磁性材料测量(5)—磁化强度M、磁极化强度J、磁导率μ
- 格式:doc
- 大小:153.00 KB
- 文档页数:2
永磁体基本性能参数永磁材料被外加磁场磁化后磁性不消失,可对外部空间提供稳定磁场。
钕铁硼永磁体常用的衡量指标有以下四种:磁极化强度(J)和磁化强度(M)现代磁学研究表明:一切磁现象都起源于电流。
磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。
这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。
因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。
定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm ,每单位材料体积内磁偶极矩的矢量和为磁极化强度J ,其单位为T (特斯拉,在CGS 单位制中,J 的单位为Gs ,1T=10000Gs )。
定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M ,其SI 单位为A/m ,CGS 单位为Gs(高斯)。
M 与J 的关系为:J=μ0M ,在CGS 单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI 单位制中,μ0=4π×10-7H/m (亨/米)。
②磁场强度H :指空间某处磁场的大小,用H 表示,它的单位是安/米(A/m ),与导线中电流强度成正比,与距导线的距离成反比。
③磁化强度M :指材料内部单位体积的磁矩矢量和,用M 表示,单位是安/米(A/m )。
它与磁感应强度和磁场强度有如下关系B=(M+H)μ0④磁感应强度B :磁感应强度B 的定义是:B=μ0(H+M),其中H 和M 分别是磁化强度和磁场强度,而μ0是真空导磁率。
磁感应强度又称为磁通密度,即单位面积内的磁通量。
单位是特斯拉(T )。
在各向同性线性媒质中,磁化强度M 和磁场强度H 成正比,M =XmH,Xm 是磁化率。
上式可改写成B=(1+Xm)μ0H =μr μ0H =μH式中μ=μr μ0称媒质的磁导率;μr=1+χm 称媒质的相对磁导率,为一纯数。
空间中磁场强度只与导线中电流及某位置距导线的距离有关,但不同材料的磁化强度不同,磁感应强度不同磁通量:当磁感应强度B均匀分布于磁体表面A时,磁通Φ的一般算式为Φ=B ×A。
磁性材料基本参数详解磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。
自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。
铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。
顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。
本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。
锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。
它是以氧化铁、氧化锌为主要成分的复合氧化物。
其工作频率在1kHz 至10MHz 之间。
主要用着开关电源的主变压器用磁芯. 。
随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。
但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。
磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。
使用频率可达100KHZ ,甚至更高。
但最适合于10KHZ 以下使用。
磁场强度H :磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。
它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。
均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示;使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N IH 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。
磁极化强度 J 磁化强度 M 剩磁 Jr Br 4、什么叫磁极化强度(J),什么叫磁化强度(M),二者有何区别?现代磁学研究表明:一切磁现象都起源于电流。
磁性材料也不例外,其铁磁现象是起源于材料内部原子的核外电子运动形成的微电流,亦称分子电流。
这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。
因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。
定义在真空中每单位外磁场对一个磁偶极子产生的最大力矩为磁偶极矩pm,每单位材料体积内磁偶极矩的矢量和为磁极化强度J,其单位为T(特斯拉,在CGS单位制中,J的单位为Gs,1T=10000Gs)。
定义一个磁偶极子的磁矩为pm/μ0,μ0为真空磁导率,每单位材料体积内磁矩的矢量和为磁化强度M,其SI单位为A/m,CGS单位为Gs(高斯)。
M与J的关系为:J=μ0M,在CGS单位制中,μ0=1,故磁极化强度与磁化强度的值相等;在SI单位制中,μ0=4π×10-7 H/m (亨/米)。
5、什么叫剩磁(Jr,Br),为什么在永磁材料的退磁曲线上任意测量点的磁极化强度J值和磁感应强度B值必然小于剩磁Jr和Br值?永磁材料在闭路状态下经外磁场磁化至饱和后,再撤消外磁场时,永磁材料的磁极化强度J和内部磁感应强度B并不会因外磁场H 的消失而消失,而会保持一定大小的值,该值即称为该材料的剩余磁极化强度Jr和剩余磁感应强度Br,统称剩磁。
剩磁Jr和Br的单位与磁极化强度和磁感应强度单位相同。
根据关系式(1-1)可知,在永磁材料的退磁曲线上,磁场H为0时,Jr=Br,磁场H为负值时,J与B不相等,便分成了J-H和B-H二条曲线。
从关系式(1-1)还可以看到,随着反向磁场H的增大,B从最大值Br=Jr变化到0,最后为负值,对于现代永磁材料,B退磁曲线的变化规律往往为直线;J退磁曲线的变化规律则不同:随着反向磁场H的增大,B值线性减小,由于B值的减小量总是大于或等于反向磁场H的增大量,故在J退磁曲线上的一定区域内可以保持相对平直的直线,但其J值总是小于Jr。
《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。
(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI 单位为A/m 。
CGS 单位:emu/cm 3。
换算关系:1 ×103 A/m = emu/cm 3。
(3) 磁极化强度 (J m ): 定义为单位体积内磁偶极矩矢量和。
其单位是:Wb ﹒m -2 (和磁感应强度 B 单位 T 一致)(4) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。
SI 单位是A ·m -1。
CGS 单位是奥斯特(Oe)。
换算关系:1 A/m =4π/ 103 Oe 。
(5) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。
(6) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。
(7) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。
该磁场被称为退磁场。
退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。
(8) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。
SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。
换算关系:1 T = 104 G 。
(9) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1).(10) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。
H B H i 00lim 1→=μμ (11) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(12) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。
磁化率的测定磁化率是描述物质磁性的物理量,它是一个无量纲的比例系数,表示物质在外加磁场下的磁化程度。
磁化率的测定是物理学研究中的重要实验方法之一。
本文将介绍磁化率的测定原理、测量方法以及实验步骤。
一、磁化率的测定原理磁化率是磁化强度和外加磁场强度之间的比值,可以用公式表示为:χ = M/H其中,χ为磁化率,M为物质的磁化强度,H为外加磁场强度。
通过测量物质在不同外加磁场下的磁化强度,可以得到磁化率的数值。
二、磁化率的测量方法常见的磁化率测量方法有磁感应强度法、霍尔效应法、磁滞回线法等。
1. 磁感应强度法:该方法利用磁场中的磁感应强度与磁化强度之间的关系来测量磁化率。
实验中,通过改变外加磁场的强度,测量物质的磁感应强度,然后计算得到磁化率。
2. 霍尔效应法:该方法利用霍尔效应来测量磁化率。
实验中,将物质置于磁场中,利用霍尔元件测量磁场引起的电势差,通过计算得到磁化率。
3. 磁滞回线法:该方法适用于测量磁化率随外加磁场的变化情况。
实验中,将物质置于交变磁场中,测量物质的磁滞回线,通过分析磁滞回线的形状和大小,可以得到磁化率。
1. 准备实验所需的材料和仪器,包括物质样品、磁场发生器、磁感应强度计等。
2. 根据实验要求选择适当的测量方法,例如磁感应强度法、霍尔效应法或磁滞回线法。
3. 进行实验前的准备工作,包括校准仪器、调整实验参数等。
4. 开始实验,根据测量方法的要求进行实验操作。
例如,在磁感应强度法中,通过改变外加磁场的强度,测量物质的磁感应强度,并记录数据。
5. 根据实验数据计算磁化率的数值,并进行数据处理和分析。
6. 根据实验结果,进行实验讨论和结论,对实验结果进行解释和分析。
四、总结磁化率的测定是物理学实验中的一项重要内容,通过测量物质在不同外加磁场下的磁化强度,可以得到磁化率的数值。
常用的测量方法包括磁感应强度法、霍尔效应法和磁滞回线法。
在进行实验时,需要注意实验步骤的正确性和仪器的准确性。
磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。
它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。
本文将为你介绍磁性材料的基本知识。
1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。
磁化强度的单位是安培每米(A/m)或高斯(Gs)。
磁力线越接近选定的物体,磁化强度就越强。
2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。
磁场强度的单位是特斯拉(T)或高斯(Gs)。
3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。
高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。
4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。
磁饱和是磁性材料失去磁性的一个重要特征。
5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。
每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。
6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。
磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。
7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。
软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。
硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。
8. 磁性材料应用磁性材料广泛应用于各个领域。
在电子行业,磁性材料用于制造电感和磁芯等元器件。
在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。
磁性材料还用于通讯、医疗、军事和安全等领域。
总之,磁性材料具有重要的应用和理论价值。
通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。
《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。
(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI单位为A/m 。
CGS 单位:emu/cm 3。
换算关系:1 ×103 A/m = emu/cm 3。
(3) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。
SI 单位是A ·m -1。
CGS 单位是奥斯特(Oe)。
换算关系:1 A/m =4π/ 103 Oe 。
(4) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。
(5) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。
(6) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。
该磁场被称为退磁场。
退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。
(7) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。
SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。
换算关系:1 T = 104 G 。
(8) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1). (9) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。
H B H i 00lim1→=μμ (10) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(11) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。
(12) 磁各向异性:磁性材料在不同方向上具有不同磁性能的特性。
包括:磁晶各向异性,形状各向异性,感生各向异性和应力各向异性等。
磁化强度M、磁极化强度J、磁导率μ1. 磁化强度M除式B=μH描述的真空介质外,其他介质的关系为:B=μ0(H+M)……….…(2.15),式中,M是磁化强度矢量。
在这种关系中,μH代表外部源的贡献,μ0M代表了磁性材料内部的贡献。
由此可得,即使外部磁场强度等于零,材料本身依然可以产生磁感应强度,因为它已被磁化(自生的或因之前被磁化)。
假定每种磁化材料包括大量的基本磁偶极子,磁偶极子由电子围绕原子核转动或自旋转动产生。
这些磁偶极子由磁矩m表示。
在材料完全退磁的情况下,平均磁矩平衡,由此产生的磁化为零。
如果材料被磁化,其磁化强度M等M =V mi…………………………………………(2.16) 磁化强度定义为单位体积内分子磁矩的矢量和,单位和磁场强度同为A/m。
2. 磁极化强度J早期的文献中,磁性材料由磁感应强度B描述。
最近,许多标准推荐磁场极化强度J替代磁感应强度B:J = B-μ0H………………………………(2.17)所以,磁场极化强度等于μM。
因此在软磁材料典型应用中,磁场强度的值通常是不大于1kA/m,μ为4π×10-7Wb/Am,所以磁感应强度B和极化强度J之间区别极小。
在硬磁性材料方面,这种区别确实显著的,通常给出B=f(H)和J=f(H)这两种关系。
3. 磁导率μ磁性材料磁感应强度B与磁场强度H之间的关系为B=μH………………..…(2.18),在实践中,用这个关系描述材料属性很不方便,通常采用材料磁导率与真空磁导率比值关系,即相对磁导率μr=μ/μ0,因此式(2.18)可改为:B=μrμ0H……..……………(2.19)。
从理论上讲,磁导率μ是描述磁性材料属性的最好参数,因为它预示两个主要的材料参数磁感应强度B和磁场强度H的直接关系,但事实上,情况要复杂的多,因为:(1)B和H之间的关系几乎总是非线性,因此磁导率取决于工作点(磁场强度的值)。
图2.5 给出电工硅钢的一个典型曲线B=f(H)。
磁距的产生:带电粒子的运动产生电流,环电流产生磁距(磁偶极距),磁距和磁偶极距是表征物质磁性强弱和方向的基本物理量。
磁偶极子:一个磁性强弱能够用无限小的回路电流所表示的小磁体。
磁化强度M(或I):单位体积物质内具有的磁距矢量和。
单位:A/m磁极化强度J:单位体积物质内具有的磁偶极距矢量和。
单位:Wb/m2磁场强度H:描述磁极周围空间或电流周围空间任意一点磁场作用大小的物理量。
单位A/m磁感应强度B:物质内单位面积中通过的磁力线数,是描述磁极周围任一点磁场力大小,或磁极周围磁场效应的物理量。
单位:特斯拉T磁化率x:单位磁场强度H在单位磁体中所感生出的磁化强度M大小的物理量。
X大,物质易被磁化,x小,物质难被磁化。
磁导率μ:单位磁场强度H在物质中所感生出的磁感应强度B大小的物理量。
绝对磁导率:μ=μ0(1+x)相对磁导率:μ=1+x抗(顺)磁性:在原子系统中,在外磁场作用下,感生出与磁场方向相反(相同)的磁距现象。
Tp:顺磁性居里点。
(抗磁性存在于一切物质中)反铁磁性:若交换积分A为负值时,原子磁距取反向平行排列;当相邻原子的磁距相等,则相互抵消,使自发磁化强度趋于零,称为反铁磁性。
超交换作用:反铁磁性物质内磁性离子间的交换作用是通过隔在中间的非磁性离子为媒介来实现的,故称为超交换作用。
自发磁化:指一些物质在无外力磁场作用下,温度低于某一定温度时,其内部原子磁距自发地有序排列的现象。
磁畴:自发磁化是按区域分布的,各个自发磁化的区域称为磁畴。
磁各向异性:沿磁体不同方向磁化到相同状态,所需要的磁场能大小不同的性质。
磁各向异性能:沿磁体不同方向,从退磁状态磁化到饱和状态,磁化场对磁体磁化过程所作的功的大小不同。
易磁化反向:沿磁体不同方向,磁化到饱和状态,所需要的磁场能最小的方向,称为易磁化方向。
静磁能:磁体在磁场中具有的能量称为静磁能。
包括磁场能和退磁能。
退磁场:处在外磁场H中的有限几何形状的磁体在其表面上会出现磁极,表面磁极使磁体内部存在与磁化强度M方向相反的一种磁场Hd起着减退磁化作用故称为退磁场。
磁化强度M、磁极化强度J、磁导率μ
1. 磁化强度M
除式B=μ
H描述的真空介质外,其他介质的关系为:B=μ0(H+M)……….…(2.15),
式中,M是磁化强度矢量。
在这种关系中,μ
H代表外部源的贡献,μ0M代表了磁性材料内部的贡献。
由此可得,即使外部磁场强度等于零,材料本身依然可以产生磁感应强度,因为它已被磁化(自生的或因之前被磁化)。
假定每种磁化材料包括大量的基本磁偶极子,磁偶极子由电子围绕原子核转动或自旋转动产生。
这些磁偶极子由磁矩m表示。
在材料完全退磁的情况下,平均磁矩平衡,由此产生的磁化为零。
如果材料被磁化,其磁化强度M等
M =
V m
i
…………………………………………(2.16) 磁化强度定义为单位体积内分子磁矩的矢量和,单位和磁场强度同为A/m。
2. 磁极化强度J
早期的文献中,磁性材料由磁感应强度B描述。
最近,许多标准推荐磁场极化强度J替代磁感应强度B:J = B-μ0H………………………………(2.17)
所以,磁场极化强度等于μ
M。
因此在软磁材料典型应用中,磁场强度的值通常是
不大于1kA/m,μ
为4π×10-7Wb/Am,所以磁感应强度B和极化强度J之间区别极小。
在硬磁性材料方面,这种区别确实显著的,通常给出B=f(H)和J=f(H)这两种关系。
3. 磁导率μ
磁性材料磁感应强度B与磁场强度H之间的关系为B=μH………………..…(2.18),在实践中,用这个关系描述材料属性很不方便,通常采用材料磁导率与真空磁导率比值
关系,即相对磁导率μ
r
=μ/μ0,因此式(2.18)可改为:B=μrμ0H……..……………(2.19)。
从理论上讲,磁导率μ是描述磁性材料属性的最好参数,因为它预示两个主要的材料参数磁感应强度B和磁场强度H的直接关系,但事实上,情况要复杂的多,因为:(1)B和H之间的关系几乎总是非线性,因此磁导率取决于工作点(磁场强度的值)。
图2.5 给出电工硅钢的一个典型曲线B=f(H)。
可以看出,相对磁导率最大值达到约4000,但是,在高磁感应强度时其低得多(对于深度饱和时其值非常小,实际上不像是铁磁材料)。
类似地,对于非常小的磁场,初始磁导率也大大减小,因此,固定值磁导率给出的信息仅仅是一个固定工作点。
(2)材料磁化受其形状的影响——磁体的磁导率与原材料磁导率可以完全不同。
通常,不均匀磁化的磁体我们只能确定其平均值。
(3)大多数磁性材料是多晶的,材料的磁化方向不同(材料各向异性),磁导率也不同。
因此,磁导率应该描述成张量形式:
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡z y x H H H =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡zz zy
zx
yz yy yx xz xy
xx μμμμμμμμμ⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡z y x B B B ..……………………..….…(2.20) 通常我们限定这一稳定在二维(2D )情况,但即使2D 的磁化也非常复杂。
(4)磁导率取决于许多其他因素:频率和谐波(正弦波磁感应强度偏差)等。
对于更高的频率,应该考虑磁导率的实部和虚部(复数磁导率),两者的关系为μ=μ’+j μ’’。
因此,从物理学角度来看尽管磁导率是一个非常有用的参数,但在技术应用方面,应用磁化曲线作为磁化过程的描述更加合理。
尽管如此,在某些应用过程中,磁导率还是最重要的因素。
例如,电磁屏蔽设计(磁导率值越高,屏蔽效果越好)、磁选矿机设计。
在这些设备上,尽可能使用最高磁导率的磁性材料。
目前,铁磁材料的相对磁导率可高达100万。
表2.2 给出了一些相对磁导率大的典型工业用铁磁材料。