社会统计学习题集--二项分布与正态分布.
- 格式:doc
- 大小:125.50 KB
- 文档页数:10
第7节二项分布与正态分布【选题明细表】知识点、方法题号条件概率4,7,8相互独立事件的概率6,12,13独立重复试验与二项分布1,2,3,5,9,10,14正态分布2,11基础对点练(建议用时:25分钟)1.设随机变量X~B(6,),则P(X=3)等于( A )(A)(B)(C)(D)解析:因为X~B(6,),所以P(X=3)=()3(1-)3=.故选A. 2.(2018·四川遂宁一诊)已知随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,则P(2≤ξ<4)等于( B )(A)0.3 (B)0.35 (C)0.5 (D)0.7解析:由题意可得P(2≤ξ<4)==0.35,故选B.3.(2018·福建厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( D ) (A)(B)(C) (D)解析:袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P1=,所以3次中恰有2次抽到黄球的概率是P= ()2(1-)=.故选D.4.(2018·河北唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( D )(A)(B)(C)(D)解析:甲不跑第一棒共有·=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有=6种情况;(2)乙不跑第一棒,共有··=8种情况,所以甲不跑第一棒的条件下,乙不跑第二棒的概率为=.故选D.5.(2018·潍坊市期末)某篮球队对队员进行考核,规则是:①每人进行3个轮次的投篮;②每个轮次每人投篮2次,若至少投中1次,则本轮通过,否则不通过.已知队员甲投篮1次投中的概率为,如果甲各次投篮投中与否互不影响,那么甲3个轮次通过的次数X的期望是( B )(A)3 (B)(C)2 (D)解析:每个轮次甲不能通过的概率为×=,通过的概率为1-=,因为甲3个轮次通过的次数X服从二项分布B(3,),所以X的数学期望为3×=.故选B.6.(2018·山东省、河北省部分重点中学二次质检)春节期间,某旅游景区推出掷圆圈套玩具鹅的游戏,吸引了一大批的游客参加,规则是:每人花10元拿到5个圆圈,在离最近的玩具鹅的2米处掷圆圈5次,只要圆圈连续套住同一只鹅颈3次,就可以获得套住的那只玩具鹅.假设某游客每次掷圆圈套住鹅颈的概率为,且每次掷圆圈的结果互不影响,则该游客获得一只玩具鹅的概率为( D )(A) (B) (C) (D)解析:设“第i次套住鹅颈”为事件A i(i=1,2,3,4,5),则表示“第i 次未套住鹅颈”,依题意可得该游客能获得一只玩具鹅的3种情形: A1A2A3,A2A3A4,A3A4A5,而P(A1A2A3)=()3=,P(A2A3A4)=()3×=,P(A3A4A5)=()3×()2=,故该游客获得一只玩具鹅的概率为++=,故选D.7.(2017·上海闵行二模)某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时首次遇到红灯的概率是.解析:设“这名学生在上学路上到第二个路口首次遇到红灯”为事件A,则所求概率为P(A)=×=.答案:8.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是.解析:设“甲、乙二人相邻”为事件A,“甲、丙二人相邻”为事件B,则所求概率为P(B|A),由于P(B|A)=,而P(A)==,AB是表示事件“甲与乙、丙都相邻”,故P(AB)==,于是P(B|A)==.答案:9.(2018·广东六校联考)一台仪器每启动一次都随机地出现一个5位的二进制数A=a1a2a3a4a5,其中A的各位数字中,a1=1, a k(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101则称这次试验成功,若成功一次得2分,失败一次得-1分,则100次重复试验的总得分X的方差为.解析:启动一次出现数字为A=10 101的概率P=()2×()2=,由题意知随机变量η符合二项分布,根据成功概率和实验的次数的值,有η~B(100,).所以η的方差为D(η)=100××=.总得分X=2η-1×(100-η)=3η-100,所以D(X)=D(3η-100)=9D(η)=.答案:能力提升练(建议用时:25分钟)10.(2018·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p等于( B )(A)0.7 (B)0.6 (C)0.4 (D)0.3解析:由题意可知,10位成员中使用移动支付的人数X服从二项分布,即X~B(10,p),所以D(X)=10p(1-p)=2.4,所以p=0.4或0.6.又因为P(X=4)<P(X=6),所以p4(1-p)6<p6(1-p)4,所以p>0.5,所以p=0.6.故选B.11.(2018·合肥市质检)已知某公司生产的一种产品的质量X(单位:克)服从正态分布N(100,4).现从该产品的生产线上随机抽取10 000件产品,其中质量在[98,104]内的产品估计有( D )附:若X服从正态分布N(μ,σ2),则P(μ-σ<X<μ+σ)≈0.682 7, P(μ-2σ<X<μ+2σ)≈0.954 5.(A)3 413件(B)4 772件(C)6 826件(D)8 186件解析:由题意知μ=100,σ=2,则P(98<X<104)=[P(μ-σ<X<μ+σ)+ P(μ-2σ<X<μ+2σ)]≈0.818 6,所以质量在[98,104]内的产品估计有10 000×0.818 6=8 186件.故选D.12.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则从2号箱取出红球的概率是( A )(A)(B)(C)(D)解析:法一记事件A:然后从2号箱中取出的是红球;事件B:从1号箱中取出的是红球,则根据古典概型和对立事件的概率和为1,可知, P(B)==,P()=1-=;由条件概率公式知P(A|B)==,P(A|)==.从而P(A)=P(AB)+P(A)=P(A|B)·P(B)+P(A|)·P()=.故选A.法二根据题意,分两种情况讨论:①从1号箱中取出白球,其概率为=,此时2号箱中有6个白球和3个红球,从2号箱中取出红球的概率为,则此种情况下的概率为×=.②从1号箱中取出红球,其概率为=.此时2号箱中有5个白球和4个红球,从2号箱取出红球的概率为,则这种情况下的概率为×=.则从2号箱取出红球的概率是+=.故选A.13.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是,则小球落入A袋中的概率为.解析:记“小球落入A袋中”为事件A,“小球落入B袋中”为事件B,则事件A的对立事件为B,若小球落入B袋中,则小球必须一直向左落下或一直向右落下,故P(B)=()3+()3=,从而P(A)=1-P(B)=1-=.答案:14.(2018·惠州市二次调研)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p=,记该班级完成n首背诵后的总得分为S n.(1)求S6=20且S i≥0(i=1,2,3)的概率;(2)记ξ=|S5|,求ξ的分布列及数学期望.解:(1)当S6=20时,即背诵6首后,正确的有4首,错误的有2首.由S i ≥0(i=1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P=()2×()2×()2+×××()2×=.(2)由题意知ξ=|S5|的所有可能的取值为10,30,50,又p=,所以P(ξ=10)=()3×()2+()2×()3=,P(ξ=30)=()4×()1+()1×()4=,P(ξ=50)=()5×()0+()0×()5=,所以ξ的分布列为ξ10 30 50P所以E(ξ)=10×+30×+50×=.好题天天练(建议用时:10分钟)(2018·天星教育大联考)某手机游戏研发公司为进行产品改进,对游戏用户每天在线的时间进行调查,随机抽取50名用户对其每天在线的时间进行了调查统计,并绘制了如图所示的频率分布直方图,其中每天的在线时间4 h以上(包括4 h)的用户被称为“资深玩家”,根据频率分布直方图回答下列问题:(1)从所调查的“资深玩家”中任取3人再进行每天连续在线时间的调查,求抽取的3人中至少有2人的在线时间在[5,6]内的概率; (2)为响应社会要求,公司拟对“资深玩家”进行防沉迷限时,使其每天的在线时间小于4 h,而公司每天对一个玩家限时0.5 h就会损失1元,在频率分布直方图中以各组区间的中点值代表该组的数据,以游戏用户在线时间的频率作为在线时间的概率,现从所有“资深玩家”中任取3人进行一天的限时试验,记该公司因限时试验损失的钱数为X,求X的分布列和数学期望.解:(1)由题易知a=1-0.10-0.20-0.30-0.20-0.08=0.12,所以50名用户中,在线时间在[4,5)内的人数为0.12×50=6,在线时间在[5,6]内的人数为0.08×50=4,所以在所调查的50人中有10人是“资深玩家”. 从“资深玩家”中任取3人共有=120种情况,其中抽取的3人中至少有2人的在线时间在[5,6]内的共有+=40种情况,记在所调查的“资深玩家”中任取3人,至少有2人的在线时间在[5,6]内为事件A,则P(A)==.(2)“资深玩家”中每天的在线时间在[4,5)内的概率P1==,公司限时一天损失×1=1(元);“资深玩家”中每天的在线时间在[5,6]内的概率P2==,公司限时一天损失×1=3(元).所以从“资深玩家”中任取3人进行一天的限时试验,X的所有可能取值为3,5,7,9,则P(X=3)=()3=,P(X=5)=()2×=,P(X=7)=××()2=,P(X=9)=()3=.X的分布列是X 3 5 7 9P所以X的数学期望E(X)=3×+5×+7×+9×=.。
二项分布与正态分布1.用电脑每次可以自动生成一个(0,1)内的实数,且每次生成每个实数都是等可能的,若用该电脑连续生成3个实数,则这3个实数都大于13的概率为( )A.127 B.23 C.827D.49解析:选C 由题意可得,用该电脑生成1个实数,且这个实数大于13的概率为P =1-13=23,则用该电脑连续生成3个实数,这3个实数都大于13的概率为⎝ ⎛⎭⎪⎫233=827.故选C.2.(2019·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为( )A.34B.23C.57D.512解析:选D 根据题意,恰有一人获得一等奖就是甲获得乙没有获得或甲没有获得乙获得,则所求概率是23×⎝ ⎛⎭⎪⎫1-34+34×⎝ ⎛⎭⎪⎫1-23=512,故选D.3.(2018·厦门二模)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25B.35C.18125D.54125解析:选D 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率为35,∴3次中恰有2次抽到黄球的概率是P =C 23⎝ ⎛⎭⎪⎫352⎝ ⎛⎭⎪⎫1-35=54125. 4.(2018·唐山二模)甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( )A.29B.49C.23D.79解析:选D 甲不跑第一棒共有A 13·A 33=18种情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A 33=6种情况;(2)乙不跑第一棒,共有A 12·A 12·A 22=8种情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为6+818=79.故选D.5.(2019·福建四校联考)某校在高三第一次模拟考试中约有1 000人参加考试,其数学考试成绩X 近似服从正态分布N (100,a 2)(a >0),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( )A .400B .500C .600D .800解析:选A 由题意得,P (X ≤90)=P (X ≥110)=110,所以P (90≤X ≤110)=1-2×110=45,所以P (100≤X ≤110)=25,所以此次数学考试成绩在100分到110分之间的人数约为 1 000×25=400.故选A.6.(2018·河北“五个一名校联盟”二模)某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( )A.110B.15C.25D.12解析:选C 设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,则由题意可得P (A )=12,P (AB )=15,则在第一次闭合后出现红灯的条件下第二次闭合出现红灯的概率是P (B |A )=P ABP A =1512=25.故选C.7.(2019·淄博一模)设每天从甲地去乙地的旅客人数为随机变量X ,且X ~N (800,502),则一天中从甲地去乙地的旅客人数不超过900的概率为( )(参考数据:若X~N(μ,σ2),有P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4,P(μ-3σ<X≤μ+3σ)=0.997 4 )A.0.977 2 B.0.682 6C.0.997 4 D.0.954 4解析:选 A ∵X~N(800,502),∴P(700≤X≤900)=0.954 4,∴P(X>900)=1-0.954 42=0.022 8,∴P(X≤900)=1-0.022 8=0.977 2.故选A.8.(2019·茂名一模)设X~N(1,1),其正态分布密度曲线如图所示,那么向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是( )(注:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=68.26%,P(μ-2σ<X<μ+2σ)=95.44%)A.7 539 B.6 038C.7 028 D.6 587解析:选D ∵X~N(1,1),∴μ=1,σ=1.∵P(μ-σ<X<μ+σ)=68.26%,∴P(0<X<2)=68.26%,则P(1<X<2)=34.13%,∴阴影部分的面积为1-0.341 3=0.658 7.∴向正方形ABCD中随机投掷10 000个点,则落入阴影部分的点的个数的估计值是10 000×0.658 7=6 587.故选D.9.(2019·珠海一模)夏秋两季,生活在长江口外浅海域的中华鱼回游到长江,历经三千多公里的溯流博击,回到金沙江一带产卵繁殖,产后待幼鱼长大到15厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为( )A.0.05 B.0.007 5C.13D.16解析:选C 设事件A为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件B 为该雌性个体成功溯流产卵繁殖,由题意可知P(A)=0.15,P(AB)=0.05,∴P(B|A)=P AB P A =0.050.15=13.故选C.10.(2019·江西名校联考)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为( )附:若X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.682 6,P (μ-2σ<X <μ+2σ)=0.954 4.A .1 193B .1 359C .2 718D .3 413解析:选B 对于正态分布N (-1,1),可知μ=-1,σ=1,正态曲线关于直线x =-1对称,故题图中阴影部分的面积为12×[P (-3<X <1)-P (-2<X <0)]=12×[P (μ-2σ<X <μ+2σ)-P (μ-σ<X <μ+σ)]=12×(0.954 4-0.682 6)=0.135 9,所以点落入题图中阴影部分的概率P =0.135 91=0.135 9,投入10 000个点,落入阴影部分的个数约为10 000×0.135 9=1 359.故选B.11.(2019·南昌模拟)口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,已知第一次取得红球,则第二次取得白球的概率为________.解析:口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回地逐一取球,设事件A 表示“第一次取得红球”,事件B 表示“第二次取得白球”,则P (A )=26=13,P (AB )=26×35=15,∴第一次取得红球后,第二次取得白球的概率为P (B |A )=P ABP A =1513=35. 答案:3512.(2019·郑州一中月考)科目二,又称小路考,是机动车驾驶证考核的一部分,是场地驾驶技能考试科目的简称.假设甲通过科目二的概率均为34,且每次考试相互独立,则甲第3次考试才通过科目二的概率为________.解析:甲第3次考试才通过科目二,则前2次都未通过,第3次通过,故所求概率为⎝ ⎛⎭⎪⎫1-342×34=364. 答案:36413.(2019·合肥名校联考)已知随机变量X ~N (1,σ2),若P (X >0)=0.8,则P (X ≥2)=________.解析:随机变量X 服从正态分布N (1,σ2),∴正态曲线关于x =1对称,∴P (X ≥2)=P (X ≤0)=1-P (X >0)=0.2.答案:0.214.三支球队中,甲队胜乙队的概率为0.4,乙队胜丙队的概率为0.5,丙队胜甲队的概率为0.6,比赛顺序是:第一局是甲队对乙队,第二局是第一局的胜者对丙队,第三局是第二局的胜者对第一局的败者,第四局是第三局的胜者对第二局的败者,则乙队连胜四局的概率为________.解析:设乙队连胜四局为事件A ,有下列情况:第一局中乙胜甲(A 1),其概率为1-0.4=0.6;第二局中乙胜丙(A 2),其概率为0.5;第三局中乙胜甲(A 3),其概率为0.6;第四局中乙胜丙(A 4),其概率为0.5,因各局比赛中的事件相互独立,故乙队连胜四局的概率为:P (A )=P (A 1A 2A 3A 4)=0.62×0.52=0.09.答案:0.0915.九节虾的真身是虎斑虾,虾身上有一深一浅的横向纹路,煮熟后有明显的九节白色花纹,肉味鲜美.某酒店购进一批九节虾,并随机抽取了40只统计质量,得到的结果如下表所示:(1)若购进这批九节虾35 000 g ,且同一组数据用该组区间的中点值代表,试估计这批九节虾的数量(所得结果保留整数);(2)以频率估计概率,若在本次购买的九节虾中随机挑选4只,记质量在[5,25)间的九节虾的数量为X ,求X 的分布列.解:(1)由表中数据可以估计每只九节虾的质量为140×(4×10+12×20+11×30+8×40+5×50)=29.5(g),因为35 000÷29.5≈1 186(只),所以这批九节虾的数量约为1 186只.(2)由表中数据知,任意挑选1只九节虾,质量在[5,25)间的概率p =4+1240=25,X的所有可能取值为0,1,2,3,4,则P (X =0)=⎝ ⎛⎭⎪⎫354=81625,P (X =1)=C 14×25×⎝ ⎛⎭⎪⎫353=216625, P (X =2)=C 24×⎝ ⎛⎭⎪⎫252×⎝ ⎛⎭⎪⎫352=216625, P (X =3)=C 34×⎝ ⎛⎭⎪⎫253×35=96625,P (X =4)=⎝ ⎛⎭⎪⎫254=16625.所以X 的分布列为16.(2019·惠州模拟)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率p =23,记该班级完成n首背诵后的总得分为S n .(1)求S 6=20且S i ≥0(i =1,2,3)的概率; (2)记ξ=|S 5|,求ξ的分布列及数学期望.解:(1)当S 6=20时,即背诵6首后,正确的有4首,错误的有2首.由S i ≥0(i =1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率P =⎝ ⎛⎭⎪⎫232×C 24⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132+23×13×23×C 23⎝ ⎛⎭⎪⎫232×13=1681. (2)由题意知ξ=|S 5|的所有可能的取值为10,30,50,又p =23,∴P (ξ=10)=C 35⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+C 25⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫133=4081,P (ξ=30)=C 45⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫131+C 15⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫134=3081, P (ξ=50)=C 55⎝ ⎛⎭⎪⎫235×⎝ ⎛⎭⎪⎫130+C 05⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫135=1181, ∴ξ的分布列为ξ 10 30 50 P408130811181∴E (ξ)=10×4081+30×3081+50×1181=1 85081.17.(2018·濮阳二模)近年来“双十一”已成为中国电子商务行业的年度盛事,并且逐渐影响到国际电子商务行业.某商家为了准备2018年“双十一”的广告策略,随机调查了1 000名客户在2017年“双十一”前后10天内网购所花时间T (单位:时),并将调查结果绘制成如图所示的频率分布直方图.由频率分布直方图可以认为,这10天网购所花的时间T 近似服从N (μ,σ2),其中μ用样本平均值代替,σ2=0.24.(1)计算μ,并利用该正态分布求P (1.51<T <2.49).(2)利用由样本统计获得的正态分布估计整体,将这10天网购所花时间在(2,2.98)小时内的人定义为目标客户,对目标客户发送广告提醒.现若随机抽取10 000名客户,记X 为这10 000人中目标客户的人数.(ⅰ)求EX ;(ⅱ)问:10 000人中目标客户的人数X 为何值的概率最大? 附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4,P (μ-3σ<Z <μ+3σ)=0.997 4.0.24≈0.49.解:(1)μ=0.4×(0.050×0.8+0.225×1.2+0.550×1.6+0.825×2.0+0.600×2.4+0.200×2.8+0.050×3.2)=2,从而T 服从N (2,0.24), 又σ=0.24≈0.49,从而P (1.51<T <2.49)=P (μ-σ<T <μ+σ)=0.682 6. (2)(ⅰ)任意抽取1名客户,该客户是目标客户的概率为P (2<T <2.98)=P (μ<T <μ+2σ) =12P (μ-2σ<T <μ+2σ)=12×0.954 4=0.477 2. 由题意知X 服从B (10 000,0.477 2), 所以EX =10 000×0.477 2=4 772. (ⅱ)X 服从B (10 000,0.477 2),P (X =k )=C k 10 0000.477 2k (1-0.477 2)10 000-k = C k 10 0000.477 2k ·0.522 810 000-k (k =0,1,2,…,10 000). 设当X =k (k ≥1,k ∈N)时概率最大,则有⎩⎨⎧P X =k >P X =k +1,P X =k >P X =k -1,得⎩⎨⎧0.522 8C k10 000>0.477 2C k +110 000,0.477 2C k 10 000>0.522 8C k -110 000,解得k =4 772.故10 000人中目标客户的人数为4 772的概率最大.。
二项分布?还是超几何分布二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列;( 2)不放回抽样时,取到黑球的个数Y的分布列.解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率均为1, 3 次取球可以看成 3 次独立重复试验,则1,.550312∴ P(X 0) C301464 ;P(X 1)C311448 ;551255512521P(X 3) C33130P(X 2) C321412 ;4 1 .5512555125因此, X 的分布列为X0123P6448121 125125125125(2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有:P(Y 0)C20C837;P(Y1)C21C827;P(Y2)C22C81 1 .C10315C10315C10315因此, Y 的分布列为Y012771P151515例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4( 1)根据频率分布直方图,求重量超过505 克的产品数量 ,( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克的产品数量,求Y 的分布列;( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505克的概率。
17.解 : (1)重量超过 505克的产品数量是 :40 (0.055+0.01 5)=40 0.3=12.(2)Y 的分布列为 :Y 0 1 2PC 282 C 281 C 121C 122C 402C 402C 402(3)设所取的 5件产品中 , 重量超过 505克的产品件数为随机变量 Y, 则Y B(5, 3),102 3 2 7 33087 从而 P(Y=2)=C 5( 10 )( 10 ) =10000 .即恰有 2件产品的重量超过 505克的概率为3087.10000超几何分布与二项分布特点(A) 判断一个随机变量是否服从超几何分布 , 关键是要看随机变量是否满足超几何分布的特征 :一个总体 ( 共有 N 个) 内含有两种不同的事物 A(M 个) 、 B(N M 个) , 任取 n 个 , 其中恰有 X 个A . 符合该条件的即可断定是超几何分布C M k C N nk M, 按照超几何分布的分布列 P( X k)C N n( k 0,1,2, , m )进行处理就可以了 . (B) 二项分布必须同时满足以下两个条件: ①在一次试验中试验结果只有A 与 A 这两个 , 且事件 A 发生的概率为 p , 事件 A 发生的概率为 1 p ;②试验可以独立重复地进行 , 即每次重复做一次试验 , 事件 A 发生的概率都是同一常数 p , 事件 A 发生的概率为 1 p .辨析:通过 2 个例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.例 1 与例 2 中的 EX=EY=0.6 注意▲ 超几何分布和二项分布都是离散型分布超几何分布和二项分布的判断方法( 1)超几何分布需要知道总体的容量,而二项分布不需要; ( 2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)( 3)当总体的容量非常大时,超几何分布近似于二项分布。
二项分布与正态分布了解二项分布与正态分布的性质与应用二项分布与正态分布二项分布和正态分布是概率统计学中两个重要的分布形式。
二项分布适用于独立重复试验,每次试验只有两种可能的结果,成功或失败;而正态分布则是一种连续性的概率分布,常用于描述一组数据的分布情况。
本文将介绍二项分布和正态分布的性质与应用。
一、二项分布二项分布,又称为伯努利分布,是最基本的离散型概率分布之一。
它描述了在一系列相互独立的、同类的随机试验中,成功的次数的概率分布。
一次伯努利试验中,只有两个可能的结果,例如抛硬币的正反面。
二项分布的概率质量函数如下:P(X=k) = C(n,k) * p^k * (1-p)^(n-k)其中,X表示成功的次数,n表示试验的总次数,p表示每次试验成功的概率,C(n,k)表示从n次试验中选取k次成功的组合数。
从公式中可以看出,二项分布的参数为n和p。
二项分布的性质:1.期望和方差:二项分布的期望为E(X) = np,方差为Var(X) = np(1-p)。
2.形状特点:二项分布的形状呈现对称性,随着试验次数n的增加,其形状逐渐接近正态分布。
二项分布的应用:1.质量控制:在质量控制中,可以使用二项分布来描述合格品和不合格品的比例,判断产品是否符合生产标准。
2.市场调查:通过市场调查统计来预测某个事件的发生概率,例如选举候选人的支持率。
3.投资决策:根据二项分布的特点,可以计算在不同投资情况下的预期收益和风险。
二、正态分布正态分布,也称为高斯分布,是一种连续型的概率分布。
在自然界和社会科学中,许多现象都可以被正态分布描述,例如身高、体重等。
正态分布的概率密度函数如下:f(x) = 1/(σ*sqrt(2π)) * exp(-(x-μ)^2/(2σ^2))其中,x表示连续随机变量的取值,μ表示均值,σ表示标准差。
正态分布的参数为μ和σ。
正态分布的性质:1.对称性:正态分布是对称分布,其均值和中位数重合。
2.标准正态分布:当μ=0、σ=1时,得到标准正态分布。
二项分布与正态分布二项分布(Binomial Distribution)和正态分布(Normal Distribution)是统计学中常用的两种分布类型,它们在描述概率和随机变量的分布特征上有着重要的应用。
一、二项分布二项分布是一种离散概率分布,适用于两个互斥事件(成功和失败)发生的多次独立重复实验。
每个实验的结果只有两种可能性,并且各试验之间的概率不会发生变化。
该分布以两个参数来描述:n(实验次数)和p(事件成功的概率)。
二项分布的概率质量函数为P(X=k) = C(n, k) * p^k * (1-p)^(n-k),其中X为成功事件发生的次数,k为取值范围,C(n, k)表示组合数。
例如,某外卖平台的数据显示,在送达100份订单中,正好有20份遇到问题,成功率为0.2。
如果我们想要了解在送达下一个订单时会出现多少问题的概率分布,我们就可以使用二项分布来计算。
二、正态分布正态分布是一种连续概率分布,也被称为高斯分布。
在统计学中,正态分布常常用来描述一组数据中心性的表现,其图形呈钟形曲线。
正态分布由两个参数来描述:均值(μ)和标准差(σ^2)。
正态分布的概率密度函数为f(x) = 1 / (σ * √(2π)) * exp(-(x-μ)^2 /2σ^2),其中x为取值范围。
例如,在考试成绩分析中,如果我们知道某门考试的平均分是80分,标准差是10分,我们就可以使用正态分布来计算不同分数段的比例和概率。
三、二项分布与正态分布的关系当二项分布的参数n(实验次数)足够大,同时p(事件成功的概率)也足够接近0.5时,二项分布可以近似地用正态分布来描述。
根据中心极限定理(Central Limit Theorem),当样本容量足够大时,无论数据服从什么分布,其样本均值的分布均近似服从正态分布。
由于二项分布和正态分布之间的关系,我们可以利用正态分布的性质对二项分布进行近似计算。
这种近似计算可简化复杂的二项分布计算,并提高效率。
第八节二项分布与正态分布[考纲传真] 1.了解条件概率的概念,了解两个事件相互独立的概念.2.理解n次独立重复试验的模型及二项分布,并能解决一些简单问题.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.1.条件概率(1)定义:设A,B为两个事件,如果P(AB)=P(A)P(B),则称事件A与事件B相互独立.(2)性质:①若事件A与B相互独立,则P(B|A)=P(B),P(A|B)=P(A).②如果事件A与B相互独立,那么A与B,A与B,A与B也相互独立.3.独立重复试验与二项分布(1)独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验,其中A i(i=1,2,…,n)是第i次试验结果,则P(A1A2A3…A n)=P(A1)P(A2)P(A3)…P(A n).(2)二项分布在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A 发生的概率为p,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n),此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4.正态分布(1)正态曲线的特点:①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π; ④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.(2)正态分布的三个常用数据 ①P (μ-σ<X ≤μ+σ)=0.682_6; ②P (μ-2σ<X ≤μ+2σ)=0.954_4; ③P (μ-3σ<X ≤μ+3σ)=0.997_4.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若事件A ,B 相互独立,则P (B |A )=P (B ).( )(2)P (AB )表示事件A ,B 同时发生的概率,一定有P (AB )=P (A )·P (B ).( )(3)在正态分布函数φμ,σ(x )=12πσe -(x -μ)22σ2中,μ是正态分布的期望值,σ是正态分布的标准差.( )(4)二项分布是一个用公式P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.( )[答案] (1)√ (2)× (3)√ (4)√2.(教材改编)小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( )A.49 B.29 C.427D.227A [所求概率P =C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-133-1=49.]3.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同.甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为()A.310 B.13C.38 D.29B[设“第一次拿到白球”为事件A,“第二次拿到红球”为事件B,依题意P(A)=210=15,P(AB)=2×310×9=115.故P(B|A)=P(AB)P(A)=13.]4.(2015·全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648 B.0.432C.0.36D.0.312A[3次投篮投中2次的概率为P(k=2)=C23×0.62×(1-0.6),投中3次的概率为P(k=3)=0.63,所以通过测试的概率为P(k=2)+P(k=3)=C23×0.62×(1-0.6)+0.63=0.648.故选A.]5.(2017·郑州调研)已知随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.8,则P(0<ξ<4)=________.0.6[由P(ξ<4)=0.8,得P(ξ≥4)=0.2.又正态曲线关于x=2对称.则P(ξ≤0)=P(ξ≥4)=0.2,∴P (0<ξ<4)=1-P (ξ≤0)-P (ξ≥4)=0.6.](1)从2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )【导学号:01772416】A.18 B.14 C.25D.12(2)如图10-8-1,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.图10-8-1(1)B (2)14 [(1)法一:事件A 包括的基本事件:(1,3),(1,5),(3,5),(2,4),即n (A )=4,事件AB 发生的结果只有(2,4)一种情形,即n (AB )=1. 故由古典概型概率P (B |A )=n (AB )n (A )=14.法二:P (A )=C 23+C 22C 25=410,P (AB )=C 22C 25=110.由条件概率计算公式,得P (B |A )=P (AB )P (A )=110410=14.(2)由题意可得,事件A 发生的概率 P (A )=S 正方形EFGH S 圆O=2×2π×12=2π.事件AB 表示“豆子落在△EOH 内”, 则P (AB )=S △EOH S 圆O =12×12π×12=12π.故P (B |A )=P AB P A =12π2π=14.][规律方法] 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P (AB )P (A )求P (B |A ). (2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n (AB )n (A ). [变式训练1] 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924C [设从1号箱取到红球为事件A ,从2号箱取到红球为事件B . 由题意,P (A )=42+4=23,P (B |A )=3+18+1=49,所以P (AB )=P (B |A )·P (A )=23×49=827, 所以两次都取到红球的概率为827.]功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B ,设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列.【导学号:01772417】[解] 记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.2分(1)记H ={至少有一种新产品研发成功},则H -=E -F -,于是P (H -)=P (E -)P (F -)=13×25=215.故所求的概率为P (H )=1-P (H -)=1-215=1315.5分(2)设企业可获利润为X 万元,则X 的可能取值为0,100,120,220.因为P (X =0)=P (E -F -)=13×25=215,P (X =100)=P (E -F )=13×35=15, P (X =120)=P (E F -)=23×25=415, P (X =220)=P (EF )=23×35=25.8分 故所求X 的分布列为12分[规律方法] 1.求解该类问题关键是正确分析所求事件的构成,将其转化为彼此互斥事件的和或相互独立事件的积,然后利用相关公式进行计算.2.求相互独立事件同时发生的概率的主要方法. (1)利用相互独立事件的概率乘法公式直接求解.(2)正面计算较繁(如求用“至少”表达的事件的概率)或难以入手时,可从其对立事件入手计算.[变式训练2] 在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手,各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X 表示3号歌手得到观众甲、乙、丙的票数之和,求“X ≥2”的事件概率.[解] (1)设A 表示事件“观众甲选中3号歌手”,B 表示事件“观众乙选中3号歌手”,则P (A )=C 12C 23=23,P (B )=C 24C 35=35.2分∵事件A 与B 相互独立,A 与B -相互独立,则A B -表示事件“甲选中3号歌手,且乙没选中3号歌手”.∴P (A B -)=P (A )·P (B -)=P (A )·[1-P (B )]=23×25=415.5分 (2)设C 表示事件“观众丙选中3号歌手”, 则P (C )=C 24C 35=35.7分依题意,A ,B ,C 相互独立,A -,B -,C -相互独立, 且AB C -,A B -C ,A -BC ,ABC 彼此互斥.又P (X =2)=P (AB C -)+P (A B -C )+P (A -BC )=23×35×25+23×25×35+13×35×35=3375,10分P (X =3)=P (ABC )=23×35×35=1875.∴P (X ≥2)=P (X =2)+P (X =3)=3375+1875=1725.12分乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数nN ,N 表示投篮次数,n 表示命中次数),假设各场比赛相互独立.(1)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中率大于0.5的概率;(2)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(3)在接下来的3场比赛中,用X 表示这3场比赛中乙球员命中率超过0.5的场次,试写出X 的分布列,并求X 的数学期望.【导学号:01772418】[解] (1)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场,分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12.4分(2)在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10,所以在随机选择的一场比赛中,乙球员的投篮命中率超过0.5的概率是25.6分设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件B 1,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件B 2,则P (A )=P (B 1)+P (B 2)=12×35+12×25=12.8分 (3)X 的可能取值为0,1,2,3,依题意X ~B ⎝ ⎛⎭⎪⎫3,25. P (X =0)=C 03⎝ ⎛⎭⎪⎫250⎝ ⎛⎭⎪⎫353=27125;P (X =1)=C 13⎝ ⎛⎭⎪⎫251⎝ ⎛⎭⎪⎫352=54125; P (X =2)=C 23⎝ ⎛⎭⎪⎫252⎝ ⎛⎭⎪⎫351=36125;P (X =3)=C 33⎝ ⎛⎭⎪⎫253=8125,10分 X 的分布列如下表:E (X )=np =3×25=65.12分[规律方法] 1.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件能转化为几个彼此互斥的事件的和事件,还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.2.(1)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(2)牢记公式P n (k )=C k n p k (1-p )n -k,k =0,1,2,…,n ,并深刻理解其含义. [变式训练3] 某架飞机载有5位空降兵依次空降到A ,B ,C 三个地点,每位空降兵都要空降到A ,B ,C 中的任意一个地点,且空降到每一个地点的概率都是13,用ξ表示地点C 空降人数,求:(1)地点A 空降1人,地点B ,C 各空降2人的概率; (2)随机变量ξ的分布列与数学期望.[解] (1)设“地点A 空降1人,地点B ,C 各空降2人”为事件M ,易知基本事件的总数n =35=243个,事件M 发生包含的基本事件M =C 15C 24=30个.故所求事件M 的概率P (M )=m n =30243=1081.5分(2)依题意,5位空降兵空降到地点C 相当于5次独立重复试验. ∴ξ~B ⎝ ⎛⎭⎪⎫5,13,且ξ的取值可能为0,1,2,3,4,5.则P (ξ=k )=C k 5⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫1-135-k .∴P (ξ=0)=C 05⎝ ⎛⎭⎪⎫130⎝⎛⎭⎪⎫1-135=32243,P (ξ=1)=C 15⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫1-134=80243,P (ξ=2)=C 25⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫233=80243,P (ξ=3)=C 35⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫232=40243,P (ξ=4)=C 45⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫1-13=10243,P (ξ=5)=C 55⎝ ⎛⎭⎪⎫135=1243.10分 ∴随机变量ξ的分布列为:根据二项分布得数学期望E (ξ)=5×13=53.12分(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%,P (μ-3σ<ξ<μ+3σ=99.74%.)A .4.56% B.13.59% C .27.18%D.31.74%B [由正态分布的概率公式知P (-3<ξ<3)=0.682 6,P (-6<ξ<6)=0.954 4,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=0.954 4-0.682 62=0.135 9=13.59%,故选B.][规律方法] 1.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.2.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x 轴之间的面积为1.注意下面两个结论的活用:(1)P (X <a )=1-P (X ≥a );(2)P (X <μ-σ)=P (X ≥μ+σ).[变式训练4] (2017·河南名校联考)在如图10-8-2所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为()(参考数据:若X~N(μ,σ2),则P(μ-σ<X<μ+σ)=0.682 6,P(μ-2σ<X <μ+2σ)=0.954 4,P(μ-3σ<X<μ+3σ)=0.997 4.)图10-8-2A.1 193 B.1 359C.2 718 D.3 413B[对于正态分布N(-1,1),μ=-1,σ=1,正态曲线关于x=-1对称,故题图中阴影部分的面积为12×[P(-3<X<1)-P(-2<X<0)]=12×[P(μ-2σ<X<μ+2σ)-P(μ-σ<X<μ+σ)]=12×(0.954 4-0.682 6)=0.135 9,所以点落入题图中阴影部分的概率P=0.135 91=0.135 9,投入10 000个点,落入阴影部分的个数约为10 000×0.135 9=1 359.][思想与方法]1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)=P(AB) P(A)=n(AB) n(A),其中,在实际应用中P(B|A)=n(AB)n(A)是一种重要的求条件概率的方法.2.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.4.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的对称性和曲线与x 轴之间的面积为1.[易错与防范]1.易混淆“相互独立”和“事件互斥”两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.2.易混淆P (B |A )与P (A |B )前者是在A 发生的条件下B 发生的概率,后者是在B 发生的条件下A 发生的概率.3.易混淆二项分布与两点分布由二项分布的定义可以发现,两点分布是一种特殊的二项分布,即n =1时的二项分布.课时分层训练(七) 二次函数与幂函数A 组 基础达标 (建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3B.13C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1, 由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分 ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1. 12分B 组 能力提升 (建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0 B.恒小于0 C .等于0D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分第三节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( ) [答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.]3.(2016·安徽合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )A .7 B.8 C .9D.10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )【导学号:01772209】A .1+ 2 B.1+ 3 C .3D.4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.]5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m , 则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.](1)(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2 C .2 2D.4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A .10 B.9 C .8D.7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn =-4,当且仅当m =n =-12时,1m +1n 取得最大值-4.]已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4,3分 ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).5分 (2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+ab , ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,10分∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).12分 法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ,由(1)知,1a +1b +1ab ≥8,10分故⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ≥9.12分 [规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.【导学号:01772210】[证明] 由于a ,b 均为正实数, 所以1a 2+1b 2≥21a 2·1b 2=2ab ,3分当且仅当1a 2=1b 2,即a =b 时等号成立, 又因为2ab +ab ≥22ab ·ab =22, 当且仅当2ab =ab 时等号成立, 所以1a 2+1b 2+ab ≥2ab +ab ≥22,8分 当且仅当⎩⎪⎨⎪⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.12分运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x (h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].2分所以这次行车总费用y 关于x 的表达式是 y =130×18x+2×130360x ,x ∈[]50,100. (或y =2 340x +1318x ,x ∈[]50,100).5分 (2)y =130×18x +2×130360x ≥26 10, 当且仅当130×18x=2×130360x , 即x =1810,等号成立.8分故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3] 某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解](1)由题意得,y=100+0.5x+(2+4+6+ (2x)x,即y=x+100x+1.5(x∈N*).5分(2)由基本不等式得:y=x+100x+1.5≥2x·100x+1.5=21.5,8分当且仅当x=100x,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)a2+b22≥⎝⎛⎭⎪⎫a+b22≥ab(a,b∈R,当且仅当a=b时取等号).(2)a2+b22≥a+b2≥ab≥21a+1b(a>0,b>0,当且仅当a=b时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a=b时等号成立”的含义是“a=b”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(七) 二次函数与幂函数A 组 基础达标 (建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3 B.13 C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.]7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1, 由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1, ∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214,f (x )max =f (3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分 ②当-2a -12>1,即a <-12时, f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1. 12分B 组 能力提升 (建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0 B.恒小于0 C .等于0D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分。
二项分布与正态分布随机现象在统计学中起着重要的作用,而其中最常见的概率分布是二项分布和正态分布。
本文将对二项分布和正态分布进行详细的论述,以便更好地理解和运用它们。
一、二项分布二项分布是指在n次相互独立的伯努利试验中,成功的次数所服从的概率分布。
每一次试验只有两种可能的结果,记为"成功"和"失败"。
例如,扔一枚硬币正面朝上为成功,反面朝上为失败。
随机变量X表示成功的次数,则X满足二项分布B(n, p),其中n表示试验的次数,p表示每次试验成功的概率。
二项分布的概率质量函数为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,C(n, k)表示组合数。
二项分布的特点是每次试验都是相互独立的,并且成功的概率为p。
二、正态分布正态分布是最常见的连续型概率分布之一,也被称为高斯分布。
正态分布的概率密度函数为:f(x) = (1/√(2πσ^2)) * exp(-(x-μ)^2/(2σ^2))其中,μ表示均值,σ表示标准差。
正态分布的特点是呈钟形曲线,均值μ决定了曲线的中心位置,标准差σ决定了曲线的形状。
正态分布在自然界和人类社会中广泛存在,例如人的身高、智力测验成绩等。
根据统计学的中心极限定理,当试验次数足够多时,二项分布的近似分布趋近于正态分布。
三、二项分布与正态分布的关系当试验次数n较大、成功的概率p接近于0.5时,二项分布可以近似地看作是正态分布。
这是因为中心极限定理的影响,当试验次数n趋近于无穷时,二项分布的形态越来越接近正态分布。
这使得我们可以利用正态分布对二项分布进行近似计算,简化问题的解决过程。
四、应用举例1. 计算二项分布的概率:假设某产品的质量合格率为0.8,每次抽检3个产品,问其中有2个合格的概率是多少?根据二项分布的公式,代入n=3,k=2,p=0.8,可以计算出概率为2.88%。
2. 近似计算二项分布:假设某超市每天卖出的某种商品数目服从二项分布,已知每个顾客买到该商品的概率为0.2,每天有100名顾客来购买。
二项分布?还是超几何分布二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例1袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为51,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.331464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴; 12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为(2)不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===.因此,Y 的分布列为Y 0 1 2P715 715 115例2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此 得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量,(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
X 0 1 2 3 P64125 48125 12125 112517.:(1)505⨯⨯⨯⨯解重量超过克的产品数量是:40(0.055+0.015)=400.3=12.(2)Y 的分布列为:(3)10.10000B(5,),从而即恰有2件产品的重量超过505克的概率为: (共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个A .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k M N MnNC C P X k C --== (0,1,2,,k m =)进行处理就可以了.:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概 率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生 的概率都是同一常数p ,事件A 发生的概率为1p -.2个例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.例1与例2中的EX=EY=0.6 二项分布、超几何分布、正态分布练习题一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( )A.516B.316C.58D.7162.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.19273.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球 出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38 C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫5824.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则 事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1) 5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.7.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为______. 8.某厂生产的圆柱形零件的外径ε~N (4,0.25).质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 三、解答题9、为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率 为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响. (Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布 列,并求出均值E (X ).10、为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据?并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[3035,)岁的人数; (Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁”频率组距的人数为X ,求X 的分布列及数学期望.11、2015年南京青奥组委会在某学院招募了12名男志愿者和18名女志愿者。
专题17.6 二项分布与正态分布(专题训练卷)一、选择题1.(2020·陕西碑林·西北工业大学附属中学月考(理))某校1000名学生的某次数学考试成绩X 服从正态分布,正态分布密度曲线如图所示,则成绩X 位于区间(51,69]的人数大约是( )A .997B .954C .800D .683【答案】D 【解析】由题图知,()2~,X N μσ,其中60μ=,9σ=,∴()()51690.6827P x P x μσμσ-<≤+=<≤≈, ∴人数大约为0.6827×1000≈683. 故选:D.2.(2020·青铜峡市高级中学高二期末(理))有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则(2)P X ≤=( ) A .38B .1314C .45D .78【答案】D 【解析】因为是有放回地取产品,所以每次取产品取到次品的概率为4182=.从中取3次,X 为取得次品的次数,则13,2XB ⎛⎫ ⎪⎝⎭,()3102323331(2)(2)(1)0111722228P X P X P X P X C C C ⎛⎫⎛⎫≤==+=+==⎛⎫+= ⎪⎝⎭⨯⨯+ ⎪ ⎪⎝⎭⎝⎭,选择D 答案. 3.(2020·呼和浩特开来中学高二期末(理))某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为35,若40分为最低分数线,则该生被选中的概率是( ) A .4453255C ⎛⎫⨯⨯ ⎪⎝⎭B .55535C ⎛⎫ ⎪⎝⎭C .454555323555C C ⎛⎫⎛⎫⨯+ ⎪ ⎪⎝⎭⎝⎭ D .323532155C ⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭【答案】C 【解析】依题意可知,学生做题正确题目数列满足二项分布,学生必须答对4个题或者5个题才能够被选上,答对4个题的概率为4453255C ⎛⎫⨯ ⎪⎝⎭,答对5个题的概率为55535C ⎛⎫ ⎪⎝⎭,故该生被选中的概率是454555323555C C ⎛⎫⎛⎫⨯+ ⎪ ⎪⎝⎭⎝⎭.故选C.4.(2019·安徽高二期末(理))某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2C B .2741()2AC .2741()2CD .1741()2C【答案】B 【解析】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B.5.(2020·永昌县第四中学期末(理))设随机变量1~6,2X B ⎛⎫ ⎪⎝⎭,则()3P X =等于( )A .516B .316C .58D .716【答案】A 【解析】由二项分布概率公式可得:()33361115*********P X C ⎛⎫⎛⎫==⨯⨯=⨯= ⎪ ⎪⎝⎭⎝⎭故选:A6.(2019·安徽高二期末(理))已知1(5,)3X B ,则37()22P X ≤≤=( )A .80243B .40243C .4081D .8081【答案】C 【解析】()()372322P X P X P X ⎛⎫≤≤==+= ⎪⎝⎭23322355121240C C 333381⎛⎫⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以选C. 7.(2020·山西运城�高二期末(理))经检测有一批产品合格率为34,现从这批产品中任取5件,设取得合格产品的件数为ξ,则()P k ξ=取得最大值时k 的值为( ) A .2 B .3C .4D .5【答案】C 【解析】由题意,随机变量3~(5,)4B ξ,5531()()()44kkkP k C ξ-∴==⋅⋅,若()P k ξ=取得最大值时,则:()(1)()(1)P k P k P k P k ξξξξ==+⎧⎨==-⎩ 5114555116553131()()()()44443131()()()()4444k k k k k k k k k k k k C C C C -++-----⎧⎪⎪⇒⎨⎪⎪⎩则111354141311464k k k k ⎧⨯≥⨯⎪⎪-+⎨⎪⨯≥⨯⎪-⎩,解得*3.54.5,k k N ∈,则4k =.故选:C .8.(2020·四川绵阳·期末(理))设随机变量()~2,B p ξ,()~3,B p η,若()519P ξ≥=,则()2P η≥=( ) A .1527B .727C .89D .19【答案】B 【解析】因为随机变量()~2,B p ξ,所以()()()()12222511219P P P C P P C P ξξξ≥==+==⋅-+⋅=整理得:291850P P -+=, 解得:13P =或53P =(舍) ()()()232333121217+=3+=333272=2+=3=2727C C P P P ηηη⎛⎫⎛⎫⎛⎫⋅⨯⋅⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥=,故选:B 二、多选题9.(多选题)(2020·山东寿光现代中学高二期中)甲、乙两类水果的质量(单位:kg )分别服从正态分布()211,N μσ、()222,N μσ,其正态分布的密度曲线如图所示,则下列说法正确的是( )A .乙类水果的平均质量20.8kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小0.8D .乙类水果的质量服从的正态分布的参数2 1.99=σ 【答案】AB 【解析】因为由图像可知,甲图像关于直线0.4x =对称,乙图像关于直线0.8x =对称, 所以10.4μ=,20.8μ=,故A 正确,C 错误, 因为甲图像比乙图像更“高瘦”,所以甲类水果的质量比乙类水果的质量更集中于平均值左右,故B 正确, 因为乙图像的最大值为1.99,即 1.99,所以2 1.99σ≠,故D 错误, 故选:AB.10.(2020·江苏亭湖�盐城中学高二月考)设火箭发射失败的概率为0.01,若发射10次,其中失败的次数为X ,则下列结论正确的是( ) A .()0.1E X = B .10()0.010.99k k P X k -==⨯C .()0.99V X =D .1010()0.010.99k k kP X k C -==⨯⨯【答案】AD 【解析】∵~(10,0.01)X B ,∴()100.010.1E X =⨯=,()100.010.990.099V X =⨯⨯=.∴1010()0.010.99k k kP X k C -==⨯⨯. 故选:AD11.(2020·山东任城�济宁一中高二期中)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( ) A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128【答案】ACD 【解析】由题得小汽车的普及率为34, A. 这5个家庭均有小汽车的概率为53()4=2431024,所以该命题是真命题; B. 这5个家庭中,恰有三个家庭拥有小汽车的概率为332531135()()44512C =,所以该命题是假命题;C. 这5个家庭平均有3.75个家庭拥有小汽车,是真命题;D. 这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为4455313()()()444C +=81128,所以该命题是真命题. 故选:ACD.12.(多选题)(2020·江苏徐州·期末)某计算机程序每运行一次都随机出现一个五位二进制数12345A a a a a a =(例如10100)其中A 的各位数中()2,3,4,5k a k =出现0的概率为13,出现1的概率为23,记2345X a a a a =+++,则当程序运行一次时( )A .X 服从二项分布B .()8181P X ==C .X 的期望()83E X = D .X 的方差()83V X =【答案】ABC 【解析】由于二进制数A 的特点知每一个数位上的数字只能填0,1,且每个数位上的数字再填时互不影响,故以后的5位数中后4位的所有结果有4类: ①后4个数出现0,X 0=,记其概率为411(0)()381P X ===;②后4个数位只出现1个1,1X =,记其概率为134218(1)()()3381P X C ===;③后4位数位出现2个1,2X =,记其概率为22242124(2)()()3381P X C ===,④后4个数为上出现3个1,记其概率为3342132(3)()()3381P X C ===,⑤后4个数为都出现1,4X =,记其概率为4232(4)()381P X ===,故2~(4,)3X B ,故A 正确;又134218(1)()()3381P X C ===,故B 正确;2~(4,)3X B ,28()433E X ∴=⨯=,故C 正确;2~(4,)3X B ,X ∴的方差218()4339V X =⨯⨯=,故D 错误.故选:ABC . 三、填空题13.设随机变量1~6,3X B ⎛⎫ ⎪⎝⎭,则(24)P X <≤=________. 【答案】220729【解析】因为随机变量1~(6,)3X B ,所以(24)P X <≤(3)P X ==(4)P X +=33634464661111()(1)()(1)3333C C --=-+-220729=. 故答案为:220729. 14.(2020·陕西临渭·期末(理)) 设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 . 【答案】73【解析】因为随机变量ξ服从正态分布N (3,4) P (ξ<2a -3)=P (ξ>a +2),所以与关于对称,所以,所以,所以. 15.(2020·广东广州·期末)已知每天从甲地去乙地的旅客人数X 服从正态分布()2500,50N ,则一天中从甲地去乙地的旅客人数超过600人的概率为______. (结果精确到0.001,参考数据:若()2,XN μσ,则()0.68P X μσμσ-<≤+≈,()220.95P X μσμσ-<≤+≈)【答案】0.025 【解析】 因为()2500,50xN ,其中500μ=,50σ=,()220.95P X μσμσ-<≤+≈所以()()()110.956000.22025222P P P x X x μσμσμσ--<->=>==≤++≈.故答案为:0.025.16.(2020·天津高考真题)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________. 【答案】16 23【解析】甲、乙两球落入盒子的概率分别为11,23, 且两球是否落入盒子互不影响, 所以甲、乙都落入盒子的概率为111236⨯=, 甲、乙两球都不落入盒子的概率为111(1)(1)233-⨯-=, 所以甲、乙两球至少有一个落入盒子的概率为23. 故答案为:16;23. 四、解答题17.(2019·四川高二期末(理))为了促进学生的全面发展,某市教育局要求本市所有学校重视社团文化建设,2014年该市某中学的某新生想通过考核选拨进入该校的“电影社”和“心理社”,已知该同学通过考核选拨进入这两个社团成功与否相互独立根据报名情况和他本人的才艺能力,两个社团都能进入的概率为124,至少进入一个社团的概率为38,并且进入“电影社”的概率小于进入“心理社”的概率(Ⅰ)求该同学分别通过选拨进入“电影社”的概率1p 和进入心理社的概率2p ;(Ⅱ)学校根据这两个社团的活动安排情况,对进入“电影社”的同学增加1个校本选修课学分,对进入“心理社”的同学增加0.5个校本选修课学分.求该同学在社团方面获得校本选修课学分分数不低于1分的概率.【答案】(1)121614p p ⎧=⎪⎪⎨⎪=⎪⎩(2)16【解析】(Ⅰ)根据题意得:()()121212431118p p p p ⎧=⎪⎪⎨⎪---=⎪⎩,且p 1<p 2, ∴p 116=,p 214=. (Ⅱ)令该同学在社团方面获得校本选修课加分分数为ξ,P (ξ=1)=(114-)1168⨯=, P (ξ=1.5)1114624=⨯=,∴该同学在社团方面获得校本选修课学分分数不低于1分的概率:p 1118246=+=. 18.(2020·河北邢台·高二期末)2019年,中华人民共和国成立70周年,为了庆祝建国70周年,某中学在全校进行了一次爱国主义知识竞赛,共1000名学生参加,答对题数(共60题)分布如下表所示:答对题数Y 近似服从正态分布()81N μ,,μ为这1000人答对题数的平均值(同一组数据用该组区间的中点值作为代表).(1)估计答对题数在(]1248,内的人数(精确到整数位). (2)学校为此次参加竞赛的学生制定如下奖励方案:每名同学可以获得2次抽奖机会,每次抽奖所得奖品的价值与对应的概率如下表所示.用X (单位:元)表示学生甲参与抽奖所得奖品的价值,求X 的分布列及数学期望. 附:若()2ZN μσ,,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=,()330.9974P Z μσμσ-<≤+=.【答案】(1)954(2)详见解析 【解析】(1)根据题意,可得510151852526535400451155525301000μ⨯+⨯+⨯+⨯+⨯+⨯==,则()1~8Y N 30,又123029=-⨯,483029=+⨯,所以()12480.9544P Y ≤≤=,所以10000.9544954⨯≈人.故答对题数在(]1248,内的人数约为954. (2)由条件可知,X 的可能取值为0,10,20,30,40.()239010100P X ⎛⎫===⎪⎝⎭;()123131010210P X C ==⨯⨯=; ()21213137202105100P X C ⎛⎫==+⨯⨯=⎪⎝⎭;()1211130255P X C ==⨯⨯=; ()21140525P X ⎛⎫===⎪⎝⎭. X 的分布列为10102030401810010100525EX =⨯+⨯+⨯+⨯+⨯=元. 19.(2020·辽宁葫芦岛·期末)随着科学技术和电子商务的发展,近年来人们的购物方式发生了翻天覆地的变化,网络购物成为当下流行的购物方式,同时网络购物对实体店铺产生了很大的冲击,除了各大商场逐渐萧条外,居民区的蔬菜水果市场受到一定程度的影响.统计部门为了解市场情况以及查找原因,在民安社区对上个月“去市场购买水果蔬菜”的家庭(方式甲)和“利用网络购买水果蔬菜”的家庭(方式乙)进行抽样调查统计:从民安社区随机抽取了100户家庭进行调查研究,将消费金额(元)按照大于0元且不超过1000元、超过1000元且不超过2000元、超过2000元分别定义为低消费群体、中等消费群体和高消费群体,同时发现基本不购买水果蔬菜的家庭有5户.统计结果如下表:(1)从民安社区随机抽取户,估计这户居民上个月两种购买方式都使用的概率;(2)从样本中的高消费群体里任取3户,用ξ来表示这3户中仅用方式乙的家庭,求ξ的分布列和数学期望;(3)将上个月样本数据中的频率视为概率.现从民安社区(民安社区家庭数量很多)随机抽取4户,发现有3户本月的消费金额都在2000元以上.根据抽取结果,能否认为高消费群体有变化?说明理由.【答案】(1)25;(2)分布列见解析,()32E ξ=;(3)答案见解析. 【解析】(1)依样本数据可知两种购买方式都使用的人数为40户,样本数量为100,所以可估计上个月两种购买方式都使用的概率4021005P ==; (2)根据题意,样本中高消费群体共6户,仅用方式乙购买的家庭3户,所以,随机变量ξ的可能取值有0、1、2、3,()0333361020C C P C ξ===,()1233369120C C P C ξ===,()2133369220C C P C ξ===,()3033361320C C P C ξ===. 所以,随机变量ξ的分布列如下表所示:所以,随机变量ξ的数学期望为()199130123202020202E ξ=⨯+⨯+⨯+⨯=; (3)设事件A =“从该社区抽取1户消费金额在2000元以上家庭”,则()6310050P A ==, 抽取4次,可设高消费家庭出现次数为X ,则有34,50XB ⎛⎫ ⎪⎝⎭, 所以()3344347507630.0008505050P X C ⎛⎫==⋅⋅=≈ ⎪⎝⎭, 由于()3P X =比较小,概率小的时间一般不容易发生,一旦发生,就有理由认为本月的支付金额大于2000元的人数发生了变化,所以可以认为有变化.20.(2019·山西高三月考(理))2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。
二项分布与正态分布二项分布正态分布的性质与应用二项分布与正态分布概述:统计学中,二项分布和正态分布都是重要的概率分布。
它们在不同领域有着广泛的应用。
本文将介绍二项分布和正态分布的性质以及它们在实际问题中的应用。
一、二项分布的性质与应用1. 二项分布的定义:二项分布是一种离散概率分布,用于描述在重复进行相同试验的情况下,成功的次数的概率分布。
它的概率密度函数为:P(X=k)=C(n,k)p^k(1-p)^(n-k),其中n为试验次数,k为成功次数,p为每次试验成功的概率。
2. 二项分布的性质:(1)期望和方差:对于二项分布,其期望值μ=np,方差σ^2=np(1-p)。
这意味着在大量重复试验中,预期的成功次数接近于np,方差的开方近似于标准差。
(2)对称性:当p=0.5时,二项分布是对称的。
(3)独立性:在独立重复试验中,每次试验的结果不会影响其他试验的结果。
3. 二项分布的应用:(1)品质控制:二项分布可用于质量检验中,判断产品合格与否的概率。
(2)医学研究:例如,某种药物的治疗成功率可以用二项分布进行建模和分析。
(3)市场调研:根据市场调查的结果,可以利用二项分布对样本群体的属性进行推断。
二、正态分布的性质与应用1. 正态分布的定义:正态分布是一种连续概率分布,是自然界中许多随机现象的近似分布。
正态分布的概率密度函数为:f(x)=1/(σsqrt(2π)) * exp(-(x-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
2. 正态分布的性质:(1)均值与标准差:正态分布完全由均值μ和标准差σ确定。
均值决定了分布的位置,标准差决定了分布的宽度。
(2)对称性:正态分布是关于均值对称的,曲线在均值处达到峰值。
(3)中心极限定理:大量独立随机变量的和趋近于正态分布。
3. 正态分布的应用:(1)统计推断:正态分布在统计学中起到重要的作用,例如,利用正态分布进行参数估计和假设检验。
(2)风险管理:正态分布在金融领域常用于模拟资产回报率和风险价值的计算。
二项分布与超几何分布辨析二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;333141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.7162.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.19273.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答) 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 答案:不合格三、解答题9.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.10.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.参考答案1、解析:P (ξ=3)=C 36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2、解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13 ,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D.3、解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4、解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p ,∴p ≥0.4.又∵p <1,∴0.4≤p <15、解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0)=P (ξ>4)=1-0.84=0.16.故选A.6、解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 7、解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:8、解析:根据3σ原则,在4-3×0.5=2.5~4+3×0.5=5.5之外为异常,所以这批零件不合格. 9、解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,i =1,2. B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,i =1,2. C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10、解析:(1)P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445。
二项分布还是超几何分布二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用 这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为51,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.331464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴; 12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为(2)不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P Y C ===.因此,Y 的分布列为某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4(1)根据频率分布直方图,求重量超过505克的产品数量, (2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列;(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。
17.:(1)505⨯⨯⨯⨯解重量超过克的产品数量是:40(0.055+0.015)=400.3=12.(2)Y 的分布列为:22353(3)10373087*********3087.10000设所取的5件产品中,重量超过505克的产品件数为随机变量Y,则YB(5,),从而P(Y=2)=C ()()=.即恰有2件产品的重量超过505克的概率为超几何分布与二项分布特点(A)判断一个随机变量是否服从超几何分布,关键是要看随机变量是否满足超几何分布的特征:一个总体(共有N 个)内含有两种不同的事物()A M 个、()B N M -个,任取n 个,其中恰有X 个Y 012P228240C C 112812240C C C ⋅ 212240C CA .符合该条件的即可断定是超几何分布,按照超几何分布的分布列()k n k M N MnNC C P X k C --== (0,1,2,,k m =)进行处理就可以了.:①在一次试验中试验结果只有A 与A 这两个,且事件A 发生的概 率为p ,事件A 发生的概率为1p -;②试验可以独立重复地进行,即每次重复做一次试验,事件A 发生 的概率都是同一常数p ,事件A 发生的概率为1p -.2个例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.例1与例2中的EX=EY=二项分布、超几何分布、正态分布练习题一、选择题1.设随机变量ξ~B ⎝ ⎛⎭⎪⎫6,12,则P (ξ=3)的值为( )2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球 出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝ ⎛⎭⎪⎫3810·⎝ ⎛⎭⎪⎫582B .C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582·38 C .C 911⎝ ⎛⎭⎪⎫589·⎝ ⎛⎭⎪⎫382D .C 911⎝ ⎛⎭⎪⎫389·⎝ ⎛⎭⎪⎫5824.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则 事件A 在一次试验中发生的概率p 的取值范围是( )A .[,1)B .(0,]C .(0,]D .[,1) 5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=,则P (ξ<0)=( ) A . B .0.32 C . D . 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.7.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为______. 8.某厂生产的圆柱形零件的外径ε~N (4,.质检人员从该厂生产的1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 三、解答题9、为了防止受到核污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮核 辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率 为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响. (Ⅰ)求该产品不能销售的概率;(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布 列,并求出均值E (X ).10、为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽样100名志愿者的年龄情况如下表所示.(Ⅰ)频率分布表中的①、②位置应填什么数据并在答题卡中补全频率分布直方图(如图),再根据频率分布直方图估计这500名志愿者中年龄在[3035,)岁的人数; (Ⅱ)在抽出的100名志愿者中按年龄再采用分层抽样法抽取20人参加中心广场的宣传活动,从这20人中选取2名志愿者担任主要负责人,记这2名志愿者中“年龄低于30岁” 的人数为X ,求X 的分布列及数学期望.频率组距20 25 30 35 40 45 年11、2015年南京青奥组委会在某学院招募了12名男志愿者和18名女志愿者。
二项分布与正态分布一、选择题1.(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A.0.8B.0.75C.0.6D.0.45解析 记事件A 表示“一天的空气质量为优良”,事件B 表示“随后一天的空气质量为优良”,P (A )=0.75,P (AB )=0.6.由条件概率,得P (B |A )=P (AB )P (A )=0.60.75=0.8.答案 A2.(2017·衡水模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是( ) A.18B.38C.58D.78解析 三次均反面朝上的概率是⎝ ⎛⎭⎪⎫123=18,所以至少一次正面朝上的概率是1-18=78. 答案 D3.(2016·青岛一模)设随机变量X 服从正态分布N (1,σ2),则函数f (x )=x 2+2x +X 不存在零点的概率为( ) A.14B.13C.12D.23解析 ∵函数f (x )=x 2+2x +X 不存在零点,∴Δ=4-4X <0,∴X >1,∵X ~N (1,σ2),∴P (X >1)=12,故选C.答案 C4.(2017·武昌区模拟)某居民小区有两个相互独立的安全防范系统A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为18和p ,若在任意时刻恰有一个系统不发生故障的概率为940,则p =( ) A.110B.215C.16D.15解析 由题意得18(1-p )+⎝ ⎛⎭⎪⎫1-18p =940,∴p =215,故选B.答案 B5.(2016·天津南开调研)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( ) A.C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B.C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238C.C 911⎝ ⎛⎭⎪⎫582⎝ ⎛⎭⎪⎫382D.C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为38,所以P (X =12)=C 911⎝ ⎛⎭⎪⎫389×⎝ ⎛⎭⎪⎫582×38.答案 D 二、填空题6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.解析 设种子发芽为事件A ,种子成长为幼苗为事件B (发芽又成活为幼苗). 依题意P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72. 答案 0.727.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X ≤900的概率为p 0,则p 0=________.解析 由X ~N (800,502),知μ=800,σ=50, 又P (700<X ≤900)=0.954 4,则P (800<X ≤900)=12×0.954 4=0.477 2.答案 0.477 28.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927. 答案1927三、解答题9.(2015·湖南卷)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖. (1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.解 (1)记事件A 1为“从甲箱中摸出的1个球是红球”,A 2为“从乙箱中摸出的1个球是红球”,B 为“顾客抽奖1次能获奖”, 则B 表示“顾客抽奖1次没有获奖”.由题意A 1与A 2相互独立,则A 1与A 2相互独立,且B =A 1·A 2, 因为P (A 1)=410=25,P (A 2)=510=12, 所以P (B )=P (A 1·A 2)=⎝ ⎛⎭⎪⎫1-25·⎝ ⎛⎭⎪⎫1-12=310,故所求事件的概率P (B )=1-P (B )=1-310=710. (2)设“顾客抽奖一次获得一等奖”为事件C , 由P (C )=P (A 1·A 2) =P (A 1)·P (A 2)=15,顾客抽奖3次可视为3次独立重复试验,则X ~B ⎝ ⎛⎭⎪⎫3,15,于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125,P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125,P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125.故X 的分布列为10.检、复检、文考(文化考试)、政审.若某校甲、乙、丙三位同学都顺利通过了前两关,根据分析甲、乙、丙三位同学通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,由于他们平时表现较好,都能通过政审关,若后三关之间通过与否没有影响. (1)求甲、乙、丙三位同学中恰好有一人通过复检的概率; (2)设只要通过后三关就可以被录取,求录取人数X 的分布列.解 (1)设A ,B ,C 分别表示事件“甲、乙、丙通过复检”,则所求概率P =P (A B C )+P (A B C )+P (A B C )=0.5×(1-0.6)×(1-0.75)+(1-0.5)×0.6×(1-0.75)+(1-0.5)×(1-0.6)×0.75=0.275.(2)甲被录取的概率为P 甲=0.5×0.6=0.3,同理P 乙=0.6×0.5=0.3,P 丙=0.75×0.4=0.3.∴甲、乙、丙每位同学被录取的概率均为0.3,故可看成是独立重复试验,即X~B(3,0.3),X的可能取值为0,1,2,3,其中P(X=k)=C k3(0.3)k·(1-0.3)3-k.故P(X=0)=C03×0.30×(1-0.3)3=0.343,P(X=1)=C13×0.3×(1-0.3)2=0.441,P(X=2)=C23×0.32×(1-0.3)=0.189,P(X=3)=C33×0.33=0.027,故X的分布列为11.分别为x,y,设事件A为“x+y为偶数”,事件B为“x≠y”,则概率P(B|A)=( )A.12B.14C.13D.23解析若x+y为偶数,则x,y两数均为奇数或均为偶数.故P(A)=2×3×3 6×6=1 2,又A,B同时发生,基本事件一共有2×3×3-6=12个,∴P(AB)=126×6=1 3,∴P(B|A)=P(AB)P(A)=1312=23.答案 D12.(2017·长沙模拟)排球比赛的规则是5局3胜制(无平局),甲在每局比赛获胜的概率都为23,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A.49B.827C.1927D.4081解析乙队3∶0获胜的概率为13,乙队3∶1获胜的概率为23×13=29,乙队3∶2获胜的概率为⎝ ⎛⎭⎪⎫232×13=427.∴最后乙队获胜的概率为P =13+29+427=1927,故选C. 答案 C13.某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.解析 设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(AB+AB +AB )C ,∴该部件的使用寿命超过1 000小时的概率P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38. 答案3814.(2016·山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星对”得3分;如果只有一人猜对,则“星对”得1分;如果两人都没猜对,则“星对”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率; (2)“星队”两轮得分之和X 的分布列.解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”, 记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D . 由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D ) =P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为。
11.3 二项分布与正态分布1.(2022届成都蓉城名校联盟联考一,4)若随机事件A,B 满足P(A)=13,P(B)=12,P(A+B)=34,则P(A|B)=( )A.29B.23C.14D.16答案 D 因为P(A+B)=P(A)+P(B)-P(AB),所以P(AB)=P(A)+P(B)-P(A+B)=13+12-34=112,所以P(A|B)=P(AB)P(B)=16,故选D.2.(2022届昆明一中双基检测三,8)某同学从家到学校要经过三个十字路口,设各路口信号灯工作相互独立,该同学在各路口遇到红灯的概率分别为12,13,14,则该同学从家到学校至少遇到一次红灯的概率为( )A.124B.1124C.23D.34答案 D 该同学从家到学校至少遇到一次红灯的概率为1-(1−12)×(1−13)×(1−14)=34,故选D.3.(2022届成都蓉城名校联盟联考一,7)已知随机变量X~B(n,p),E(X)=2,D(X)=23,则P(X ≥2)=( )A.2027B.23C.1627D.1327答案 A 由题意知E(X)=np=2,D(X)=np(1-p)=23,联立解得n=3,p=23,所以P(X ≥2)=C 32×(23)2×(1−23)+C 33×(23)3=2027,故选A. 4.(2022届河南重点中学模拟一,7)2021年国庆节期间,小李报名参加市电视台举办的“爱我祖国”有奖竞答活动,活动分两轮回答问题.第一轮从5个题目中随机选取2个题目回答,若2个回答都正确,则本轮得奖金500元;若仅有1个回答正确,则本轮得奖金200元;若两个回答都不正确,则没有奖金且被淘汰.有资格进入第二轮者,最多回答两个问题,先从5个题目中随机选取1个题目回答,若回答错误,则本轮奖金为零且被淘汰;若回答正确,则本题回答得奖金2 000元,再从剩余4个题目中随机选1个,回答正确,本题得奖金3 000元,回答错误,本题没有奖金.已知小李第一轮5个题目中3个能回答正确,第二轮每个题目回答正确的概率为25(每轮选题相互独立),则小李获得2 500元的概率为( ) A.54625 B.9125 C.18125 D.925答案 B 若小李获得2 500元奖金,则第一轮2个题目回答都正确,第二轮第1个题目回答正确,第2个题目回答错误,所以所求概率为C 32C 52×25×(1−25)=9125,故选B.5.(2021安徽宣城调研,8)围棋起源于中国,据先秦典籍《世本》记载:“尧造围棋,丹朱善之”.围棋至今已有四千多年历史,蕴含着中华文化的丰富内涵.在某次国际围棋比赛中,甲、乙两人进入最后决赛.比赛采取五局三胜制,即先胜三局的一方获得比赛冠军(假设没有平局),比赛结束.假设每局比赛乙胜甲的概率都为23,且各局比赛的胜负互不影响,则在不超过4局的比赛中甲获得冠军的概率为( ) A.19 B.1781 C.827 D.1627答案 A 在不超过4局的比赛中甲获得冠军包含两种情况: ①甲前三局全胜,概率为P 1=(13)3=127;②前三局甲两胜一负,第四局甲胜,概率为P 2=C 32(13)2×23×13=227.∴在不超过4局的比赛中甲获得冠军的概率为P=P 1+P 2=127+227=19.6.(2022届长春外国语学校期中,4)已知服从正态分布N(μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别约为68.3%,95.4%和99.7%.某校为高一年级1 000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布N(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( ) A.683套 B.954套 C.972套 D.997套答案 B 因为学生的身高(单位:cm)服从正态分布N(165,52),所以μ=165,σ=5,身高在155~175 cm 范围内即在(μ-2σ,μ+2σ)内,可知概率约为95.4%,所以身高在155~175 cm 范围内的校服大约要定制1 000×95.4%=954套.故选B.7.(2022届河南部分名校阶段测,10)已知随机变量X,Y,Z 满足X~N(3,σ2),Y~N(1,σ2),Z=Y-1,且P(X>4)=0.1,则P(Z 2<1)的值为( )A.0.1B.0.2C.0.8D.0.9答案 C 因随机变量X,Y 满足X~N(3,σ2),Y~N(1,σ2),则随机变量X 和Y 所对应的正态曲线的形状相同,曲线的对称轴分别为直线x=3和x=1,因此,P(Y>2)=P(X>4)=0.1,而Z=Y-1,则P(Z>1)=P(Y-1>1)=P(Y>2)=0.1,于是得P(Z 2<1)=P(-1<Z<1)=1-0.1×2=0.8,所以P(Z 2<1)的值为0.8.故选C.8.(2021安徽蚌埠二模,6)已知随机变量X 服从正态分布N(2,σ2),且P(X<1)·P(X>3)=19,则P(1<X<2)=( )A.16B.14C.13D.12答案 A 由正态分布X~N(2,σ2)知,对称轴为μ=2,由对称性,知P(X<1)=P(X>3)=13,则P(1<X<2)=12P(1<X<3)=12×(1−13-13)=16.9.(多选)(2021山东青岛调研,12)在国家精准扶贫政策的支持下,某农户贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰,若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布N(μ,302)和N(280,402),则下列选项正确的是( )附:若随机变量X 服从正态分布N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.682 7)A.若红玫瑰日销售量范围在(μ-30,280]的概率是0.682 7,则红玫瑰日销售量的平均数约为250B.红玫瑰日销售量比白玫瑰日销售量更集中C.白玫瑰日销售量比红玫瑰日销售量更集中D.白玫瑰日销售量范围在(280,320]的概率约为0.341 35答案ABD 对于A,由μ+30=280,得μ=250,故A 正确;对于B 和C,σ越小数据越集中,因为30<40,所以红玫瑰日销售量比白玫瑰日销售量更集中,故B 正确,C 不正确.对于D,P(280<X ≤320)≈0.682 7×12=0.341 35,故D 正确,故选ABD.。
§10.6 二项分布与正态分布课时精练1.甲、乙两个袋子中装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球,现分别从甲、乙两袋中各抽取1个球,则取出的两个球都是红球的概率为( ) A.512 B.56 C.19 D.1318 答案 C解析 由题意知,“从甲袋中取出红球”和“从乙袋中取出红球”两个事件相互独立, 从甲袋中取出红球的概率为46=23,从乙袋中取出红球的概率为16,故所求事件的概率为23×16=19.2.设随机变量X ~B ⎝⎛⎭⎫6,12,则P (X =3)等于( ) A.516 B.316 C.58 D.38 答案 A解析 P (X =3)=C 36×⎝⎛⎭⎫123×⎝⎛⎭⎫123=2064=516. 3.(2021·昆明诊断)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( ) A.25 B.35 C.18125 D.54125 答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次取到黄球的概率P 1=35,∴3次中恰有2次抽到黄球的概率P =C 23×⎝⎛⎭⎫352×⎝⎛⎭⎫1-35=54125. 4.一试验田某种作物一株生长果实个数x 服从正态分布N (90,σ2),且P (x <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1C .0.3D .0.21 答案 B解析 ∵x ~N (90,σ2),且P (x <70)=0.2,∴P (x >110)=0.2,∴P (90≤x ≤110)=0.5-0.2=0.3, ∴X ~B (10,0.3),X 的方差为10×0.3×(1-0.3)=2.1.5.(多选)已知随机变量X 服从正态分布N (100,102),则下列选项正确的是( )(参考数值:随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)≈0.682 7),P (μ-2σ<ξ<μ+2σ)≈0.954 5,P (μ-3σ<ξ<μ+3σ)≈0.997 3) A .E (X )=100 B .D (X )=100C .P (X ≥90)≈0.841 35D .P (X ≤120)≈0.998 65答案 ABC解析 ∵随机变量X 服从正态分布N (100,102),∴正态曲线关于x =100对称,且E (X )=100,D (X )=102=100, 根据题意可得,P (90<x <110)≈0.682 7,P (80<x <120)≈0.954 5, ∴P (x ≥90)≈0.5+12×0.682 7=0.841 35,故C 正确;P (x ≤120)≈0.5+12×0.954 5=0.977 25,故D 错误.而A ,B 都正确.故选ABC.6.(多选)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .P (B |A 1)=511C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件 答案 BD解析 易见A 1,A 2,A 3是两两互斥的事件,P (B )=P (BA 1)+P (BA 2)+P (BA 3)=510×511+210×411+310×411=922.故选BD.7.(2021·汕头模拟)甲、乙两人参加“社会主义价值观”知识竞赛,甲、乙两人能荣获一等奖的概率分别为23和34,甲、乙两人是否获得一等奖相互独立,则这两个人中恰有一人获得一等奖的概率为________.答案512解析 根据题意,恰有一人获得一等奖就是甲获奖乙没获奖或甲没获奖乙获奖,则所求概率是23×⎝⎛⎭⎫1-34+34×⎝⎛⎭⎫1-23=512. 8.(2021·宁波模拟)一个箱子中装有形状完全相同的5个白球和n (n ∈N *)个黑球.现从中有放回地摸取4次,每次都是随机摸取一球,设摸得白球个数为X ,若D (X )=1,则E (X )=____. 答案 2解析 由题意知,X ~B (4,p ),∵D (X )=4p (1-p )=1, ∴p =12,E (X )=4p =4×12=2.9.一个盒子里装有3种颜色,大小形状质地都一样的12个球,其中黄球5个,蓝球4个,绿球3个,现从盒子中随机取出两个球,记事件A =“取出的两个球颜色不同”,事件B =“取出一个黄球,一个蓝球”,则P (B |A )=________. 答案2047解析 因为P (AB )=C 15C 14C 212=1033,P (A )=C 15C 14+C 15C 13+C 14C 13C 212=4766,故P (B |A )=P (AB )P (A )=2047.10.甲、乙两名同学参加一项射击比赛,其中任何一人每射击一次击中目标得2分,未击中目标得0分.已知甲、乙两人射击互不影响,且命中率分别为35和p .若甲、乙两人各射击一次得分之和为2的概率为920,则p 的值为________.答案 34解析 设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B ,则P (A )=35,P (A )=1-35=25,P (B )=p ,P (B )=1-p .依题意得35×(1-p )+25×p =920,解得p =34.11.小李某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响,求: (1)这三列火车恰好有两列正点到达的概率; (2)这三列火车至少有一列正点到达的概率.解 用A ,B ,C 分别表示这三列火车正点到达的事件.则P (A )=0.8,P (B )=0.7,P (C )=0.9,所以P (A )=0.2,P (B )=0.3,P (C )=0.1.(1)由题意得A ,B ,C 之间互相独立,所以恰好有两列正点到达的概率为P 1=P (A BC )+P (A B C )+P (A B C )=P (A )P (B )P (C )+P (A )P (B )P (C )+P (A )P (B )P (C ) =0.2×0.7×0.9+0.8×0.3×0.9+0.8×0.7×0.1=0.398. (2)三列火车至少有一列正点到达的概率为P 2=1-P (A B C )=1-P (A )P (B )P (C )=1-0.2×0.3×0.1=0.994.12.一个盒子中装有大量形状、大小一样但质量不尽相同的小球,从中随机抽取50个作为样本,称出它们的质量(单位:克),质量分组区间为[5,15),[15,25),[25,35),[35,45],由此得到样本的质量频率分布直方图如图所示.(1)求a 的值,并根据样本数据,试估计盒子中小球质量的众数与平均数;(2)从盒子中随机抽取3个小球,其中质量在[5,15)内的小球个数为X ,求X 的分布列和均值.(以直方图中的频率作为概率)解 (1)由题意,得(0.02+0.032+a +0.018)×10=1,解得a =0.03.由频率分布直方图可估计盒子中小球质量的众数为20克,而50个样本中小球质量的平均数为 x =0.2×10+0.32×20+0.3×30+0.18×40=24.6(克). 故由样本估计总体,可估计盒子中小球质量的平均数为24.6克. (2)由题意知,该盒子中小球质量在[5,15)内的概率为15,则X ~B ⎝⎛⎭⎫3,15. X 的可能取值为0,1,2,3,则P (X =0)=C 03⎝⎛⎭⎫150×⎝⎛⎭⎫453=64125,P (X =1)=C 13⎝⎛⎭⎫151×⎝⎛⎭⎫452=48125, P (X =2)=C 23⎝⎛⎭⎫152×⎝⎛⎭⎫451=12125,P (X =3)=C 33⎝⎛⎭⎫153×⎝⎛⎭⎫450=1125. ∴X 的分布列为X 0 1 2 3 P6412548125121251125∴E (X )=0×64125+1×48125+2×12125+3×1125=35.⎝⎛⎭⎫或者E (X )=3×15=3513.如图,在网格状小地图中,一机器人从A (0,0)点出发,每秒向上或向右行走1格到相应顶点,已知向上的概率是23,向右的概率是13,则6秒后到达B (4,2)点的概率为( )A.16729B.80243C.4729D.20243 答案 D解析 根据题意可知,机器人每秒运动一次,则6秒共运动6次,若其从A (0,0)点出发,6秒后到达B (4,2),则需要向右走4步,向上走2步,故其6秒后到达B 的概率为C 26×⎝⎛⎭⎫232×⎝⎛⎭⎫134=60729=20243. 14.某中学三大社团“乐研社”“摄影社”和“外联社”招新,据资料统计,2021级高一新生通过考核选拔进入三个社团成功与否相互独立,新生小明通过考核选拔进入三个社团“乐研社”“摄影社”和“外联社”的概率依次为23,a ,b .已知三个社团他都能进入的概率为136,至少进入一个社团的概率为1924,则a +b =________.答案512解析 根据题意有⎩⎨⎧23ab =136,1-⎝⎛⎭⎫1-23(1-a )(1-b )=1924,解得a +b =512.15.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是( ) A.335 B.338 C.217 D .以上都不正确 答案 A解析 设事件A 表示“抽到的两张都是假币”,事件B 表示“抽到的两张至少有一张是假币”,则所求的概率即P (A |B ).又P (AB )=P (A )=C 24C 220,P (B )=C 24+C 14C 116C 220, 由公式P (A |B )=P (AB )P (B )=C 24C 24+C 14C 116=66+4×16=335. 16.某公司采购了一批零件,为了检测这批零件是否合格,从中随机抽测120个零件的长度(单位:分米),按数据分成[1.2,1.3),[1.3,1.4),[1.4,1.5),[1.5,1.6),[1.6,1.7),[1.7,1.8]这6组,得到如图所示的频率分布直方图,其中长度大于或等于1.59分米的零件有20个,其长度分别为1.59,1.59,1.61,1.61,1.62,1.63,1.63,1.64,1.65,1.65,1.65,1.65,1.66,1.67,1.68,1.69,1.69,1.71,1.72,1.74,以这120个零件在各组的长度的频率估计整批零件在各组长度的概率.(1)求这批零件的长度大于1.60分米的频率,并求频率分布直方图中m ,n ,t 的值; (2)若从这批零件中随机选取3个,记X 为抽取的零件长度在[1.4,1.6)的个数,求X 的分布列和均值;(3)若变量S 满足|P (μ-σ<S ≤μ+σ)-0.682 7|≤0.05且|P (μ-2σ<S ≤μ+2σ)-0.954 5|≤0.05,则称变量S 满足近似于正态分布N (μ,σ2)的概率分布.如果这批零件的长度Y (单位:分米)满足近似于正态分布N (1.5,0.01)的概率分布,则认为这批零件是合格的,将顺利被签收;否则,公司将拒绝签收.试问,该批零件能否被签收?解 (1)由题意可知120件样本零件中长度大于1.60分米的共有18件, 则这批零件的长度大于1.60分米的频率为18120=0.15,记Y 为零件的长度,则P (1.2≤Y <1.3)=P (1.7≤Y ≤1.8)=3120=0.025,P (1.3≤Y <1.4)=P (1.6≤Y <1.7)=15120=0.125,P (1.4≤Y <1.5)=P (1.5≤Y <1.6)=12×(1-2×0.025-2×0.125)=0.35,故m =0.0250.1=0.25,n =0.1250.1=1.25,t =0.350.1=3.5.(2)由(1)可知从这批零件中随机选取1件,长度在[1.4,1.6)的概率P =2×0.35=0.7. 且随机变量X 服从二项分布X ~B (3,0.7),则P (X =0)=C 03×(1-0.7)3=0.027, P (X =1)=C 13×(1-0.7)2×0.7=0.189,P(X=2)=C23×0.72×0.3=0.441,P(X=3)=C33×0.73=0.343,故随机变量X的分布列为E(X)=0×0.027+1×0.189+2×0.441+3×0.343=2.1(或E(X)=3×0.7=2.1).(3)由题意可知μ=1.5,σ=0.1,则P(μ-σ<Y≤μ+σ)=P(1.4<Y≤1.6)=0.7,P(μ-2σ<Y≤μ+2σ)=P(1.3<Y≤1.7)=0.125+0.35+0.35+0.125=0.95,因为|0.7-0.682 7|=0.017 3≤0.05,|0.95-0.954 5|=0.004 5≤0.05,所以这批零件的长度满足近似于正态分布N(1.5,0.01)的概率分布.应认为这批零件是合格的,将顺利被该公司签收.。
11.3二项分布与正态分布探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.条件概率、相互独立事件及二项分布(1)了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.(2)利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义2019课标Ⅰ,15,5分独立事件概率的求解互斥事件★★★2019课标Ⅱ,18,12分独立事件概率的求解互斥事件2018课标Ⅰ,20,12分二项分布的均值应用利用期望进行决策、导数2018课标Ⅲ,8,5分二项分布2017课标Ⅰ,19,12分正态分布、二项分布的概念和性质概率的计算以及数学期望2.正态分布2016课标Ⅱ,18,12分条件概率的计算离散型随机变量的均值2015课标Ⅰ,4,5分相互独立事件的概率分析解读本节主要命题点:(1)相互独立事件的概率,条件概率;(2)二项分布的概念、特征和相关计算;(3)正态分布的应用,一般以解答题的形式出现.解题时注意对相关概念的理解和相关公式的应用.本节在高考中一般以选择题、解答题形式出现,难度在中等以下,分值约为5分或12分.主要考查学生的数据分析能力.破考点练考向【考点集训】考点一条件概率、相互独立事件及二项分布1.(2020届辽宁沈阳铁路实验中学10月月考,7)已知箱中共有6个球,其中红球、黄球、蓝球各2个,每次从该箱中取1个球(每球取到的机会均等),取出后放回箱中,连续取三次.设事件A=“第一次取到的球和第二次取到的球颜色不相同”,事件B=“三次取到的球颜色都不相同”,则P(B|A)=()A.16B.13C.23D.1答案B2.(2019广东东莞模拟,5)假设东莞市市民使用移动支付的概率都为p,且每位市民使用支付方式都相互独立,已知X是其中10位市民使用移动支付的人数,且EX=6,则p的值为()A.0.4B.0.5C.0.6D.0.8答案C3.(2020届河南百校联盟9月联合检测,15)《中国诗词大会》是央视首档全民参与的诗词节目,节目以“赏中华诗词,寻文化基因,品生活之美”为宗旨.每一期的比赛包含以下环节:“个人追逐赛”“攻擂资格争夺赛”和“擂主争霸赛”,其中“擂主争霸赛”由“攻擂资格争夺赛”获胜者与上一场擂主进行比拼.“擂主争霸赛”共有九道抢答题,抢到并答对者得一分,答错则对方得一分,率先获得五分者即为该场擂主.在《中国诗词大会》的某一期节目中,若进行“擂主争霸赛”的甲乙两位选手每道抢答题得到一分的概率都是0.5,则抢答完七道题后甲成为擂主的概率为.答案15128考点二正态分布1.(2018广西柳州高级中学、南宁第二中学第二次联考,3)甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12),N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.甲类水果的平均质量μ1=0.4kgB.甲类水果的质量比乙类水果的质量更集中于平均值左右C.甲类水果的平均质量比乙类水果的平均质量小D.乙类水果的质量服从正态分布的参数σ2=1.99答案D2.(2020届百校联盟TOP209月联考,15)若随机变量ξ服从正态分布N(9,16),则P(-3<ξ≤13)=.参考数据:若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6827,P(μ-2σ<ξ≤μ+2σ)=0.9545,P(μ-3σ<ξ≤μ+3σ)=0.9973.答案0.84炼技法提能力【方法集训】方法1独立重复试验及二项分布问题的求解方法(2020届四川内江威远中学第一次月考,7)设随机变量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=59,则P(η≥2)的值为()A.1127B.3281C.6581D.1681答案A方法2正态分布及其应用方法1.(2020届四川成都外国语学校10月阶段性检测,18)苹果可按果径M(最大横切面直径,单位:mm)分为五个等级:M≥80时为1级,75≤M<80时为2级,70≤M<75时为3级,65≤M<70时为4级,M<65时为5级.不同果径的苹果,按照不同外观指标又分为特级果、一级果、二级果.某果园采摘苹果10000个,果径M均在[60,85]内,从中随机抽取2000个苹果进行统计分析,得到如图1所示的频率分布直方图,图2为抽取的样本中果径在80以上的苹果的等级分布统计图.(1)假设M服从正态分布N(μ,σ2),其中μ的近似值为果径的样本平均数x(同一组数据用该区间的中点值代替),σ2=35.4,试估计采摘的10000个苹果中,果径M位于区间(59.85,77.7)的苹果个数;(2)已知该果园2019年共收获果径在80以上的苹果800kg,且售价为特级果12元/kg,一级果10元/kg,二级果9元/kg.设该果园售出这800kg苹果的收入为X,以频率估计概率,求X的数学期望.附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6827,P(μ-2σ<Z<μ+2σ)=0.9545,√35.4≈5.95.解析(1)∵x=62.5×0.15+67.5×0.25+72.5×0.3+77.5×0.2+82.5×0.1=71.75,∴μ=71.75,σ=√35.4≈5.95.∴P(59.85<M<77.7)=P(μ-2σ<M<μ+σ)=12[P(μ-2σ<M<μ+2σ)+P(μ-σ<M<μ+σ)]=0.8186.故10 000个苹果中,果径M 在(59.85,77.7)中的苹果个数约8 186个.(2)由图2知,M ≥80的苹果中,特级、一级、二级的概率分别为0.2,0.5,0.3,则X 的分布列为 X 9 600 8 000 7 200 P 0.2 0.5 0.3∴E(X)=9 600×0.2+8 000×0.5+7 200×0.3=8 080.2.(2020届河南洛阳尖子生第一次联考,19)“过大年,吃水饺”是我国不少地方过春节的习俗.2019年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标值,所得频率分布直方图如下:(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中的数据用该组区间的中点值表示); (2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布N(μ,σ2),利用该正态分布,求Z 落在(14.55,38.45)内的概率;②将频率视为概率,若某人从该市某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于(10,30)内的包数为X,求X 的分布列和数学期望.附:计算得所抽查的这100包速冻水饺的质量指标值的标准差σ=√142.75≈11.95, 若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)≈0.682 7,P(μ-2σ<ξ≤μ+2σ)=0.954 5.解析 (1)所抽取的100包速冻水饺该项质量指标值的平均数x =5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5.(4分)(2)①∵Z 服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,(6分) ∴P(14.55<Z<38.45)=P(26.5-11.95<Z<26.5+11.95)=0.682 7, ∴Z 落在(14.55,38.45)内的概率是0.682 7.(8分) ②根据题意得X~B (4,12),P(X=0)=C 40(12)4=116;P(X=1)=C 41(12)4=14;P(X=2)=C 42(12)4=38; P(X=3)=C 43(12)4=14;P(X=4)=C 44(12)4=116.(10分)∴X 的分布列为X0 1 2 3 4 P 116 143814 116E(X)=4×12=2.(12分)【五年高考】A 组 统一命题·课标卷题组考点一 条件概率、相互独立事件及二项分布1.(2018课标Ⅲ,8,5分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.3 答案 B2.(2019课标Ⅰ,15,5分)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是 . 答案 0.183.(2017课标Ⅱ,13,5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX= . 答案 1.96考点二 正态分布(2017课标Ⅰ,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线在正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)试说明上述监控生产过程方法的合理性;(ii)下面是检验员在一天内抽取的16个零件的尺寸:9.9 510.129.969.9610.019.929.9810.0410. 269.9110.1310.029.2210.0410.059.95经计算得x=116∑i=116x i=9.97,s=√116∑i=116(x i-x)2=√116(∑i=116x i2-16x2)≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974.0.997416≈0.9592,√0.008≈0.09.解析(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望为EX=16×0.0026=0.0416.(2)(i)如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ii)由x=9.97,s≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02,因此μ的估计值为10.02.∑i=116x i 2=16×0.2122+16×9.972≈1 591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1 591.134-9.222-15×10.022)≈0.008,因此σ的估计值为√0.008≈0.09.思路分析 (1)利用正态分布、二项分布的性质可求出P(X ≥1)及X 的数学期望;(2)(i)先说明出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率,再说明监控生产过程方法的合理性;(ii)利用给出的数据可计算出区间(μ^-3σ^,μ^+3σ^),从而剔除(μ^-3σ^,μ^+3σ^)之外的数据,再利用剩余数据估计μ和σ.规律总结 (1)正态分布:若变量X 服从正态分布N(μ,σ2),则μ为样本的均值,正态曲线的对称轴为直线x=μ;σ为样本数据的标准差,体现了数据的稳定性.(2)二项分布:若变量X~B(n,p),则X 的期望EX=np,方差DX=np(1-p).B 组 自主命题·省(区、市)卷题组考点一 条件概率、相互独立事件及二项分布1.(2015广东,13,5分)已知随机变量X 服从二项分布B(n,p).若E(X)=30,D(X)=20,则p= . 答案132.(2019天津,16,13分)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解析 本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力,重点考查数学建模、数学运算的核心素养.(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X~B (3,23),从而P(X=k)=C 3k (23)k (13)3-k,k=0,1,2,3.所以,随机变量X 的分布列为X0 12 3 P 127 2949 827随机变量X 的数学期望E(X)=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y,则Y~B (3,23),且M={X=3,Y=1}∪{X=2,Y=0}. 由题意知事件{X=3,Y=1}与{X=2,Y=0}互斥,且事件{X=3}与{Y=1},事件{X=2}与{Y=0}均相互独立, 从而由(1)知P(M)=P({X=3,Y=1}∪{X=2,Y=0})=P(X=3,Y=1)+P(X=2,Y=0)=P(X=3)P(Y=1)+P(X=2)P(Y=0)=827×29+49×127=20243.思路分析 (1)观察关键词“均”“互不影响”“相互独立”,判断X~B(n,p),从而利用二项分布求出分布列与期望.(2)先将“天数恰好多2”用数学语言表示,即{X =3,Y =1或{X =2,Y =0.从而利用互斥与相互独立事件的概率计算公式求解.考点二 正态分布1.(2015湖北,4,5分)设X~N(μ1,σ12),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A.P(Y ≥μ2)≥P(Y ≥μ1)B.P(X ≤σ2)≤P(X ≤σ1)C.对任意正数t,P(X ≤t)≥P(Y ≤t)D.对任意正数t,P(X ≥t)≥P(Y ≥t)答案 C2.(2015山东,8,5分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%.) A.4.56% B.13.59% C.27.18%D.31.74%答案BC组教师专用题组考点一条件概率、相互独立事件及二项分布1.(2015课标Ⅰ,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312答案AA.0.8B.0.75C.0.6D.0.45答案A3.(2018北京,17,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.解析(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.故所求概率是50=0.025.2 000(2)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P(A B+A B)=P(A B)+P(A B)=P(A)(1-P(B))+(1-P(A))P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.4.(2017天津,16,13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解析 本题主要考查离散型随机变量的分布列与数学期望,事件的相互独立性,互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力. (1)随机变量X 的所有可能取值为0,1,2,3. P(X=0)=(1-12)×(1-13)×(1-14)=14,P(X=1)=12×1-13×1-14+1-12×13×1-14+(1-12)×(1-13)×14=1124, P(X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14, P(X=3)=12×13×14=124. 所以,随机变量X 的分布列为X 0 1 2 3P14 1124 14 124随机变量X 的数学期望E(X)=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为 P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.技巧点拨 解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及取各个值时对应的概率,只有正确理解随机变量取值的意义才能解决这个问题,理解随机变量取值的意义是解决这类问题的必要前提. 5.(2016课标Ⅱ,18,12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数0 1 2 3 4 ≥5 保 费0.85aa1.25a1.5a1.75a2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 ≥5 概 率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.解析 (1)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(3分)(2)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311. 因此所求概率为311.(7分)(3)记续保人本年度的保费为X 元,则X 的分布列为X 0.85a a 1.25a 1.5a 1.75a2a P 0.30 0.15 0.20 0.200.100.05EX=0.85a×0.30+a×0.15+1.25a×0.20+1.5a×0.20+1.75a×0.10+2a×0.05=1.23a. 因此续保人本年度的平均保费与基本保费的比值为1.23.(12分)思路分析 (1)将本年度保费高于基本保费a 对应的所有事件的概率相加即可; (2)利用条件概率公式求解;(3)求出续保人本年度保费的期望与基本保费的比值即可.6.(2016北京,16,13分)A,B,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时): A 班 6 6.5 77.5 8B 班 678910 11 12C 班3 4.5 6 7.5 9 10.5 1213.5(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取一人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A,B,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明)解析 (1)由题意知,抽出的20名学生中,来自C 班的学生有8名.根据分层抽样方法,C 班的学生人数估计为100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i=1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”, j=1,2,…,8. 由题意可知,P(A i )=15,i=1,2,…,5;P(C j )=18, j=1,2,…,8. P(A i C j )=P(A i )P(C j )=15×18=140,i=1,2,...,5, j=1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”.由题意知,E=A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4. 因此P(E)=P(A 1C 1)+P(A 1C 2)+P(A 2C 1)+P(A 2C 2)+P(A 2C 3)+P(A 3C 1)+P(A 3C 2)+P(A 3C 3)+P(A 4C 1)+P(A 4C 2)+P(A 4C 3)+P(A 5C 1)+P(A 5C 2)+P(A 5C 3)+P(A 5C 4)=15×140=38.(3)μ1<μ0.思路分析 (1)利用分层抽样的特征求出C 班的学生人数;(2)先找出甲、乙所有可能的搭配方式,再找出符合条件的搭配方式,其实质是古典概型;(3)将从A,B,C 三个班中抽取的样本数据分别与该班的平均数比较,进而作判断.本题考查抽样方法,互斥事件、相互独立事件的概率、平均数.属中档题.7.(2016山东,19,12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望EX.解析 (1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“‘星队’至少猜对3个成语”. 由题意,E=ABCD+A BCD+A B CD+AB C D+ABC D , 由事件的独立性与互斥性,得P(E)=P(ABCD)+P(A BCD)+P(A B CD)+P(AB C D)+P(ABC D )=P(A)P(B)P(C)P(D)+P(A )P(B)P(C)P(D)+P(A)P(B )·P(C)P(D)+P(A)P(B)P(C )P(D)+P(A)P(B)P(C)·P(D ) =34×23×34×23+2×(14×23×34×23+34×13×34×23) =23.所以“星队”至少猜对3个成语的概率为23. (2)由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P(X=0)=14×13×14×13=1144,P(X=1)=2×(34×13×14×13+14×23×14×13)=10144=572, P(X=2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P(X=3)=34×23×14×13+14×13×34×23=12144=112,P(X=4)=2×(34×23×34×13+34×23×14×23)=60144=512, P(X=6)=34×23×34×23=36144=14.可得随机变量X 的分布列为X 01 2 3 4 6 P114457225144 112 512 14所以数学期望EX=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 本题考查了随机事件发生的概率及离散型随机变量的分布列与数学期望,确定随机变量可能的取值是解题的关键.属于中档题.8.(2015湖北,20,12分)某厂用鲜牛奶在某台设备上生产A,B 两种奶制品,生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A,B 两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W 12 15 18 P0.30.50.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量. (1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.解析 (1)设每天A,B 两种产品的生产数量分别为x 吨,y 吨,相应的获利为z 元,则有{2x +1.5y ≤W,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0. ①目标函数为z=1 000x+1 200y.当W=12时,①表示的平面区域如图1,三个顶点分别为 A(0,0),B(2.4,4.8),C(6,0).将z=1 000x+1 200y 变形为y=-56x+z1 200,当x=2.4,y=4.8时,直线l:y=-56x+z 1 200在y 轴上的截距最大,最大获利Z=z max =2.4×1 000+4.8×1 200=8 160. 当W=15时,①表示的平面区域如图2,三个顶点分别为 A(0,0),B(3,6),C(7.5,0).将z=1 000x+1 200y 变形为y=-56x+z1 200,当x=3,y=6时,直线l:y=-56x+z1 200在y 轴上的截距最大, 最大获利Z=z max =3×1 000+6×1 200=10 200. 当W=18时,①表示的平面区域如图3, 四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).将z=1 000x+1 200y 变形为y=-56x+z1 200,当x=6,y=4时,直线l:y=-56x+z1 200在y 轴上的截距最大, 最大获利Z=z max =6×1 000+4×1 200=10 800. 故最大获利Z 的分布列为Z8 160 10 200 10 800 P0.3 0.5 0.2因此,E(Z)=8 160×0.3+10 200×0.5+10 800×0.2=9 708. (2)由(1)知,一天最大获利超过10 000元的概率 P(Z>10 000)=0.5+0.2=0.7,由二项分布知,3天中至少有1天最大获利超过10 000元的概率为1-(1-0.7)3=1-0.33=0.973.9.(2014大纲全国,20,12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.解析 记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2, B 表示事件:甲需使用设备, C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备. (1)D=A 1·B ·C+A 2·B+A 2·C,P(B)=0.6,P(C)=0.4,P(A i )=C 2i×0.52,i=0,1,2,(3分)所以P(D)=P(A 1·B ·C+A 2·B+A 2·B ·C) =P(A 1·B ·C)+P(A 2·B)+P(A 2··C) =P(A 1)P(B)P(C)+P(A 2)P(B)+P(A 2)P()P(C) =0.31.(6分)(2)X 的可能取值为0,1,2,3,4,则 P(X=0)=P(B ·A 0·C )=P(B )P(A 0)P(C ) =(1-0.6)×0.52×(1-0.4)=0.06, P(X=1)=P(B ·A 0·C +B ·A 0·C+B ·A 1·C )=P(B)P(A 0)P(C )+P(B )P(A 0)P(C)+P(B )P(A 1)P(C ) =0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25, P(X=4)=P(A 2·B ·C)=P(A 2)P(B)P(C)=0.52×0.6×0.4=0.06, P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4) =1-0.06-0.25-0.25-0.06=0.38,(10分)数学期望EX=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.(12分) 10.(2013课标Ⅰ,19,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验. 假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是不是优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X 的分布列及数学期望.解析 (1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B 1,第二次取出的1件产品是优质品为事件B 2,这批产品通过检验为事件A,依题意有A=(A 1B 1)∪(A 2B 2),且A 1B 1与A 2B 2互斥,所以P(A)=P(A 1B 1)+P(A 2B 2)=P(A 1)P(B 1|A 1)+P(A 2)P(B 2|A 2) =416×116+116×12=364.(2)X 可能的取值为400,500,800,并且 P(X=400)=1-416-116=1116, P(X=500)=116,P(X=800)=14. 所以X 的分布列为X 400500 800 P1116 116 14EX=400×1116+500×116+800×14=506.25.思路分析(1)设第一次取出的4件产品中恰有3件优质品为事件A 1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件全是优质品为事件B1,第二次取出的1件是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2)且A1B1与A2B2互斥,进而求解.(2)X可能的取值为400,500,800,分别求其对应的概率,进而可得分布列、期望.考点二正态分布(2014课标Ⅰ,18,12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(i)的结果,求EX.附:√150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.解析(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)(i)由(1)知,Z~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.思路分析(1)根据直方图求得样本平均数x和样本方差s2;(2)(i)由(1)知Z~N(200,150),从而得出概率.(ii)依题意知X~B(100,0.6826),从而求得EX.【三年模拟】一、选择题(每小题5分,共35分)1.(2020届吉林延边二中高三开学考试,10)甲、乙两人从1,2,3,…,15这15个数中,依次任取一个数(不放回),则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是()A.12B.715C.914D.815答案C2.(2020届吉林延边二中9月月考,7)某班有50名学生,一次数学考试的成绩ξ服从正态分布N(105,102),已知P(95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为()A.10B.9C.8D.7答案B3.(2020届重庆一中摸底考试,8)规定投掷飞镖3次为一轮,3次中至少两次投中8环以上的为优秀.现采用随机模拟试验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投镖未在8环以上,用1表示该次投镖在8环以上,再以每三个随机数作为一组,代表一轮的结果.例如:“101”代表第一次投镖在8环以上,第二次投镖未在8环以上,第三次投镖在8环以上,该结果代表这一轮投镖为优秀,“100”代表第一次投镖在8环以上,第二次和第三次投镖均未在8环以上,该结果代表这一轮投镖为不优秀.经随机模拟试验产生了如下10组随机数,据此估计,该选手投掷飞镖两轮,至少有一轮可以拿到优秀的概率是()101111011101010100100011111001A.625B.2125C.1225D.425答案B4.(2020届山东烟台第一中学第一次联考,4)首届中国国际进口博览会期间,甲、乙、丙三家中国企业都有意向购买同一种型号的机床设备,他们购买该机床设备的概率分别为12,13,14,且三家企业的购买结果相互之间没有影响,则三家企业中恰有1家购买该机床设备的概率是( ) A.2324B.524C.1124D.124答案 C5.(2019福建宁德二模,6)某校有1 000人参加某次模拟考试,其中数学考试成绩近似服从正态分布N(105,σ2)(σ>0),试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的15,则此次数学考试成绩在90分到105分之间的人数约为( ) A.150 B.200 C.300 D.400 答案 C6.(2019河南郑州二模,7)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N(-2,4)的密度曲线)的点的个数的估计值为( )(附:X~N(μ,σ2),则P(μ-σ<X ≤μ+σ)=0.682 7,P(μ-2σ<X ≤μ+2σ)=0.954 5)A.906B.2 718C.340D.3 413答案 C7.(2018山东济南外国语学校12月月考,4)“石头、剪刀、布”又称“猜丁壳”,是一种流行多年的猜拳游戏,起源于中国,然后传到日本、朝鲜等地,随着亚欧贸易的不断发展,它传到了欧洲,到了近代逐渐风靡世界.其游戏规则是:出拳之前双方齐喊口令,然后在语音刚落时同时出拳,握紧的拳头代表“石头”,食指和中指伸出代表“剪刀”,五指伸开代表“布”.“石头”胜“剪刀”,“剪刀”胜“布”,而“布”又胜“石头”.若所出的拳相同,则为和局.小军和大明两位同学进行“五局三胜制”的“石头、剪刀、布”游戏比赛,则小军和大明比赛至第四局小军胜出的概率是( ) A.127B.227C.281D.881。
第七章假设检验第一节二项分布二项分布的数学形式·二项分布的性质第二节统计检验的基本步骤建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布正态分布的数学形式·标准正态分布·正态分布下的面积·二项分布的正态近似法第四节中心极限定理抽样分布·总体参数与统计量·样本均值的抽样分布·中心极限定理第五节总体均值和成数的单样本检验σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验·关于总体成数的检验一、填空1.不论总体是否服从正态分布,只要样本容量n足够大,样本平均数的抽样分布就趋于(正态)分布。
2.统计检验时,被我们事先选定的可以犯第一类错误的概率,叫做检验的( 显著性水平,它决定了否定域的大小。
3.假设检验中若其他条件不变,显著性水平的取值越小,接受原假设的可能性越(大),原假设为真而被拒绝的概率越(小)。
4.二项分布的正态近似法,即以将B(x;n,p视为(( np ,npq查表进行计算。
5.已知连续型随机变量~(0,1,若概率P{≥}=0.10,则常数=()。
6.已知连续型随机变量~(2,9,函数值,则概率=()。
二、单项选择1.关于学生t分布,下面哪种说法不正确( B )。
A 要求随机样本B 适用于任何形式的总体分布C 可用于小样本D 可用样本标准差S代替总体标准差2.二项分布的数学期望为( C )。
A n(1-npB np(1- pC npD n(1- p。
3.处于正态分布概率密度函数与横轴之间、并且大于均值部分的面积为( D )。
A 大于0.5B -0.5C 1D 0.5。
4.假设检验的基本思想可用( C )来解释。
A 中心极限定理B 置信区间C 小概率事件D 正态分布的性质5.成数与成数方差的关系是(D)。
A 成数的数值越接近0,成数的方差越大B 成数的数值越接近0.3,成数的方差越大C 成数的数值越接近1,成数的方差越大D 成数的数值越接近0.5,成数的方差越大6.在统计检验中,那些不大可能的结果称为( D 。
如果这类结果真的发生了,我们将否定假设。
A 检验统计量B 显著性水平C 零假设D 否定域7.对于大样本双侧检验,如果根据显著性水平查正态分布表得Zα/2=1.96,则当零假设被否定时,犯第一类错误的概率是( C 。
A 20%B 10%C 5% D.1%8.关于二项分布,下面不正确的描述是( A )。
A 它为连续型随机变量的分布;B 它的图形当p=0.5时是对称的,当p≠ 0.5时是非对称的,而当n愈大时非对称性愈不明显;C 二项分布的数学期望==,变异数==;D 二项分布只受成功事件概率p和试验次数n两个参数变化的影响。
9.事件A在一次试验中发生的概率为,则在3次独立重复试验中,事件A恰好发生2次的概率为( .A BC (d10.设离散型随机变量~,若数学期望,方差,则参数的值为().A ,=0.6B ,=0.4(c,=0.3 (d,=0.2三、多项选择1.关于正态分布的性质,下面正确的说法是( AB )。
A 正态曲线以呈钟形对称,其均值、中位数和众数三者必定相等。
B 对于固定的值,不同均值的正态曲线的外形完全相同,差别只在于曲线在横轴方向上整体平移了一个位置。
C 对于固定的值,不同均值的正态曲线的外形完全相同,差别只在于曲线在横轴方向上整体平移了一个位置。
D 对于固定的值,值越大,正态曲线越陡峭。
2.下列概率论定理中,两个最为重要,也是统计推断的数理基础的是( CD )A 加法定理B 乘法定理C 大数定律D 中心极限定理E 贝叶斯定理。
3.统计推断的具体内容很广泛,归纳起来,主要是( BE )问题。
A 抽样分布B 参数估计C 方差分析D 回归分析E 假设检验4.下列关于假设检验的陈述正确的是( ACDE )。
A 假设检验实质上是对原假设进行检验;B 假设检验实质上是对备择假设进行检验;C 当拒绝原假设时,只能认为肯定它的根据尚不充分,而不是认为它绝对错误;D假设检验并不是根据样本结果简单地或直接地判断原假设和备择假设哪一个更有可能正确;E 当接受原假设时,只能认为否定它的根据尚不充分,而不是认为它绝对正确5.选择一个合适的检验统计量是假设检验中必不可少的一个步骤,其中“合适”实质上是指( ACE )A 选择的检验统计量应与原假设有关;B 选择的检验统计量应与备择假设有关;C 在原假设为真时,所选的检验统计量的抽样分布已知;D 在备择假设为真时,所选的检验统计量的抽样分布已知;E 所选的检验统计量的抽样分布已知,不含未知参数。
6.关于t检验,下面正确的说法是( BD )。
A t检验实际是解决大样本均值的检验问题;B t检验实际是解决小样本均值的检验问题;C t检验适用于任何总体分布;D t检验对正态总体适用;E t检验要求总体的已知。
四、名词解释1.零假设:概率分布的具体形式是由假设决定的,假设肯定不止一个。
在统计检验中,通常把被检验的那个假设称为零假设(或称原假设,用符号H0表示,并用它和其他备择假设(用符号H1表示相对比。
2.第一类错误:零假设Ho实际上是正确的,却被否定了。
3.第二类错误:零假设Ho实际上是错误的,却没有被否定。
4.显著性水平:能允许犯第一类错误的概率叫做检验的显著性水平,它决定了否定域的大小。
5.总体参数:6.检验统计量:检验统计量是关于样本的一个综合指标,但与参数估计中讨论的统计量有所不同,它不用作估测,而只用作检验。
7.中心极限定理:如果从一个具有均值和方差的总体(可以具有任何形式)中重复抽取容量为n 的随机样本,那么当n 变得很大时,样本均值的抽样分布接近正态,并具有均值和方差/n 。
五、判断题1.在同样的显著性水平的条件下,单侧检验较之双侧检验,可以在犯第一类错误的危险不变的情况下,减少犯第二类错误的危险。
(√ )2.统计检验可以帮助我们否定一个假设,却不能帮助我们肯定一个假设。
(√ )3.检验的显著性水平(用表示被定义为能允许犯第一类错误的概率,它决定了否定域的大小。
(√)4.第一类错误是,零假设H0实际上是错的,却没有被否定。
第二类错误则是,零假设H0实际上是正确的,却被否定了。
(×)5.每当方向能被预测的时候,在同样显著性水平的条件下,双侧检验比单侧检验更合适。
(×)六、计算题1.根据统计,北京市初婚年龄服从正态分布,其均值为25岁,标准差为5岁,问25岁到30岁之间结婚的人;其百分数为多少?【84.13%】2.共有5000个同龄人参加人寿保险,设死亡率为0.1%。
参加保险的人在年初应交纳保险费10元,死亡时家属可领2000元。
求保险公司一年内从这些保险的人中,获利不少于30000元的概率。
【98.75%】3.为了验证统计报表的正确性,作了共50人的抽样调查,人均收入的结果有:问能否证明统计报表中人均收入μ=880元是正确的(显著性水平α=0.05)。
【不能,因为Z=-3.03<-1.96,所以否定原假设μ=880】4.某单位统计报表显示,人均月收入为3030元,为了验证该统计报表的正确性,作了共100人的抽样调查,样本人均月收入为3060元,标准差为80元,问能否说明该统计报表显示的人均收入的数字有误(取显著性水平α=0.05。
【可以,因为Z=3.75〉1.96,所以可以拒绝原假设μ=3030,即可以认为统计报表有误】5.已知初婚年龄服从正态分布,根据9个人的抽样调查有:(岁),(岁)。
问是否可以认为该地区平均初婚年龄已超过20岁(α=0.05)?【可以,因为t=3.2998〉2.821,所以可以拒绝原假设μ=20,可以认为平均初婚年龄已超过20岁】6.某地区成人中吸烟者占75%,经过戒烟宣传之后,进行了抽样调查,发现了100名被调查的成人中,有63人是吸烟者,问戒烟宣传是否收到了成效?(α=0.05)【。
=-2.77<-1.65.所以拒绝原假设,接受备择假设。
】7.据原有资料,某城市居民彩电的拥有率为60%,现根据最新100户的抽样调查,彩电的拥有率为62%。
问能否认为彩电拥有率有所增长?(α=0.05)【不能,因为Z=0.408<1.65,所以接受原假设p=60%,不能认为彩电拥有率有所增长】8.一个社会心理学家试图通过实验来表明采取某种手段有助于增加群体的凝聚力。
但有16个小组,将它们配对成一个实验组和控制组,实验组和控制组各有8个小组,问怎样用二项分布去检验无效力的零假设,列出检验所需的零假设,计算抽样分布,用显著水平0.05,请指出否定域。
【在社会研究的实验法中,此为“双组实验设计”,其步骤是:1)用匹配或随机指派的方法将实验对象一半分到控制组一半分到实验组;2)对实验组实施实验刺激但不对控制组实施这种刺激;3)然后同时对控制组和实验组进行测量,即后测;4)在比较和分析两个组后测结果之间的差别,得出实验刺激的影响。
由此,我们先将16个组两两匹配,得到8个配对组(要使每个配对组在除实验变量之外的其他方面尽量相似)。
然后在每个配对组中任取一组安排于实验组,另一组安排于控制组。
接着,在4-8年的时间内,让分到实验组的8组人接受某种手段,如共同游戏,而控制组的8组人则没有这样做。
而后对每个配对组分别进行后度测量,并用“+”号表示实验组比控制组好的那些配对组,用“-”表示实验组比控制组差的那些配对组。
除非度量方法很粗燥,每配对组应该都能判断出差异。
这样便可以用二项分布做实验无效的检验了。
,,选用0.1的显著性水平。
,,所以否定域由7个“+”和8个“+”组成,即对每配对组进行后测度量,如出现7个“+”和或8个“+”时,在0.1的显著性水平上,我们将否定零假设,说明实验有效。
否则就不能否定零假设,也就是说实验无效】9.孟德尔遗传定律表明:在纯种红花豌豆与白花豌豆杂交后所生的,子二代豌豆中,红花对白花之比为3:1。
某次种植试验的结果为:红花豌豆352株,白花豌豆96株。
试在=0.05的显著性水平上,检定孟德尔定律。
【,。
,=1.75<1.96,所以保留原假设】10.一个样本容量为50的样本,具有均值10.6和标准差2.2,要求:1)请用单侧检验,显著性水平0.05检验总体均值为10.0的假设;【1.65<1.928,所以否定原假设,接受备择假设均值为10.6】2)请用双侧检验,显著性水平0.05检验总体均值为10.0的假设;【1.928<1.96,所以不能否定原假设,仍接受总体均值为10.0】3)请比较上述单、双侧检验犯第一类错误和犯第二类错误的情况。
【在方向可知时,同样犯第一类错误概率的情况下,单侧检验比双侧检验能减少犯第二类错误的概率】11.设要评价某重点中学教学质量情况,原计划升学率为60%,在高校录取工作结束后,现在一个由81个学生组成的随机样本中,发现升学率55%,用显著性水平为0.02,你能否就此得出该校的工作没有达到预期要求的结论。