∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=(180°﹣∠AOC)=40°,∴x=130°,∴∠ABC=130°.21.(5分)若关于x的一元二次方程x2﹣4mx+2m2=0的一个根是x=2,求代数式2(m﹣2)2﹣5的值.【解答】解:依题意得:22﹣4m×2+2m2=0,整理得:(m﹣2)2=3,所以2(m﹣2)2﹣5=2×32﹣5=13,即2(m﹣2)2﹣5=13.22.(5分)列方程(组)解应用题:如图,有一块长20米,宽12米的矩形草坪,计划沿水平和竖直方向各修一条宽度相同的小路,剩余的草坪面积是原来的,求小路的宽度.【解答】解:设小路的宽度是x米,由题意,得(20﹣x)(12﹣x)=×20×12,解得,x1=30,x2=2.∵30>20,∴不合题意舍去.∴x=2.答:小路的宽度是2米.四、解答题(本题共20分,每小题5分)23.(5分)在如图所示的平面直角坐标系中,有△ABC.(1)将△ABC向x轴负半轴方向平移4个单位得到△A1B1C1,画出图形并写出对应点的坐标.(2)画出△ABC关于原点O的中心对称图形△A2B2C2,并写出对应点的坐标.【解答】解:(1)如图所示:△A 1B1C1,即为所求,A1(﹣1,2),B1(﹣3,1),C1(0,2);(2)如图所示:△A2B2C2,即为所求,A2(﹣3,﹣3),B1(﹣1,﹣1),C1(﹣4,﹣2).24.(5分)已知关于x的方程ax2+(a﹣3)x﹣3=0(a≠0).(1)求证:方程总有两个实数根;(2)若方程有两个不相等的负整数根,求整数a的值.【解答】解:(1)∵a≠0,∴原方程为一元二次方程.∴△=(a﹣3)2﹣4×a×(﹣3)=(a+3)2.∵(a+3)2≥0.∴此方程总有两个实数根.(2)解原方程,得x1=﹣1,x2=.∵此方程有两个负整数根,且a为整数,∴a=﹣1或﹣3.∵x1=﹣1,x2=.∴a≠﹣3.∴a=﹣1.25.(5分)如图,在△ABC中,∠C=90°,O是BC上一点,以O为圆心,OC为半径的圆过AB上一点D.(1)若AD=AC,求证:AB是⊙O的切线;(2)若BE=4,BD=8,求CE和AD的长.【解答】(1)证明:连接OD,如图,在△AOC和△AOD中,∴△AOC≌△AOD,∴∠ACO=∠ADO=90°,∴OD⊥AB,∴AB是⊙O的切线;(2)解:设⊙O的半径为r,则OB=r+4,在Rt△OBD中,∵OD2+BD2=OB2,∴r2+82=(r+4)2,解得r=6,∴CE=2r=12,∵△AOC≌△AOD,∴AC=AD,设AD=t,在Rt△ACB中,∵AC2+BC2=AB2,∴t2+162=(t+8)2,解得t=20,即AD=20.26.(5分)阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的价值.例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为.小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值.如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;….经过研究,小丁发现,对于“2,﹣1,3”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为.根据以上材料,回答下列问题:(1)数列﹣4,﹣3,2的价值为;(2)将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的价值的最小值为,取得价值最小值的数列为﹣3,2,﹣4,;或2,﹣3,﹣4(写出一个即可);(3)将2,﹣9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的价值的最小值为1,则a的值为4.【解答】解:(1)因为|﹣4|=4,||=3.5,||=,所以数列﹣4,﹣3,2的价值为.(2)数列的价值的最小值为||=,数列可以为:﹣3,2,﹣4,;或2,﹣3,﹣4.(3)当||=1,则a=0,不合题意;当||=1,则a=11;当||=1,则a=4.故答案为:;;﹣3,2,﹣4,;或2,﹣3,﹣4;11或4.五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣(m﹣1)x﹣m(m>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;=15时,求该抛物线的表达式;(2)当S△ABC(3)在(2)的条件下,设直线l:y=b,将抛物线在直线l下方的部分沿直线l 翻折,与直线上方的部分组成个新函数的图象G.请结合图象回答:若G与直线y=2有4个公共点,求b的取值范围.【解答】解:(1)令y=0,得x2﹣(m﹣1)x﹣m=0,∴(x﹣m)(x+1)=0,∴x=m或﹣1,∵m>0,点A在点B的左侧,∴点A坐标(﹣1,0),B(m,0),(2)由题意:×(1+m)•m=15,解得m=5或﹣6(舍弃),∴抛物线的解析式为y=x2﹣4x﹣5.(3)如图,由图象可知,当﹣<b<2时,图象G与直线y=b有4个公共点.28.(7分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C顺时针旋转.当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S 1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2,证明你的结论;(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.【解答】解:(1)①DE∥AC,理由如下:∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),故答案为:DE∥AC;S1=S2;(2)如图3,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2.29.(8分)如图,在平面直角坐标系xOy中,点P(a,b)在第一象限.以P 为圆心的圆经过原点,与y轴的另一个交点为A.点Q是线段OA上的点(不与O,A重合),过点Q作PQ的垂线交⊙P于点B(m,n),其中m≥0.(1)若b=5,则点A坐标是(0,10);(2)在(1)的条件下,若OQ=8,求线段BQ的长;(3)若点P在函数y=x2(x>0)的图象上,且△BQP是等腰三角形.①直接写出实数a的取值范围:a≥1;②在,,这三个数中,线段PQ的长度可以为,并求出此时点【解答】解:(1)过点P作PH⊥OA于点H,∴OA=2OH,∵b=5,∴OH=5,∴OA=10,∴点A坐标是(0,10).故答案为:(0,10).(2)连接BP、OP.∵b=5,PH⊥OA,∴OH=AH=5.∵OQ=8,∴QH=OQ﹣OH=3.在Rt△QHP中,PQ2=QH2+PH2=9+PH2,在Rt△PHO中,PO2=OH2+PH2=25+PH2=BP2,在Rt△BQP中,BQ2=BP2﹣PQ2=(25+PH2)﹣(9+PH2)=16.∴BQ=4.(3)①∵点P在函数y=x2(x>0)的图象上,∴b=a2,当Q与H重合时,易知a=b=1,∴a≥1,故答案为:a≥1;②在,,这三个数中,线段PQ的长度可以为,理由如下:∵△BQP是等腰直角三角形,PQ=,∴半径BP=2.又∵P(a,a2),∴OP2=a2+a4=(2)2.即a4+a2﹣20=0.解得a=±2.∵a>0∴a=2.∴P(2,4).如图,作BM⊥y轴于点M,则△QBM≌△PQH.∴MQ=PH=2,∴MB=QH==.∴B1(,6+).若点Q在OH上,由对称性可得B2(,2﹣)综上,当PQ=时,B点坐标为(,6+)或(,2﹣).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
数学九年级上册试卷人教版【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0, b < 0,则下列哪个选项是正确的?A. a b > 0B. a b < 0C. a + b > 0D. a + b < 02. 已知一组数据:2, 3, 5, 7, 11,其平均数是多少?A. 4B. 5C. 6D. 73. 二次方程 x^2 5x + 6 = 0 的解是:A. x = 2 或 x = 3B. x = 1 或 x = 6C. x = -2 或 x = -3D. x = -1 或 x = -64. 下列哪个图形是中心对称的?A. 矩形B. 正方形C. 圆D. 三角形5. 如果sinθ = 1/2,那么θ 的度数是多少?A. 30°B. 45°C. 60°D. 90°二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 对角线互相垂直的四边形是菱形。
()3. 一元二次方程的解一定是两个实数根。
()4. 相似三角形的对应边长成比例。
()5. 平行线的斜率相等。
()三、填空题(每题1分,共5分)1. 平方差公式是:a^2 b^2 = _______。
2. 一元二次方程 ax^2 + bx + c = 0 的判别式是 _______。
3. 如果一个三角形的两边长分别是 3 和 4,那么第三边的长度可能是 _______。
4. 二项式定理是: (a + b)^n = _______。
5. 圆的标准方程是: (x h)^2 + (y k)^2 = _______。
四、简答题(每题2分,共10分)1. 解释什么是二次函数的顶点。
2. 简述勾股定理。
3. 什么是相似三角形?4. 解释什么是函数的单调性。
5. 什么是坐标轴?五、应用题(每题2分,共10分)1. 一个长方形的周长是 24cm,长是宽的两倍,求长和宽。
2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(4)一、选择题(每题4分,共24分)1.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.若两圆没有公共点,则两圆的位置关系是()A.外离 B.外切 C.内含 D.外离或内含3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40° B.50° C.65° D.75°4.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50° B.40° C.60° D.70°5.如图,正三角形的内切圆半径为1,那么三角形的边长为()A.2 B.3 C.D.26.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A. B.4.75 C.5 D.4.8二、填空题(每小题4分,共40分)7.如图,△ABC中,∠A=45°,I是内心,则∠BIC= °.8.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).9.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是cm.10.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于cm.11.如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r= .12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于.13.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.则☉O的直径BE= ;△ABC的面积为.14.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.15.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是.16.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是.三、解答题(第17题16分,第18、19题每题10分,共36分)17.如图,C为圆周上一点,BD是☉O的切线,B为切点.(1)在图(1)中,AB是☉O的直径,∠BAC=30°,则∠DBC的度数为.(2)在图(2)中,∠BA1C=40°,求∠DBC的度数.(3)在图(3)中,∠BA1C=α,求∠DBC的大小.(4)通过(1)、(2)、(3)的探究,你发现的结论是(5)如图(4),AC是☉O的直径,∠ACB=60°,连接AB,过A、B两点分别作☉O的切线,两切线交于点P.若已知☉O的半径为1,则△PAB的周长为.(6)如图(5),C是⊙O的直径AB延长线上的一点,CD切⊙O于D,∠ACD的平分线分别交AD、BD于E、F,试猜想∠DEF的度数并说明理由.18.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC 的度数;(2)⊙O的半径;(3)AB+CD的值.19.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(4)参考答案与试题解析一、选择题(每题4分,共24分)1.已知⊙O的半径是5,OP的长为7,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】直接根据点与圆的位置关系即可得出结论.【解答】解:∵⊙O的半径是5,OP的长为7,5<7,∴点P在圆外.故选C.2.若两圆没有公共点,则两圆的位置关系是()A.外离 B.外切 C.内含 D.外离或内含【考点】圆与圆的位置关系.【分析】此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).【解答】解:外离或内含时,两圆没有公共点.故选D.3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40° B.50° C.65° D.75°【考点】切线的性质.【分析】根据切线的性质可判断∠OBA=90°,再由∠BAO=40°可得出∠O=50°,在等腰△OBC 中求出∠OCB即可.【解答】解:∵AB是⊙O的切线,B为切点,∴OB⊥AB,即∠OBA=90°,∵∠BAO=40°,∴∠O=50°,∵OB=OC(都是半径),∴∠OCB==65°.故选C.4.如图所示,O是线段AB上的一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.50° B.40° C.60° D.70°【考点】切线的性质;圆周角定理.【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE 为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对弧BC,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选A.5.如图,正三角形的内切圆半径为1,那么三角形的边长为()A.2 B.3 C.D.2【考点】三角形的内切圆与内心;锐角三角函数的定义.【分析】欲求三角形的边长,已知内切圆半径,可过内心向正三角形的一边作垂线,连接顶点与内切圆心,构造直角三角形求解.【解答】解:过O点作OD⊥AB,则OD=1;∵O是△ABC的内心,∴∠OAD=30°;Rt△OAD中,∠OAD=30°,OD=1,∴AD=OD•cot30°=,∴AB=2AD=2.故选D.6.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CB,CA分别相交于点E,F,则线段EF长度的最小值是()A. B.4.75 C.5 D.4.8【考点】切线的性质;勾股定理的逆定理;圆周角定理.【分析】设EF的中点为O,圆O与AB的切点为D,连接OD,连接CO,CD,则有OD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形OC+OD=EF,由三角形的三边关系知,CO+OD>CD;只有当点O在CD上时,OC+OD=EF有最小值为CD的长,即当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,∵∠ACB=90°,∴EF是直径,设EF的中点为O,圆O与AB的切点为D,连接OD,CO,CD,则OD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴EF为直径,OC+OD=EF,∴CO+OD>CD=4.8,∵当点O在直角三角形ABC的斜边AB的高上CD时,EF=CD有最小值∴由三角形面积公式得:CD=BC•AC÷AB=4.8.故选D.二、填空题(每小题4分,共40分)7.如图,△ABC中,∠A=45°,I是内心,则∠BIC= 115 °.【考点】三角形的内切圆与内心.【分析】由三角形内切定义可知:IB、IC是∠ABC、∠ACB的角平分线,所以可得到关系式∠IBC+∠ICB=(∠ABC+∠ACB),把对应数值代入即可解出∠BIC的值.【解答】解:∵IB、IC是∠ABC、∠ACB的角平分线,∴∠IBC+∠ICB=(∠ABC+∠ACB)==65°,∴∠BIC=180°﹣65°=115°.故答案为:115.8.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55 (度).【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.9.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是10 cm.【考点】切线的性质;勾股定理;垂径定理.【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【解答】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R﹣2)2,解得R=5,∴该光盘的直径是10cm.故答案为:1010.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知PA=7cm,则△PCD的周长等于14 cm.【考点】切线长定理.【分析】由于DA、DC、BC都是⊙O的切线,可根据切线长定理,将△PCD的周长转换为PA、PB的长,然后再进行求解.【解答】解:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB=7cm;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=14cm;故△PCD的周长是14cm.11.如图,已知⊙O是△ABC的内切圆,切点为D、E、F,如果AE=2,CD=1,BF=3,则内切圆的半径r= 1 .【考点】三角形的内切圆与内心;切线长定理.【分析】根据切线长定理得出AF=AE,EC=CD,DB=BF,进而得出△ABC是直角三角形,再利用直角三角形内切圆半径求法得出内切圆半径即可.【解答】解:∵⊙O是△ABC的内切圆,切点为D、E、F,∴AF=AE,EC=CD,DB=BF,∵AE=2,CD=1,BF=3,∴AF=2,EC=1,BD=3,∴AB=BF+AF=3+2=5,BC=BD+DC=4,AC=AE+EC=3,∴△ABC是直角三角形,∴内切圆的半径r==1,故答案为:1.12.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于69°.【考点】圆内接四边形的性质.【分析】由∠BOD=138°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠A的度数,又由圆的内接四边四边形的性质,求得∠BCD的度数,继而求得∠DCE的度数【解答】解:∵∠BOD=138°,∴∠A=∠BOD=69°,∴∠BCD=180°﹣∠A=111°,∴∠DCE=180°﹣∠BCD=69°.故答案为:69°.13.如图,在△ABC中,已知∠ABC=90°,在AB上取一点E,以BE为直径的☉O恰与AC相切于点D.若AE=2,AD=4.则☉O的直径BE= 6 ;△ABC的面积为24 .【考点】切线的性质.【分析】连接OD,由切线的性质可知△OAD为直角三角形,设半径为x,在Rt△AOD中由勾股定理可列方程,可求得x的值,则可求得BE的长;再由条件可证明△AOD∽△ACB,由相似三角形的性质可求得BC的长,则容易求得△ABC的面积.【解答】解:如图,连接OD,∵AC与⊙O相切,∴OD⊥AC,设⊙O的半径为x,则OE=OB=OD=x,∴AO=AE+OE=2+x,在Rt△AOD中,由勾股定理可得AO2=OD2+AD2,即(2+x)2=x2+42,解得x=3,∴BE=2x=6,∴AB=AE+BE=2+6=8,∵∠ABC=∠ADO=90°,∠OAD=∠CAB,∴△AOD∽△ACB,∴=,即=,解得BC=6,∴S△ABC=AB•BC=×8×6=24,故答案为:6;24.14.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为4或2 cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.15.直线AB与⊙O相切于B点,C是⊙O与OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是25°或155°.【考点】切线的性质.【分析】连结OB,根据切线的性质得OB⊥BA,可求出∠AOB=50°,然后讨论:当点D在优弧BC上时,根据圆周角定理即可得到∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,则可根据圆内接四边形的性质求出∠BD′C=180°﹣25°=155°.【解答】解:当点D在优弧BC上时,如图,连结OB,∵直线AB与⊙O相切于B点,∴OB⊥BA,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∴∠BDC=∠AOB=25°;当点D在劣弧BC上时,即在D′点处,如图,∵∠BDC+∠BD′C=180°,∴∠BD′C=180°﹣25°=155°,∴∠BDC的度数为25°或155°.故答案为:25°或155°.16.已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是15°或75°.【考点】垂径定理;勾股定理.【分析】根据垂径定理和勾股定理可得.【解答】解:分别作OD⊥AB,OE⊥AC,垂足分别是D、E.∵OE⊥AC,OD⊥AB,根据垂径定理得AE=AC=,AD=AB=,∴sin∠AOE===,sin∠AOD==,根据特殊角的三角函数值可得∠AOE=60°,∠AOD=45°,∴∠BAO=45°,∠CAO=90°﹣60°=30°,∴∠BAC=45°+30°=75°,或∠BAC′=45°﹣30°=15°.故答案为:15°或75°.三、解答题(第17题16分,第18、19题每题10分,共36分)17.如图,C为圆周上一点,BD是☉O的切线,B为切点.(1)在图(1)中,AB是☉O的直径,∠BAC=30°,则∠DBC的度数为30°.(2)在图(2)中,∠BA1C=40°,求∠DBC的度数.(3)在图(3)中,∠BA1C=α,求∠DBC的大小.(4)通过(1)、(2)、(3)的探究,你发现的结论是弦切角等于它夹的弧所对的圆周角(5)如图(4),AC是☉O的直径,∠ACB=60°,连接AB,过A、B两点分别作☉O的切线,两切线交于点P.若已知☉O的半径为1,则△PAB的周长为3.(6)如图(5),C是⊙O的直径AB延长线上的一点,CD切⊙O于D,∠ACD的平分线分别交AD、BD于E、F,试猜想∠DEF的度数并说明理由.【考点】圆的综合题.【分析】(1)由切线的性质和圆周角定理以及角的互余关系得出∠DBC=∠A=30°即可;(2)连接AC,由(1)得出∠DBC=∠A,由圆周角定理得出∠A=∠A1,即可得出∠DBC=∠BA1C=40°;(3)由(2)得出∠DBC=∠BA2C=α即可;(4)∠DBC等于所对的圆周角,得出弦切角定理;(5)先在RtABC求出BC,再判断出三角形PAB是等边三角形即可求出结论;(6)先判断出∠CAD=∠COD,∠ACE=∠ACD,再利用切线得出∠COD+∠ACD=90°,最后用三角形的外角的性质即可得出结论;【解答】解:(1)∵BD是⊙0的切线,∴∠ABO=90°,即∠ABC+∠DBC=90°,∵AB是⊙O的直径,∴∠ACB=90°∴∠A+∠ABC=90°,∴∠DBC=∠A=30°;故答案为:30°,(2)连接BO交⊙O于A,连接AC,如图所示:由(1)得:∠DBC=∠A,又∵∠A=∠A1,∴∠DBC=∠BA1C=40°;(3)由(2)得:∠DBC=∠BA2C=α;(4)∠DBC等于所对的圆周角;弦切角等于它夹的弧所对的圆周角,故答案为:弦切角等于它夹的弧所对的圆周角;(5)连接如图OB,在Rt△ABC中,AC=2OA=2,∠ACB=60°,∴AB=,∠AOB=120°∵PA,PB分别与⊙O相切,∴∠PAO=∠PBO=90°,PA=PB∴∠APB=60°,∴△PAB是等边三角形,∴PA=PB=AB=,∴△PAB的周长为3,故答案为3;(6)如图5,连接OD,∴∠DAC=∠COD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ACD+∠COD=90°,∵CE是∠ACD的角平分线,∴∠ACE=∠ACD∴∠DEF=∠DAC+∠ACE=∠COD+∠ACD=(∠COD+∠ACD)=45°.18.如图,直线AB、BC、CD分别与⊙O相切于A、E、D,且AB∥CD,若OB=6cm,OC=8cm,求(1)∠BOC 的度数;(2)⊙O的半径;(3)AB+CD的值.【考点】切线的性质.【分析】(1)连接OA,OE,证明Rt△OAB≌Rt△OEB,由此可得∠ABO=∠OBE,再由平行的性质即可求解∠BOC 的度数;(2)由勾股定理求得BC,再由三角形的面积求得⊙O的半径.(3)利用(1)中所得AB=BE、CE=CD即可.【解答】解:(1)连接OA,OE.∵直线AB、BC、CD分别与⊙O相切于A、E、D,∴OA⊥AB,OE⊥BC,∴∠OAB=∠OEB=90°,OA=OE在Rt△OAB 与Rt△OEB中∴Rt△OAB≌Rt△OEB(HL)∴∠ABO=∠OBE,AB=BE同理可证:∠OCE=∠OCD,CE=CD,又∵AB∥CD,∴∠ABC+∠DCB=180°,∴∠OBC+∠OCB=90°,∴∠BOC=90°(2)在Rt△BOC中,BC==10∴OB•OC=BC•rr==4.8即:⊙O的半径为4.8(3)由(1)可知:AB=BE,CE=CD,∴AB+CD=BE+CE=BC=10即:BC的值为1019.如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上,CE=CA,AB,CE的延长线交于点F.(1)求证:CE与⊙O相切;(2)若⊙O的半径为3,EF=4,求BD的长.【考点】切线的判定;勾股定理.【分析】(1)连接OE,OC,通过三角形求得证得∠OEC=∠OAC,从而证得OE⊥CF,即可证得结论;(2)根据勾股定理求得OF,解直角三角形求得.进而求得AC=6,从而求得△ABC是等腰直角三角形,根据勾股定理求得BC,然后根据等腰三角形三线合一的性质求得DB即可.【解答】(1)证明:连接OE,OC.在△OEC与△OAC中,∴△OEC≌△OAC(SSS),∴∠OEC=∠OAC.∵∠OAC=90°,∴∠OEC=90°.∴OE⊥CF于E.∴CF与⊙O相切.(2)解:连接AD.∵∠OEC=90°,∴∠OEF=90°.∵⊙O的半径为3,∴OE=OA=3.在Rt△OEF中,∠OEF=90°,OE=3,EF=4,∴,. 在Rt △FAC 中,∠FAC=90°,AF=AO+OF=8, ∴AC=AF•tanF=6,∵AB 为直径,∴AB=6=AC ,∠ADB=90°.∴BD=.在Rt △ABC 中,∠BAC=90°,∴.∴BD=.。
2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(1)一、选择题(4’×8=32’)1.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.52.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣13.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣25.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣36.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.7.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=48.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②④ B.①③ C.②③ D.①④二、填空题(4’×6=24’)9.若y=(m+1)是二次函数,则m的值为.10.二次函数y=x2+2x﹣4的图象的开口方向是.对称轴是.顶点坐标是.11.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.13.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.14.隧道的截面是抛物线形,且抛物线的解析式为y=﹣x2+3.25,一辆卡车高3m,宽2m,该车通过该隧道.(填“能”或“不能”)三、解答题:(9’×4+8’=44’)15.已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.16.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.18.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.19.二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1)、B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1、y2中的较小值;如果y1=y2,函数f的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值范围.2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(1)参考答案与试题解析一、选择题(4’×8=32’)1.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.5【考点】二次函数图象上点的坐标特征.【分析】把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.2.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【考点】二次函数的性质.【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选A.3.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大【考点】二次函数的性质.【分析】根据二次函数的性质解题.【解答】解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选:B.4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2【考点】二次函数图象与几何变换.【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,故选:A.5.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣3【考点】二次函数的性质.【分析】根据二次函数的顶点式y=(x﹣h)2+k,对称轴为直线x=h,得出即可.【解答】解:抛物线y=(x﹣1)2﹣3的对称轴是直线x=1.故选:C.6.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【分析】本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)【解答】解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.7.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=4【考点】抛物线与x轴的交点.【分析】关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.【解答】解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.8.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②④ B.①③ C.②③ D.①④【考点】二次函数图象与系数的关系.【分析】将函数图象补全,再进行分析.主要是从抛物线与x轴(y轴)的交点,开口方向,对称轴及x=±1等方面进行判断.【解答】解:①图象与x轴有两个交点,则方程有两个不相等的实数根,b2﹣4ac>0,b2>4ac,正确;②因为开口向下,故a<0,有﹣>0,则b>0,又c>0,故bc>0,错误;③由对称轴x=﹣=1,得2a+b=0,正确;④当x=1时,a+b+c>0,错误;故①③正确.故选:B.二、填空题(4’×6=24’)9.若y=(m+1)是二次函数,则m的值为7 .【考点】二次函数的定义.【分析】根据二次函数的定义列出关于m的方程,求出m的值即可.【解答】解:∵y=(m+1)是二次函数,∴m2﹣6m﹣5=2,∴m=7或m=﹣1(舍去).故答案为:7.10.二次函数y=x2+2x﹣4的图象的开口方向是向上.对称轴是x=﹣1 .顶点坐标是(﹣1,﹣5).【考点】二次函数的性质.【分析】根据a的符号判断抛物线的开口方向;根据顶点坐标公式可求顶点坐标及对称轴.【解答】解:因为a=1>0,图象开口向上;顶点横坐标为x==﹣1,纵坐标为y==﹣5,故对称轴是x=﹣1,顶点坐标是(﹣1,﹣5).11.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8 .【考点】抛物线与x轴的交点.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1 .【考点】二次函数的图象.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20 m才能停下来.【考点】二次函数的应用.【分析】由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.【解答】解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.14.隧道的截面是抛物线形,且抛物线的解析式为y=﹣x2+3.25,一辆卡车高3m,宽2m,该车能通过该隧道.(填“能”或“不能”)【考点】二次函数的应用.【分析】根据题意,由车宽为2m,将x=1代入抛物线的解析式为y=﹣x2+3.25,求出相应的y值,然后与3比较大小,从而可以解答本题.【解答】解:将x=1代入y=﹣x2+3.25,得y=﹣×12+3.25=3.125,∵3.125>3,∴该车能通过该隧道,故答案为:能.三、解答题:(9’×4+8’=44’)15.已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【考点】二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)将点(1,﹣2)代入y=a(x﹣3)2+2,运用待定系数法即可求出a的值;(2)先求得抛物线的对称轴为x=3,再判断A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,从而判断出y1与y2的大小关系.【解答】解:(1)∵抛物线y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,解得a=﹣1;(2)∵函数y=﹣(x﹣3)2+2的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.16.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.【考点】二次函数的性质;二次函数的图象;抛物线与x轴的交点.【分析】(1)已知抛物线的解析式是一般式,用配方法转化为顶点式,写出顶点坐标和对称轴;(2)令y=0,求得方程的解,得出与x轴的交点;(3)顶点坐标、对称轴和与x轴的交点画出图象.【解答】解:(1)y=﹣x2﹣2x+3=﹣(x+1)2+4,顶点坐标为(﹣1,4),对称轴x=﹣1;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=1,x2=﹣3,故与x轴的交点坐标:(1,0),(﹣3,0)(3)画出函数的图象如图:17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【考点】待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.18.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【考点】矩形的性质;二次函数的最值.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.19.二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1)、B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1、y2中的较小值;如果y1=y2,函数f的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值范围.【考点】抛物线与x轴的交点;一次函数图象与系数的关系;二次函数图象与几何变换.【分析】(1)根据题意设抛物线解析式为y=a(x﹣1)2,把点A(0,1)代入,利用待定系数法即可求得;(2)二次函数y=ax2+bx+c(a≠0)的图象平移得到新的二次函数y2=ax2+bx+c+m(a≠0,m 为常数)的图象的过程中,与x轴的交点由两点变为三点,由三点变为两点,从而求得m的取值范围.【解答】解:(1)∵C(1,0)为二次函数图象的顶点,∴设抛物线解析式为y=a(x﹣1)2,由抛物线过点A(0,1),可得a=1,∴抛物线解析式为y=x2﹣2x+1;(2)如图所示:当抛物线的顶点在x轴上时,即m=0时,新函数f的图象与x轴有两个个交点,当抛物线与直线交于(﹣1,0)时,0=(﹣1)2﹣2×(﹣1)+1+m,解得m=﹣4,即m=﹣4时新函数f的图象与x轴有两个交点,故当新函数f的图象与x轴有三个交点时,m的取值范围为﹣4<m<0.。
CBA北京市北达资源中学2016届九年级数学上学期周练111、在△ABC 中,∠C=90°, BC=3 , AB=5 ,则sinA 的值是( ). A. 53 B. 54 C. 34 D. 432. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( ) A .sinA=135; B .cosA=1312; C .tanA=1213; D .A tan 1=1253.在ABC ∆中,90C ∠=,如果5tan 12A =,那么sin B 的值等于( ) A .513 B .1213 C .512 D .1254. 在△ABC 中,若0)cos 23(1tan 2=-+-B A ,则 ∠C 等于( ) A .45º B.60º C.105º D.75º 5.如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5, 则tan ∠BCD 等于 ( ) A .43; B .34; C .53; D .54 6.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径3=r ,AC=2,则cosB 的值是( )A.23B.35C.25D.327.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为 ( )A .90° B.60° C.45° D.30°8.已知:如图,⊙O 的半径为9,弦⊥AB 半径OC 于H ,32sin =∠BOC ,则AB 的长度为( ) A .6 B .12 C .9 D .53 二、填空题(每小题4分,共32分24分)DCAB9.在△ABC 中,∠C =90°,∠B =60°,a =7,则b =__________. 在△ABC 中,∠C=90°,cosB=32,则a:b:c= . 在△ABC 中,∠C=90° ,a+b+c=48,tanA=43,则a=_______, S △ABC = .10.如图,△ABC 的顶点都在方格纸的格点上,则cos A =_______.11.如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦,则tan ∠OBE = .12.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图折叠,使点A 与点B 重合,折痕为DE ,则t a n C B E ∠= . 13. 在△ABC 中,∠B =30°, AC=2,则AB= ,14. 将一副三角板摆放在一起,连结AD ,则∠ADB 的正切值= .三、计算题(5分⨯2=10分)15、①00045tan 30tan 160cos 160sin -++ ②cos 230°- sin 2in30°tan60°四、解答题((16—18每题6分,19-20每题8分,共34分)) 16. 如图,在△ABC 中,∠B=30°,∠C=45°,AC=2,求AB 和BC.17.如图,在直角坐标平面内,O 为原点,点A 的坐标为(100),,68 CEAB点B 在第一象限内,5BO =,3sin 5BOA =∠.求:(1)点B 的坐标;(2)cos BAO ∠的值.18.如图,在梯形ABCD 中,AD ∥BC ,AC ⊥AB ,AD CD =,cosB =135,26BC =.求(1)cos DAC ∠的值; (2)线段AD 的长.19.北京市在城市建设中,要折除旧烟囱AB ,在烟囱正西方向的楼CD 的顶端C ,测得烟囱的顶端A 的仰角为45°,底端B 的俯角为30°,已量得DB =21m . 拆除时若让烟囱向正东倒下,试问:距离烟囱东方35m 远的一棵大树是否被歪倒的烟囱砸着?请说明理由.( 1.41= 1.73=)20.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,且BF 是⊙O 的切线,BF 交AC 的延长线于F .(1)求证:∠CBF =12∠CAB .(2)若AB =5,sin ∠CBF ,求BC 和BF 的长.。
2016年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个。
1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°答案:B考点:用量角器度量角。
解析:由生活知识可知这个角小于90度,排除C、D,又OB 边在50与60之间,所以,度数应为55°。
2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A)错误!未找到引用源。
(B) 28错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
答案:C考点:本题考查科学记数法。
解析:科学记数的表示形式为10na⨯形式,其中1||10≤<,n为整数,28000=。
故选C。
a3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A)a错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)错误!未找到引用源。
答案:D考点:数轴,由数轴比较数的大小。
解析:由数轴可知,-3<a错误!未找到引用源。
<-2,故A、B错误;1<b<2,-2<-b<-1,即-b在-2与-1之间,所以,错误!未找到引用源。
4. 内角和为540错误!未找到引用源。
的多边形是答案:c考点:多边形的内角和。
n-⨯︒,当n=5时,内角和为540°,所以,选C。
解析:多边形的内角和为(2)1805. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱答案:D考点:三视图,由三视图还原几何体。
解析:该三视图的俯视为三角形,正视图和侧视图都是矩形,所以,这个几何体是三棱柱。
6. 如果错误!未找到引用源。
,那么代数错误!未找到引用源。
的值是(A) 2 (B)-2 (C)错误!未找到引用源。
2016年北京市中考数学试卷及答案一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个.1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°【解析】由生活知识可知这个角小于90度,排除C、D,又OB边在50与60之间,所以度数应为55°.故选B.2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×105【解析】28000=2.8×104.故选C.3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【解析】A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则-2<-b<-1,故a<-b,故此选项错误;D.由选项C可得,此选项正确.故选D.4.内角和为540°的多边形是()【解析】设它是n边形,根据题意得(n﹣2)•180°=540°,解得n=5.故选C.5.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D.6.如果a+b=2,那么代数式2()b aaa a b-⋅-的值是()A.2B.﹣2C.12D.12-【解析】∵a+b=2,∴原式=22a b aa a b-⋅-=()()a b a b aa a b+-⋅-=a+b=2.故选A.7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【解析】A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.8.在1~7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【解析】各月每斤利润:3月:7.5-4.5=3(元),4月:6-2.5=3.5(元),5月:4.5-2=2.5(元),6月:3-1.5=1.5(元),所以4月份每斤水果利润最大.故选B.9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.B.C.D.【解析】因为A点坐标为(-4,2),所以原点在点A的右边,且在点A的下边2个单位处,从点B来看,B(2,-4),所以原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.故选A.10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增.计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%.为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180 m3的该市居民家庭按第一档水价交费②年用水量超过240 m3的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150~180之间④该市居民家庭年用水量的平均数不超过180正确的是()A.①③B.①④C.②③D.②④【解析】年用水量不超过180 m3的居民家庭有:0.25+0.75+1.5+1.0+0.5=4(万户),45×100%=80%,所以①正确;年用水量超过240 m3的居民家庭有:0.15+0.15+0.05=0.35(万户),0.355×100%=7%>5%,故②不正确;由图可知,样本中年用水量不超过120 m3的居民有0.25+0.75+1.5=2.5(万户),所以中位数不可能在150m3~180m3之间,故③不正确;由图中数据可得该市居民家庭年用水量的平均数为(0.25×45+0.75×75+1.5×105+1.0×135+0.5×165+0.4×195+0.25×225+0.15×255+0.15×285+0.05×315)÷5=134.7(m3)<180(m3),故④正确.故选B.二、填空题(本题共18分,每小题3分)11.如果分式21x 有意义,那么x的取值范围是.【解析】由题意,得x-1≠0,解得x≠1,故答案为:x≠1.12.下图中的四边形均为矩形,根据图形,写出一个正确的等式:.【解析】最大矩形的长为(a+b+c),宽为m,所以它的面积为m(a+b+c);又最大矩形的面积为三个小矩形面积之和,三个小矩形的面积分别为:ma,mb,mc,所以有m(a+b+c)=ma+mb+mc.故答案为:m(a+b+c)=ma+mb+mc.(开放性试题,答案合理即可)13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n1000 1500 2500 4000 8000 15000 20000 30000成活的棵数m865 1356 2220 3500 7056 13170 17580 26430成活的频率mn0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为.【解析】x=(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8≈0.882,∴这种幼树移植成活的概率约为0.882.故答案为:0.882.14.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为m.【解析】如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴CD DEAB BE=,FN MNFB AB=,即1.8 1.81.8AB BD=+,1.5 1.51.52.7AB BD=+-,解得AB=3.故答案为:3.15.百子回归图是由1,2,3,…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为.【解析】1+2+3+4+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=5050,共10行,每一行的10个数之和相等,所以每一行数字之和为505010=505.故答案为:505.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线l和l外一点P.求作:直线l 的垂线,使它经过点P.作法:如图.(1)在直线l 上任取两点A,B;(2)分别以点A,B 为圆心.AP,BP 长为半径作弧,两弧相交于点Q; (3)作直线PQ ,所以直线PQ 就是所求的垂线.请回答:该作图的依据是 .【解析】由作图可知,AP =AQ ,所以点A 在线段PQ 的垂直平分线上,同理,点B 也在线段PQ 的垂直平分线上,所以有AB ⊥PQ . 【答案】(1)到线段两端距离相等的点在线段的垂直平分线上;(2)两点确定一条直线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程. 17.计算:0(3)4sin 45813π-+-+-.【解】原式=2142231 3.2+⨯-+-= 18.解不等式组:253(1)74.2x x x x +>-⎧⎪⎨+>⎪⎩, 【解】解不等式2x+5>3(x ﹣1),得x <8,解不等式742x x +>,得x >1,∴不等式组的解集为1<x <8.19.如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA=DE .【解】∵四边形ABCD 是平行四边形,∴AB CD, ∴E BAE ∠=∠,∵AE 平分BAD ∠,∴,.BAE DAE E DAE DA DE ∠=∠∴∠=∠∴=,20.关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根. (1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.【解】(1)∵关于x 的一元二次方程22(21)10x m x m +++-=有两个不相等的实数根,∴Δ=22(21)41(1)m m +-⨯⨯-=4m+5>0,解得m >54-.(2)m=1,此时原方程为230x x +=,即x (x+3)=0,解得10x =,23x =-.(答案不唯一)20.如图,在平面直角坐标系xOy 中,过点A (-6,0)的直线1l 与直线2l﹕y=2x 相交于点B (m ,4).(1)求直线1l的表达式;(2)过动点P (n ,0)且垂于x 轴的直线与1l ,2l的交点分别为C ,D ,当点C 位于点D 上方时,写出n 的取值范围.【解析】(1)由点B 在直线2l 上,可求出m 的值,设l 1的表达式为y=kx+b,由A 、B 两点均在直线1l 上,可求出1l的表达式;(2)根据1l,2l 表达式表示出C(,32n n +),D ,2)n n (,由于点C 在点D 的上方,得到322nn +>,解不等式即可得到结论.【解】(1) ∵点B 在直线2l 上, ∴4=2m, ∴m=2,设1l的表达式为y=kx+b, 由A 、B 两点均在直线1l上得到4=2k+b,06k+b,⎧⎨=-⎩解得1k=,2b=3,⎧⎪⎨⎪⎩则l 1的表达式为1y=x 3.2+ (2)C(,32n n +),D,2)n n ( ,点C 在点D 的上方,所以322nn +>,解得n <2. 22.调查作业:了解你所住小区家庭5月份用气量情况.小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数均为3.4.小天、小东、小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表 (单位:m 3)家庭人数 2 3 4 5 用气量 14192126表2 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)家庭人数 222333333333334用气量 10 11 15 13 14 15 15 17 17 18 18 18 18 20 22表3 抽样调查小区15户家庭5月份用气量统计表 (单位:m 3)家庭人数 2 23333333444455用气量 1012 13 14 17 17 18 19 20 20 22 26 31 28 31根据以上材料回答问题: 小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.【解】小天调查的样本容量较少;小东抽样的调查数据中,家庭人数的平均值为(2×3+3×11+4)÷15≈2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显问题;小芸抽样的调查数据中,家族人数的平均值为(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,且样本类型较全面,因此小芸的抽样调查的数据能较好地反映出该小区家庭5月份用气量情况.23.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN . (1)求证:BM=MN ;(2)∠BAD=60°,AC 平分∠BAD ,AC=2,求BN 的长.【证明】(1)△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,且MN=12AD,在Rt△ABC中,∵M是AC的中点,∴BM=12AC,又∵AC=AD,∴BM=MN.【解】(2)∵∠BAD=60°,且AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,而由(1)知,MN=BM=12AC=12×2=1,∴BN=2.24.阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.1%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%.文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2794.3亿元,占地区生产总值的13.1%,创历史新高.2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线图将2011~2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由: .【解】(1)如下图:(2)3355.7,按照增加值的平均增长量计算(答案不唯一)25.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.【证明】(1)∵ED 与⊙O 相切于D,∴OD ⊥DE,∵F 为弦AC 中点,∴OD ⊥AC,∴AC ∥DE. 【解】(2)作DM ⊥OA 于M,连接CD,CO,AD.首先证明四边形ACDE 是平行四边形,根据 S 平行四边形ACDE =AE ·DM ,只要求出DM 即可.∵AC ∥DE,AE=AO,∴OF=DF,∵AF ⊥DO, ∴AD=AO,∴AD=AO=OD,∴△ADO 是等边三角形,同理△CDO 也是等边三角形,∴∠CDO=∠DOA=60°,∴AO ∥CD,即AE ∥CD,又AC ∥DE,∴四边形ACDE 是平行四边形,易知DM=32a ,∴平行四边形ACDE 的面积=232a .26.已知y 是x 的函数,自变量x 的取值范围是x >0,下表是y 与x 的几组对应值:x … 1 2 3 5 7 9 …y …1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.【解】(1)如下图:(2)①2(2.1到1.8之间都正确)②该函数有最大值(其他正确性质都可以).27.在平面直角坐标系xOy中,抛物线221y mx mx m=-+-(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【解】(1)将抛物线表达式变为顶点式为2(1)1y m x=--,则抛物线顶点坐标为(1,-1).(2)①m=1时,抛物线表达式为22y x x=-,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0),共3个.②抛物线顶点为(1,-1),则由线段AB 之间的部分及线段AB 所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB 线段上(含A ,B 两点)必须有5个整点;又有抛物线表达式,令y=0,则2210mx mx m -+-=,得到A 、B 两点坐标分别为(11m -,0),(11m+,0),即5个整点是以(1,0)为中心向两侧分散,进而得到123m ≤<,∴1194m <≤.28.在等边三角形ABC 中:(1)如图1,P ,Q 是BC 边上的两点,AP=AQ ,∠BAP=20°,求∠AQB 的度数;(2)点P ,Q 是BC 边上的两个动点(不与点B ,C 重合),点P 在点Q 的左侧,且AP=AQ ,点Q 关于直线AC 的对称点为M ,连接AM ,PM .①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P ,Q 运动的过程中,始终有PA=PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM ,只需证△APM 是等边三角形;想法2:在BA 上取一点N ,使得BN=BP ,要证明PA=PM ,只需证△ANP ≌△PCM ;想法3:将线段BP 绕点B 顺时针旋转60°,得到线段BK ,要证PA=PM ,只需证PA=CK ,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM (一种方法即可).【解】(1)∵AP=AQ,∴∠AQB=APC,∵△ABC 是等边三角形,∴∠B=60°,∵∠BAP=20°,∴∠APC=∠BAP+∠B=60°+20°=80°.∴∠AQB=80°.(2)①如图3;②∵AP=AQ,∴∠APQ=AQP, ∴∠APB=AQC,∵△ABC 是等边三角形,∴∠B=∠C =60°,∴∠BAP=∠CAQ ,∵点Q 关于直线AC 的对称点为M ,∴AQ=AM ,∠QAC=∠MAC ,∴∠MAC=∠BAP ,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ ,∴AP=AM ,∴△APM 是等边三角形,∴AP=PM .29.在平面直角坐标系xOy 中,点P 的坐标为(1x ,1y ),点Q 的坐标为(2x ,2y ),且12x x ≠,12y y ≠,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为2,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.【解】(1)①S=2×1=2;②由题意知C 的坐标为(3,2)或者(3,-2),设AC 的表达式为y=kx+b,将A 、C 的坐标分别代入AC 的表达式得到:0=k+b,23k+b ⎧⎨=⎩或0=k+b,23k+b ⎧⎨-=⎩,解得k=1,b=-1⎧⎨⎩或k=-1,b=1.⎧⎨⎩则直线AC 的表达式为y=x-1或y=-x+1. (2)若⊙O 上存在点N,使M 、N 的相关矩形为正方形,则直线MN 的斜率k=±1,即过M 点作k=±1的直线,与⊙O 有交点,即存在N,当k=-1时,极限位置是直线与⊙O 相切,如图l 1与l 2,直线l 1与⊙O 切于点N,连接ON,ON=2,∠ONM=90°,∴l 1与y 轴交于P 1(0,-2).M 1(m 1,3),∴3-(-2)=0-m 1,∴m 1=-5,∴M 1(-5,3);同理可得M 2(-1,3);当k=1时,极限位置是直线3l 与4l (与⊙O 相切),可得3M (1,3), 4M (5,3). 因此m 的取值范围为1≤m ≤5 或者51m -≤≤-.。
2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(1)一、选择题(4’×8=32’)1.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.52.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣13.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣25.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣36.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.7.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=48.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②④ B.①③ C.②③ D.①④二、填空题(4’×6=24’)9.若y=(m+1)是二次函数,则m的值为.10.二次函数y=x2+2x﹣4的图象的开口方向是.对称轴是.顶点坐标是.11.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.13.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.14.隧道的截面是抛物线形,且抛物线的解析式为y=﹣x2+3.25,一辆卡车高3m,宽2m,该车通过该隧道.(填“能”或“不能”)三、解答题:(9’×4+8’=44’)15.已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.16.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.18.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.19.二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1)、B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1、y2中的较小值;如果y1=y2,函数f的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值范围.2015-2016学年北京市北达资源中学九年级(上)周练数学试卷(1)参考答案与试题解析一、选择题(4’×8=32’)1.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则代数式1﹣a﹣b的值为()A.﹣3 B.﹣1 C.2 D.5【考点】二次函数图象上点的坐标特征.【分析】把点(1,1)代入函数解析式求出a+b,然后代入代数式进行计算即可得解.【解答】解:∵二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),∴a+b﹣1=1,∴a+b=2,∴1﹣a﹣b=1﹣(a+b)=1﹣2=﹣1.故选:B.2.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1【考点】二次函数的性质.【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选A.3.抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下 B.对称轴是y轴C.都有最高点D.y随x的增大而增大【考点】二次函数的性质.【分析】根据二次函数的性质解题.【解答】解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选:B.4.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2【考点】二次函数图象与几何变换.【分析】根据函数图象右移减、左移加,上移加、下移减,可得答案.【解答】解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,故选:A.5.抛物线y=(x﹣1)2﹣3的对称轴是()A.y轴B.直线x=﹣1 C.直线x=1 D.直线x=﹣3【考点】二次函数的性质.【分析】根据二次函数的顶点式y=(x﹣h)2+k,对称轴为直线x=h,得出即可.【解答】解:抛物线y=(x﹣1)2﹣3的对称轴是直线x=1.故选:C.6.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【分析】本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)【解答】解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.7.小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A.无解 B.x=1 C.x=﹣4 D.x=﹣1或x=4【考点】抛物线与x轴的交点.【分析】关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标.【解答】解:如图,∵函数y=x2+ax+b的图象与x轴交点坐标分别是(﹣1,0),(4,0),∴关于x的方程x2+ax+b=0的解是x=﹣1或x=4.故选:D.8.如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A.②④ B.①③ C.②③ D.①④【考点】二次函数图象与系数的关系.【分析】将函数图象补全,再进行分析.主要是从抛物线与x轴(y轴)的交点,开口方向,对称轴及x=±1等方面进行判断.【解答】解:①图象与x轴有两个交点,则方程有两个不相等的实数根,b2﹣4ac>0,b2>4ac,正确;②因为开口向下,故a<0,有﹣>0,则b>0,又c>0,故bc>0,错误;③由对称轴x=﹣=1,得2a+b=0,正确;④当x=1时,a+b+c>0,错误;故①③正确.故选:B.二、填空题(4’×6=24’)9.若y=(m+1)是二次函数,则m的值为7 .【考点】二次函数的定义.【分析】根据二次函数的定义列出关于m的方程,求出m的值即可.【解答】解:∵y=(m+1)是二次函数,∴m2﹣6m﹣5=2,∴m=7或m=﹣1(舍去).故答案为:7.10.二次函数y=x2+2x﹣4的图象的开口方向是向上.对称轴是x=﹣1 .顶点坐标是(﹣1,﹣5).【考点】二次函数的性质.【分析】根据a的符号判断抛物线的开口方向;根据顶点坐标公式可求顶点坐标及对称轴.【解答】解:因为a=1>0,图象开口向上;顶点横坐标为x==﹣1,纵坐标为y==﹣5,故对称轴是x=﹣1,顶点坐标是(﹣1,﹣5).11.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8 .【考点】抛物线与x轴的交点.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.12.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1 .【考点】二次函数的图象.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.13.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20 m才能停下来.【考点】二次函数的应用.【分析】由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.【解答】解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.14.隧道的截面是抛物线形,且抛物线的解析式为y=﹣x2+3.25,一辆卡车高3m,宽2m,该车能通过该隧道.(填“能”或“不能”)【考点】二次函数的应用.【分析】根据题意,由车宽为2m,将x=1代入抛物线的解析式为y=﹣x2+3.25,求出相应的y值,然后与3比较大小,从而可以解答本题.【解答】解:将x=1代入y=﹣x2+3.25,得y=﹣×12+3.25=3.125,∵3.125>3,∴该车能通过该隧道,故答案为:能.三、解答题:(9’×4+8’=44’)15.已知抛物线y=a(x﹣3)2+2经过点(1,﹣2).(1)求a的值;(2)若点A(m,y1)、B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.【考点】二次函数图象上点的坐标特征;二次函数图象与几何变换.【分析】(1)将点(1,﹣2)代入y=a(x﹣3)2+2,运用待定系数法即可求出a的值;(2)先求得抛物线的对称轴为x=3,再判断A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,从而判断出y1与y2的大小关系.【解答】解:(1)∵抛物线y=a(x﹣3)2+2经过点(1,﹣2),∴﹣2=a(1﹣3)2+2,解得a=﹣1;(2)∵函数y=﹣(x﹣3)2+2的对称轴为x=3,∴A(m,y1)、B(n,y2)(m<n<3)在对称轴左侧,又∵抛物线开口向下,∴对称轴左侧y随x的增大而增大,∵m<n<3,∴y1<y2.16.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.【考点】二次函数的性质;二次函数的图象;抛物线与x轴的交点.【分析】(1)已知抛物线的解析式是一般式,用配方法转化为顶点式,写出顶点坐标和对称轴;(2)令y=0,求得方程的解,得出与x轴的交点;(3)顶点坐标、对称轴和与x轴的交点画出图象.【解答】解:(1)y=﹣x2﹣2x+3=﹣(x+1)2+4,顶点坐标为(﹣1,4),对称轴x=﹣1;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=1,x2=﹣3,故与x轴的交点坐标:(1,0),(﹣3,0)(3)画出函数的图象如图:17.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【考点】待定系数法求二次函数解析式;一次函数的图象;抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.18.如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.【考点】矩形的性质;二次函数的最值.【分析】(1)分别表示出PB、BQ的长,然后根据三角形的面积公式列式整理即可得解;(2)把函数关系式整理成顶点式解析式,然后根据二次函数的最值问题解答.【解答】解:(1)∵S△PBQ=PB•BQ,PB=AB﹣AP=18﹣2x,BQ=x,∴y=(18﹣2x)x,即y=﹣x2+9x(0<x≤4);(2)由(1)知:y=﹣x2+9x,∴y=﹣(x﹣)2+,∵当0<x≤时,y随x的增大而增大,而0<x≤4,∴当x=4时,y最大值=20,即△PBQ的最大面积是20cm2.19.二次函数y=ax2+bx+c(a≠0)的图象与一次函数y1=x+k的图象交于A(0,1)、B两点,C(1,0)为二次函数图象的顶点.(1)求二次函数y=ax2+bx+c(a≠0)的表达式;(2)把(1)中的二次函数y=ax2+bx+c(a≠0)的图象平移后得到新的二次函数的图象,定义新函数f:“当自变量x任取一值时,x对应的函数值分别为y1或y2,如果y1≠y2,函数f的函数值等于y1、y2中的较小值;如果y1=y2,函数f的函数值等于y1(或y2).”当新函数f的图象与x轴有三个交点时,直接写出m的取值范围.【考点】抛物线与x轴的交点;一次函数图象与系数的关系;二次函数图象与几何变换.【分析】(1)根据题意设抛物线解析式为y=a(x﹣1)2,把点A(0,1)代入,利用待定系数法即可求得;(2)二次函数y=ax2+bx+c(a≠0)的图象平移得到新的二次函数y2=ax2+bx+c+m(a≠0,m 为常数)的图象的过程中,与x轴的交点由两点变为三点,由三点变为两点,从而求得m的取值范围.【解答】解:(1)∵C(1,0)为二次函数图象的顶点,∴设抛物线解析式为y=a(x﹣1)2,由抛物线过点A(0,1),可得a=1,∴抛物线解析式为y=x2﹣2x+1;(2)如图所示:当抛物线的顶点在x轴上时,即m=0时,新函数f的图象与x轴有两个个交点,当抛物线与直线交于(﹣1,0)时,0=(﹣1)2﹣2×(﹣1)+1+m,解得m=﹣4,即m=﹣4时新函数f的图象与x轴有两个交点,故当新函数f的图象与x轴有三个交点时,m的取值范围为﹣4<m<0.。