自控原理第三章时域分析法-系统稳定性判别-劳斯判据
- 格式:pps
- 大小:1.67 MB
- 文档页数:28
第三章控制系统的时域分析法3.2 劳斯-霍尔维茨稳定性判据稳定性是控制系统最重要的问题,也是对系统最基本的要求。
控制系统在实际运行中,总会受到外界和内部一些因素的扰动,例如负载或能源的波动、环境条件的改变、系统参数的变化等。
如果系统不稳定,当它受到扰动时,系统中各物理量就会偏离其平衡工作点,并随时间推移而发散,即使扰动消失了,也不可能恢复原来的平衡状态。
因此,如何分析系统的稳定性并提出保证系统稳定的措施,是控制理论的基本任务之一。
常用的稳定性分析方法有:1. 劳斯-赫尔维茨(Routh-Hurwitz)判据:这是一种代数判据。
它是根据系统特征方程式来判断特征根在S平面的位置,来判断系统的稳定性.2. 根轨迹法:这是一种利用图解来系统特征根的方法。
它是以系统开环传递函数的某一参数为变量化出闭环系统的特征根在S平面的轨迹,从而全面了解闭环系统特征根随该参数的变化情况。
3. 奈魁斯特(Nyquist)判据:这是一种在复变函数理论基础上建立起来的方法。
它根据系统的开环频率特性确定闭环系统的稳定性,同样避免了求解闭环系统特征根的困难。
这一方法在工程上是得到了比较广泛的应用。
4. 李雅普诺夫方法上述几种方法主要适用于线性系统,而李雅普诺夫方法不仅适用于线性系统,也适用于非线性系统。
该方法是根据李雅普诺夫函数的特征来决定系统的稳定性。
一、稳定性的概念稳定性的概念可以通过图3-31所示的方法加以说明。
考虑置于水平面上的圆锥体,其底部朝下时,我们施加一个很小的外力(扰动),圆锥体会稍微产生倾斜,外作用力撤消后,经过若干次摆动,它仍会返回到原来的状态。
而当圆锥体尖部朝下放置时,由于只有一点能使圆锥体保持平衡,所以在受到任何极微小的外力(扰动)后,它就会倾倒,如果没有外力作用,就再也不能回到原来的状态。
因此,系统的稳定性定义为,系统在受到外作用力后,偏离了最初的工作点,而当外作用力消失后,系统能够返回到原来的工作点,则称系统是稳定的。
第三章控制系统的时域分析3.1 典型的试验信号3.2 一阶系统的时域响应3.3 二阶系统的时域响应3.4 高阶系统的时域响应3.5 用MATLAB求控制系统的瞬态响应3.6 线性定常系统的稳定性3.7 劳斯稳定判据3.8 控制系统的稳态误差3.9 控制系统对参数变化的灵敏度本章小结本章简介上一章已经讲述了如何建立控制系统的数学模型。
但事实上人们真正关心的是,如何利用这些数学模型来对系统进行分析或设计。
本章主要讨论用时域分析法来分析控制系统的性能。
时域分析法:是对一个特定的输入信号,通过拉氏变换,求取系统的响应输出。
它是一种直接在时间域中对系统进行分析的方法,具有直观、准确、物理概念清楚的特点,尤其适用于二阶系统。
一个稳定的控制系统,对输入信号的时域响应由二部分组成:瞬态响应+稳态响应。
瞬态响应描述系统的动态性能;稳态响应描述系统的稳态精度;3.1 典型的试验信号回目录控制系统的稳态误差是因输入信号不同而不同的。
因此就需要规定一些典型输入信号。
通过评价系统在这些典型输入信号作用下的稳态误差来衡量和比较系统的稳态性能。
在控制工程中通常采用的典型输入信号有以下几种:1.单位阶跃函数:其拉普拉斯变换为R(s)=1/s2.单位斜坡函数:其拉普拉斯变换为R(s)=1/s23.单位加速度函数:其拉普拉斯变换为R(s)=1/s34.单位脉冲函数:其拉普拉斯变换为R(s)=15.正弦函数:r(t)=Asinωt其中最常用的典型信号为单位阶跃、单位斜坡、单位加速度三种输入信号。
3.2 一阶系统的时域响应回目录3.2.1单位阶跃响应 3.2.2一阶系统的单位斜坡响应3.2.3一阶系统的单位脉冲响应 3.2.4线性定常系统的重要特性一阶系统:用一阶微分方程描述的控制系统。
研究图3-3所示一阶系统。
其系统传函为图3-3 一阶系统方框图3.2.1单位阶跃响应对于单位阶跃输入:r(t)=1(t),R(s)=1/s于是由拉普拉斯反变换可以得到单位阶跃响应c(t)为c(t)=1-e-t/T(t≥0)上式表示,一阶系统的单位阶跃响应的图形是一条指数曲线,如图3-4所示。
判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;21231425310000000000000000a a a a a a a a a a a a a n nn n n n n n n n n--------=∆当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211>∆>=∆>=∆>=∆-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为0516188234=++++s s s s试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
51810016800518100168=∆ 由△得各阶子行列式;8690017281685181016801281811680884321>=∆=∆>==∆>==∆>==∆各阶子行列式都大于零,故系统稳定。
2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n----------B 、计算劳思表176131541213211-------------=-=-=n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。
第三章自动控制系统的时域分析法第一节系统的稳定性分析第二节自动控制系统的动态性能分析第三节稳态性能分析第一节系统的稳定性分析一、稳定性的概念定义:线性系统处于某一平衡状态下,受到干扰的作用而偏离了原来的平衡状态,在干扰消失后,系统能够回到原状态或者回到原平衡点附近,称该系统是稳定的,否则,不稳定。
稳定性绝对稳定性:系统稳定(或不稳定)的条件不稳定稳定图3-1稳定性只取决于系统内部的结构和参数,而与初始条件和外作用的大小无关。
二、系统稳定的充分必要条件线性系统特征方程的所有根的实部都必须是负数。
三、Hurwritz代数稳定判据1.Hurwritz代数稳定判据内容设线性系统的特征方程式为:D(s)=an s n+an-1s n-1+……+a2s2+a1s+a=0,则系统稳定的充要条件是:(1)特征方程的各项系数均为正值。
——必要条件(2)特征方程的Hurwritz行列式△k (k=1,2,……n)均大于0。
——充分条件2.Hurwritz行列式△k的编写方法①第一行为特征式第二项、第四项等偶数项的系数;②第二行为特征式第一项、第三项等偶数项的系数;③第三、四行重复上二行的排列,但向右移一列,前一列则用0代替。
其中a a a a a aa a a a a a a n n n n n n n n n 024133142531000000000-------=∆a a a a a n n n n n 2131211----=∆=∆a a a a a a a a n n n n nn n n 314253130-------=∆3.推论在特征方程式各项系数全为正的条件下,若所有奇次Hurwritz 行列式为正,则所有偶次Hurwritz 行列式必为正,反之亦然。
例3-1设系统的特征方程式为2s 4+s 3+3s 2+5s+10=0试判断系统的稳定性.解:(1)各项系数为正,且不为零,满足稳定的必要条件。
(2)系统的Hurritz 行列式为例3-2已知系统的框图如图3-2所示,求当系统稳定时K 的取值范围。