24.1圆的有关性质(校公开课学生版)
- 格式:doc
- 大小:6.57 MB
- 文档页数:9
24.1.1 圆的有关性质教案一、【教材分析】教学目标知识技能1、了解圆的画法及其圆的定义;2、理解确定圆的条件及其与圆相关的概念.过程方法1、通过观察、动手操作培养学生通过动手实践发现问题、解决问题的能力;2、渗透“观察→分析→归纳→概括”的数学思想方法.情感态度加强学生的爱国主义教育,体验中华古文明的辉煌,培养学生的民族自豪感及爱国热情.教学重点准确把握圆及与圆相关的概念.教学难点以点的集合定义圆所具备的两个条件.二、【教学流程】教学环节问题设计师生活动二次备课情景创设观察课本上的图片,体验圆的和谐与美丽.请大家说说生活中还有哪些圆形?创设问题情境,开展学习活动,引起学生学习的兴趣情境导入,有利于学生从视觉感观认识上升到理性认识.自主探究问题一1、画一个圆,观察画圆的过程,你能由此说出圆的形成过程吗?2、观察下列图形后思考:图形中的各端点与O点的距离有什么关系?让学生画圆、描述、交流,得出圆的定义(用运动的观点):让学生观察、思考、交流,从旧知识中发现新问题,并在老师的指导下,归纳得出圆的特征:(1)圆上各点到定点(圆用运动的观点理解圆的定义.想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?问题二画图、思考,并回答提出的问题:1.以任意一点O为圆心,2cm为半径画圆,并在圆中分别作出一条非直径的弦AB和一条直径AC;2.写出⊙O中的所有弧,指出它们有什么不同?并将其进行分类;3.以点O1为圆心,2cm为半径画圆,这个圆和第1题中的圆是什么关系?在⊙O中找出等弧,在⊙O和⊙O1中找出等弧.定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.(用集合的观点)定义:圆是到定点距离等于定长的点的集合.(1)要确定出一个圆,必须有两个条件:一个是圆心,一个是半径,其中圆心确定圆的位置,半径确定圆的大小,二者缺一不可;(2)直径是弦,但弦不一定是直径,直径是圆中最长的弦;(3)半圆是弧,但弧不一定是半圆;(4)正确理解等圆和等弧的含义,等弧是指能够互相重合的弧,它只存在于同圆或等圆中. 心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的点都在圆上.教师展示古人的成就:战国时的《墨经》就有“圆,一中同长也” .教师提出问题,学生画图、看课本,思考并回答提出的问题.教师参与小组活动,指导帮助学生搞清.用集合的观点认识圆学生通过动手、动脑、动口,体验获得知识的全过程,更有利于对知识点的理解与掌握.培养学生的民族自豪感及爱国热情.三、【板书设计】24.1.1 圆的有关性质DFOABP EC四、【教后反思】学生对于二次函数知识是比较抽象的,因此,在授课中我时刻注意把二次函数问题转化为已经熟悉的的知识来解决,打破函数的神秘性,把数和形统一起来,数中有形,形中有数,数相结合,在某种程度上降低了学习的难度,学生易于接受.课本,课标和考试之间有差距,现在的教材设计很不切合实际,简单的课本内容和高难度难理解的考试之间存在着相当的差距,一些知识在学习的时候该补的还是要补的,实在接受不了,起码要渗透这种思想.函数的授课要低起点高要求,尽可能的使用几何画板,拉近知识的贴切度.本节课设计的几个几何画板文件,使用起来,效果还是不错的.。
24.1圆的有关性质尊敬的各位评委老师:上(下)午好,今天我说课的题目是“人教版九年级上册第二十四章第一节《圆的有关性质》第一课时圆是常见的几何图形,圆形物体在生活中随处可见。
它具有独特的对称性,无论你从哪个角度看,圆都具有同一形状。
古希腊数学家毕达哥拉斯认为:“一切立体图形中最美的是球,一切平面图形中最美的是圆。
”下面我将从设计思想、背景分析、教学目标、教学过程、板书设计五个方面来对圆的有关性质进行说明。
一、设计思想:数学来源于生活,数学教学应走进生活,生活也应走进数学。
数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。
因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。
培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。
教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。
根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。
充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。
数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。
二、背景分析:“圆的有关性质”是人民教育出版社《义务教育课程标准实验教科书·数学·九年级上册》第二十四章第一节的内容。
在“圆”这一章,我们将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。
九年级学生已经具备一定的观察、归纳、猜想和推理的能力。
他们在小学已学习了一些圆形的基本知识和面积计算方法, 基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于课件环境下的学习模式已适应。
三、教学目标:知识技能:1.了解圆的画法及其圆的定义;2.理解确定圆的条件及其与圆相关的概念. 过程方法过程方法:1.理解圆、弧、等弧、弦、等圆、半圆、直径等有关概念.2.能初步应用“同圆的半径相等”及“圆心是任一直径的中点”进行简单的证明和计算.情感态度:1.通过观察、动手操作培养学生通过动手实践发现问题、解决问题的能力;2.渗透“观察→分析→归纳→概括”的数学思想方法. 加强学生的爱国主义教育,体验中华古文明的辉煌,培养学生的民族自豪感及爱国热情设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。
第1页 共2页24.1 圆的有关性质24.1.1 圆教学目标1、知识与技能:本节课使学生理解圆的定义;2、过程与方法:掌握点和圆的三种位置关系.使学生会利用点到圆心的距离和圆的半径之间的数量关系判定点和圆的位置关系;教学重点:点和圆的三种位置关系教学难点:用集合的观点定义圆,学生不容易理解为什么必须满足两个条件.教学过程:一、新课引入:同学们,在小学我们已经学习了圆的有关知识,小学学习圆只是一种感性认识,知道一个图形是圆,没有严格的定义什么叫做圆.今天我们继续学习圆,就是把感性认识上升为理性认识,这就要进一步来学习圆的定义.首先点题,给学生一种概念,这样可以激发学生的求知欲,抓住学生的注意力.让学生通过观察章前图,认识到圆从古至今,在实际生活中,在工农业生产中圆的应用非常广泛,作用非常大.圆的性质在本章中处于特别重要的地位.同时也调动起学生积极主动地参与教学活动中.二、新课讲解:同学们请观察幻灯片上的图片.出示线段OA ,演示将线段OA 绕着它的固定端点O 旋转一周,另一个端点A 所形成的图形是一个什么图形,从而得出圆的定义.定义:在同一平面内,线段OA 绕着它的固定端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆.总结归纳: 圆心、半径的定义.1.圆上各点到定点(圆心O)的距离都等于定长(半径r);2.到定点的距离等于定长的点都在圆上.满足上述两个条件,我们可以把圆看成是一个集合.圆是到定点的距离等于定长的点的集合.接着为了研究点和圆的位置关系,教师不是让学生被动地接受教师讲,而是让学生在练习本上画一个圆.然后提问学生回答这个圆把平面分成几个部分?有的同学说两部分,有的同学说三部分,到底是几个部分呢?教师引导学生相互议论,最后通过学生的充分感知,得到正确的结论.在进一步揭示圆内部分、圆外部分也可以看成是一个集合,让学生通过观察、比较,归纳出:圆的内部可以看作是到圆心的距离小于半径的点的集合.圆的外部可以看作是到圆心的距离大于半径的点的集合.若设圆O 的半径为r ,点O 到圆心的距离为d ,当点与圆心的距离由小于半径变到等于半径再变到大于半径时,点和圆的位置关系就由圆内变到圆上再变到圆外.这说明点和圆的位置关系可以得到d 与r 之间的关系,由d 与r 的数量关系也可以判定点和圆的位置关系.这时板书下列关系式:点在圆内 d <r AA C点在圆上⇔d=r点在圆外⇔d>r这时教师讲清“⇔”符号的组哟用和圆的表示方法.以点O为圆心的圆,记作“⊙O”,读作“圆O”.教师这样做的目的是把点和圆看成是运动变化得到的三种情况,这样便于学生理解.接下来为了巩固定义,师生共同分析例1.例1 求证矩形四个顶点在以对角线交点为圆心的同一个圆上.已知:如图7-1矩形ABCD的对角线AC和BD相交于点O.求证:A、B、C、D4个点在以O为圆心,OA为半径的圆上.证明:⇒A、B、C、D4个点在以O为圆心,OA为半径的圆上.并做好示范作用.巩固练习:教材P80中1、2引导学生答.三、课堂小结:本节课要从三方面做小结,从知识内容方面学习了什么内容?从方法上学到了什么方法?学到了什么新定义符号?1.从知识方面主要学习了圆的定义,点和圆的三种位置关系.2.从方法上主要学习了利用点到圆的距离和圆的半径的数量关系判定点和圆的位置关系,会利用圆的定义证明四个点在同一个圆上.这样小结的目的,使学生能够把学过的知识系统化、网络化,形成认知结构,便于学生掌握.四、布置作业:课时作业第2页共2页。
人教版九年级数学上册第二十四章圆《24.1圆的有关性质》第3课时说课稿一. 教材分析人教版九年级数学上册第二十四章《圆的有关性质》是整个初中数学的重要内容,也是九年级数学的重点和难点。
这一章节主要介绍了圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
这些内容不仅是进一步学习圆的计算和应用的基础,而且对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的认识和理解有了基本的掌握。
但是,对于圆的性质和概念的理解还需要进一步的引导和培养。
此外,由于圆的概念较为抽象,学生可能存在一定的理解难度,因此需要教师在教学中注重启发和引导,帮助学生建立清晰的概念。
三. 说教学目标1.知识与技能目标:通过本节课的学习,学生能够理解和掌握圆的基本性质,包括圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等。
2.过程与方法目标:通过观察、思考和交流,学生能够培养空间想象能力和逻辑思维能力,能够运用圆的性质解决实际问题。
3.情感态度与价值观目标:学生能够积极参与课堂活动,对数学产生浓厚的兴趣,培养自主学习和合作学习的能力。
四. 说教学重难点1.教学重点:圆的定义、圆的方程、圆的半径和直径、圆的周长和面积等基本性质的理解和掌握。
2.教学难点:圆的性质的推导和证明,以及运用圆的性质解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和动力。
2.教学手段:利用多媒体课件和教具进行教学,通过展示图形和动画,帮助学生直观地理解和掌握圆的性质。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引起学生的兴趣和思考,从而引入圆的基本性质的学习。
2.知识讲解:引导学生通过观察和思考,发现圆的性质,并进行证明和推导。
通过示例和练习,帮助学生理解和掌握圆的性质。
24.1圆的有关性质( 复习课:有关的计算题)重要知识梳理一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)连接圆上任意两点的________叫做弦;(2)圆上任意两点间的________叫做圆弧,简称弧;(3)________相等的两个圆是等圆;(4)在同圆或等圆中,能够互相________的弧叫做等弧.3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.知识应用:一、课前热身1.如图,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为() A.45°B.35°C.25°D.20°2.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.C.∠ACD=∠ADC D.OM=MD3.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=( )A.35°B.55°C.70°D.110°4.如图,AB是⊙O的弦,OC⊥AB于C.若AB=23,OC=1,则半径OB的长为__________.5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是__________°.第1题第2题第3题第4题第5题二、能力提升例1.如图,在半径为10的⊙O中,点C是优弧AB上一点(不与A、B重合)∠C=30°,则AB的值为 .例1图变式1图变式1.如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A优弧上一点,则∠B为() A.100B.30 C.45D.60方法技巧:例2.如图所示,若⊙O的半径为13 cm,点P是弦AB上一动点,且到圆心的最短距离为5 cm,则弦AB的长为__________ cm.触类旁通:如图,某台风中心位于O地,台风中心以25千米/时的速度向西北方向移动,在半径为240千米的范围内将受影响.城市A在O地正西方向与O相距320千米处,试问A城市会遭受此次台风的影响吗?若受影响,请你算出受影响的时间有多长?例3.(1)在半径为5cm的⊙O中,弦AB=6cm,弦CD=8cm,且AB∥CD,则AB与CD之间的距离。
(2)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于___________。
方法技巧:A O图7yx( 6, 0 )P例4. 已知:如图,在△ABC 中,AB=AC ,以AB 为直径的圆O 交BC 于点D ,交AC 于点E , (1)求证: BD = DE ;(2)连接BE ,如果BC=6,AB=5,求BE 的长.触类旁通:.在圆柱形油槽内装有一些油.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( ) A .6分米B .8分米C .10分米D .12分米方法归纳: 三、综合练习1.如图,在⊙O 中,弦AB ∥CD ,若∠ABC =40°,则∠BOD =( ) A .20° B.40° C.50° D.80°2.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C =50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( )A .45° B.85° C.90° D.95°3.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 .第1题 第2题 第3题第4题4. 如图,已知CD 是⊙O 的直径,∠EOD=78°,AE 交⊙O 于点B ,且AB=OC ,则∠A = . 5.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.E OCAB四、测试题1.如图1,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°2.如图2,⊙O的直径AB=13,弦AC=5,∠ACB的平分线交⊙O于D,则CD的长()A. 7B. 9C.2217D. 293.如图3,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD =105°,则∠DCE=____________.4.如图4,AB是半圆O的直径,D为 AC 的中点,∠B=40°,求∠C的度数为________.4.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图所示,则这个小圆孔的宽口AB的长度为__________ mm.5.如图,C为⊙O直径AB的延长线上一点,点D为⊙O上一点,CD交⊙O于点E,AB=2CE,∠A=60°,求∠C的度数.6.如右图,在⊙O中,∠ACB=∠BDC=60°,AC=32cm,OA BDC(1)求∠ABC 的度数; (2)求⊙O 的面积6.如图,BC 为⊙O 的直径,F 是半圆上异于B 、C 的一点,A 是弧BF 的中点,AD ⊥BC ,垂足为D ,BF 交AD 于点E.(1)求证:AE = BE.(2)若⊙O 的半径为5,AD= 4,求AE 的长.19.已知:如图,⊙O 的直径AB 与弦CD (不是直径)交于点F ,若FB =2,4==FD CF ,求AC的长.7.如图,点O 为优弧ACB 所在圆的圆心,∠AOC =108°,点DOCD E FBACA DOF在AB 的延长线上, BD =BC , 则∠D 的度数为( )A .20°B .27°C .30°D .54°11.如图, AB 是⊙O 的直径,点C , D 在⊙O 上,30BAC ∠=︒,则ADC ∠= .12.在平面直角坐标系中,半径为5的⊙M 与x 轴交于A (2-,0)与B (4,0),则圆心点M 坐标为 .(2012四川达州,3,3分)如图,⊙O 是△ABC 的外接圆,连结OB 、OC ,若OB=BC , 则∠BAC 等于A 、60°B 、45°C 、30°D 、20°2.如图,点A ,B ,C 在圆O 上,∠A =60°,则∠BOC =__________.3.如图,⊙O 的直径CD 垂直于AB ,∠AOC =48°,则∠BDC =__________.4. (2012湖南长沙)如图,点A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC =∠APCADCBO=60°.(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.变式1:如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A.116°B.32°C.58°D.64°(2012贵州遵义,14,4分)四、课后作业图1 图2 图3 图3. 一条排水管的截面如图所示.已知排水管的截面圆半径OB=10,截面圆圆心O到水面的距离OC是6,则水面宽AB是()A.16B.10 C.8 D.6QPOCB4.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA ,OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE =8个单位,OF =6个单位,则圆的直径为( )A .12个单位B .10个单位C .4个单位D .15个单位5.如图,已知在圆内接四边形ABCD 中,∠B =30°,则∠D =________.7. 如图,⊙O 的半径为5,AB 为弦,AB OC ⊥,垂足为E ,如果2=CE ,那么AB 的长是( )A .4 B. 6 C. 8 D. 10 3.如图,AB 是⊙O 的直径,∠AOC =130°,则∠D 等于A .25°B .35°C .50°D .65°。