进行闭环控制的变频节能系统的研究与设计
- 格式:doc
- 大小:19.50 KB
- 文档页数:4
基于变频器的电机控制系统设计与优化一、引言电机作为工业生产中不可或缺的动力源,其控制系统的设计与优化对于提高生产效率和降低能源消耗具有重要意义。
而变频器作为电机控制系统中的核心设备,能够通过调整电机的转速和负载来实现精确的控制。
本文将探讨基于变频器的电机控制系统的设计与优化方法,以期为相关领域的研究和实践提供一定的参考。
二、变频器的原理与应用变频器是一种能够改变电机供电频率和电压的装置,通过调整电机的供电频率,可以实现对电机转速的精确控制。
变频器广泛应用于工业生产中的电机控制系统,例如风机、泵站、压缩机等。
其主要优势包括:节能、降噪、提高电机的负载能力等。
三、电机控制系统的设计1. 选择合适的变频器型号在设计电机控制系统时,首先需要根据实际需求选择合适的变频器型号。
不同的变频器具有不同的控制能力和适用范围,因此需要根据电机的功率、转速范围、负载特性等因素进行选择。
2. 确定控制策略在电机控制系统的设计中,需要确定合适的控制策略。
常见的控制策略包括开环控制和闭环控制。
开环控制适用于一些简单的应用场景,而闭环控制能够实现更高的控制精度和稳定性。
3. 参数调试与优化在电机控制系统的实际应用中,参数的调试与优化是非常重要的一步。
通过调整变频器的参数,可以实现电机的最佳运行状态。
例如,调整电机的加速度、减速度、电流限制等参数,可以提高电机的响应速度和运行效率。
四、电机控制系统的优化1. 能量回馈技术的应用能量回馈技术是一种能够将电机产生的反馈能量回馈到电网中的技术。
通过应用能量回馈技术,可以实现电机能量的再利用,从而提高整个电机控制系统的能效。
2. 智能控制算法的研究随着人工智能技术的发展,智能控制算法在电机控制系统中的应用也越来越广泛。
例如,基于神经网络的控制算法可以实现对电机转速和负载的智能调节,从而提高电机的控制精度和稳定性。
3. 故障检测与诊断技术的应用电机控制系统中的故障检测与诊断技术可以帮助及时发现电机系统中的故障,并采取相应的措施进行修复。
变频器的控制原理与应用论文1. 引言变频器,又称为变频调速器,是一种能够通过改变电机供电的频率和电压来实现电机转速调节的设备。
它在工业生产中广泛应用,可以提高电机的能效、实现节能减排,并且在驱动系统的控制中具有重要的作用。
本文将介绍变频器的控制原理和应用,探讨其在工业领域中的重要性和优势。
2. 变频器的基本原理变频器的基本原理是通过将输入的交流电转换为直流电,再通过逆变器将直流电转换为带有不同频率和电压的交流电。
变频器由整流器、逆变器和控制单元三大部分组成,其中控制单元是通过控制逆变器的输出来实现对电机转速的调节。
3. 变频器的工作方式变频器的工作方式主要分为开环控制和闭环控制两种方式。
开环控制是根据设定的频率和电压信号直接控制逆变器的输出;闭环控制则是通过对电机转速进行反馈,使控制系统能够自动调节输出频率和电压,实现更精确的转速控制。
4. 变频器的应用领域4.1 工业生产 - 变频器广泛应用于风机、水泵、压缩机等设备中,可以根据实际使用需求来调节电机的转速,实现能效优化和节能减排。
- 变频器在生产线上的应用可以实现对机器设备的精确控制,提高生产效率和产品质量。
4.2 交通运输 - 变频器在交通运输中的应用具有重要意义。
例如,在高铁、地铁等交通设施中,变频器可以控制电动马达的转速,实现列车的精确控制和运行安全。
4.3 HVAC系统 - 变频器在暖通、通风和空调系统中的应用可以根据实际需求调节风机的转速,实现室内环境的舒适和节能。
4.4 新能源应用 - 变频器在新能源领域的应用日益增多,例如,在太阳能发电系统中,变频器可以将太阳能电池板产生的直流电转换为交流电,供给电网或电动车使用。
5. 变频器的控制策略5.1 PWM控制 - PWM(脉宽调制)是一种常用的变频器控制策略,通过调节逆变器输出电压的脉冲宽度比来实现对电机转速的控制。
5.2 V/F控制 - V/F(电压/频率)控制是一种基本的变频器控制策略,通过调节输出电压和频率的比值来实现对电机转速的控制。
变频调速电梯控制系统研究一、变频调速电梯控制系统原理变频调速电梯控制系统是利用变频器来调节电梯主机电机的转速,从而实现电梯的调速运行。
传统电梯主要采用的是机械调速方式,即通过传统的电阻调速或者牵引比例调速的方式来实现,但是这种方式存在效率低、能耗大、调速范围有限等问题。
而变频调速电梯控制系统采用变频器来调整电梯主机电机的转速,可以实现无级调速,提高了电梯的运行效率和舒适性,同时也降低了能耗和噪音。
变频调速电梯控制系统的原理比较简单,主要由电梯主机电机、变频器、编码器、控制器以及人机界面等组成。
变频器是整个系统的核心部件,通过对电机的电压和频率进行控制,实现电梯的无级调速。
控制器则负责监测电梯运行状态、接收并处理乘客的指令、控制电梯的运行等功能。
编码器则用来监测电梯实际的运行速度,并将监测到的信号反馈给控制器,从而实现对电梯运行的精准控制。
1. 节能环保:变频调速电梯控制系统采用无级调速技术,可以根据实际载荷大小和楼层高度来自动调整电梯的运行速度,从而实现能耗的最小化。
变频器可以有效地改善电机的功率因数,降低谐波污染,减少了对环境的影响。
2. 运行稳定:传统的电梯调速方式存在调速迟缓、震动大等问题,而变频调速电梯控制系统采用了闭环控制技术,可以实现对电梯运行状态的实时监测和精准控制,从而保证了电梯的稳定性和平稳性。
3. 节省空间:变频调速电梯控制系统可以减小电梯主机电机的体积,减少了对电梯井道的占用空间,提高了建筑物的可利用空间。
4. 使用寿命长:由于变频调速电梯控制系统可以实现无级调速,因此电梯的启停次数减少,电梯的零部件磨损减小,从而延长了电梯的使用寿命。
5. 安全性高:变频调速电梯控制系统采用了多重安全保护措施,包括过载保护、故障自诊断、失速保护、紧急救援等功能,可以保证电梯的安全运行。
目前,变频调速电梯控制系统已经在世界各地得到了广泛应用,尤其是在高层建筑和商业中心等场所。
由于变频调速电梯控制系统具有节能环保、运行稳定、节省空间、使用寿命长和安全性高等优点,越来越多的建筑物选择采用这种先进的电梯技术。
变频器闭环控制原理
变频器闭环控制原理是指通过监测被控对象的输出信号,并与期望信号进行比较,反馈控制系统通过调节被控对象输入信号的频率和电压等参数,使系统输出信号跟随期望信号,从而实现精确控制的过程。
闭环控制系统由以下几个基本组成部分组成:传感器、控制器、执行器和被控对象。
传感器用于检测被控对象的输出信号,获取实时反馈信息。
控制器根据反馈信号与期望信号之间的差异来计算控制信号,控制执行器的输出。
执行器通过改变输入信号的频率和电压等参数,对被控对象施加控制力。
被控对象是需要被控制的目标,例如变频器驱动的电机。
在闭环控制中,控制器需要根据反馈信号调整输出信号,以接近期望信号。
具体的控制算法可以采用比例积分微分(PID)
控制器或其他高级控制算法。
闭环控制的基本原理是负反馈控制,即通过比较输出信号和期望信号的差异,产生错误信号,并根据错误信号来调整控制输出,使输出信号趋近期望信号。
通过负反馈机制,闭环控制系统具有较好的稳定性和抗干扰能力。
通过闭环控制,变频器可以实现对电机的精确控制,例如控制电机的转速、转矩等参数。
闭环控制可以提高系统的响应速度和精度,适用于对控制要求较高的应用场景,例如工业自动化、交通运输等领域。
空调节能技术分析作者:王圣冬来源:《城市建设理论研究》2013年第24期摘要:对集中式空调如何节能进行了三方面的研究,一是集中式空调系统设计中的节能,二是集中式空调冷水机组操作中的节能,三是集中式空调运行管理中的节能;指出了在节能设计、节能操作和节能运行上的一些问题和措施。
关键词:集中式空调节能操作运行管理中图分类号:TE08 文献标识码:A 文章编号:前言随着科学技术的飞速发展,工农业生产水平的提高,人民文化生活的改善,集中式空调在楼宇建筑中的应用日趋广泛。
楼宇集中式空调系统是一个庞大的设备群体,大量的统计结果表明,空调系统所消耗的电能,一般宾馆、写字楼空调能耗约占建筑总能耗的30%~40%,大中型商场空调能耗则高达50%,有的空调系统建筑物总能耗中空调能耗约占60% 或者更多。
因此,空调节能意义巨大。
空调节能技术及方法(一)冷冻基础理论简述冷冻循环过程文字表述:由蒸发器(4)出来的状态为1(T1,P1)的气体冷媒;经压缩机绝热压缩以后,变成状态2(T2,P2)。
被压缩后的气体冷媒,在冷凝器(2)中,等压冷却冷凝,经状态3(T3,P2)而变化成状态4(T3,P2)的液态冷媒,再经节流阀(3)膨胀到低压(P1),变成状态5(T1,P1)的气液混合物。
其中低温(T1)低压(P1)下的液态冷媒,在蒸发器(4)中吸收被冷物质的热量,在P1下气化,变成状态1(T1,P1)的气态冷媒。
气态冷媒经管道重新进入压缩机,开始新的循环。
这就是冷冻循环的四个过程。
2、冷冻理论分析空调节能途径(一)(1)冷冻系数∑=Q1∕-W=Q1∕(-Q2)-Q1式中 Q1--冷媒从环境(冷物体T1)吸收的热量,为正值;Q2--冷媒向环境(热物体T2)放出的热量,为负值。
W--压缩机对物系(冷媒)所作的功,为负值。
文字表述:∑表明外加1个单位的功,冷冻剂从冷物体所能够吸取能量。
它是衡量冷冻循环效率的一个重要指标。
3、冷冻理论分析空调节能途径(二)(2)理想冷冻循环(可逆循环)数字表达式:∑可=Q1∕(-Q2)-Q1=T1 ∕T2-T1●式中:T1—冷物体的绝对温度(蒸发温度)T2—热物体的绝对温度(冷凝温度)● 文字表述:对理想冷冻循环来说,因为每一部都是可逆的,故理想冷冻循环的效率可为最大。
摘要随着工业控制要求的发展,对电机速度的控制越来越高。
传统的模拟信号控制方式存在抗干扰能力差、对设备要求复杂、控制精度不高等问题,难以适应日益复杂的工业环境。
本文主要介绍了多段调速系统的结构,并完成了以PLC为控制器,以增量式光电编码器为速度采集的闭环PID控制系统,通过RS-485对变频器的控制实现了三相异步电机的多段调速。
关键字:PLC;RS-485;多段调速;光电编码器AbstractWith the requirements of the development of industrial control, the speed of motor control is more and more strict. The traditional analog signal control mode has poor capacity of resisting disturbance, the requirement of complex equipment, the control precision low and some other problems, it is difficult to adapt to the increasingly complex industrial environment. In this article, mainly introduces the structure of various speed system, and completed the closed loop PID control system through the PLC as controller and incremental photoelectric encoder for speed acquisition, achieve the multistage speed control three-phase asynchronous motor through Frequency converter based on RS-485.Key words: PLC; RS-485; multistage speed; encoder目录第一章概述 (4)1.1 课题研究的背景及意义 (4)1.2 课题研究现状 (5)1.3 本课题研究的主要内容 (6)第二章系统分析 (7)2.1 PLC基本知识 (7)2.1.1 PLC的基本功能 (8)2.1.2 PLC的特点 (9)2.1.3 PLC的展望 (11)2.2 变频器基本知识 (12)2.2.1 变频器的应用 (12)2.2.2 变频器的分类 (13)2.2.3 变频器控制的展望 (14)2.3 光电编码器 (15)2.3.1 增量式编码器 (15)2.3.2 绝对式编码器 (16)第三章系统设计 (19)3.1 总体方案 (19)3.2 硬件设计 (19)3.2.1 变频器的连接 (20)3.2.2 光电编码器的配置 (20)3.2.3 PLC输入输出口分配 (21)3.3 软件设计 (21)3.3.1 变频器的参数设置 (22)3.3.2 PLC的设计 (23)第四章结论 (28)结束语 (29)致谢 (30)参考文献 (31)第一章概述1.1 课题研究的背景及意义随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域,以它们为主导的现代生产技术正以史无前例的速度迅猛发展。
中央空调循环水泵变频控制与节能研究摘要:变频控制技术作为自动化与其他产业融合的核心技术,带来一场现代科技应用于建筑节能领域的新革命。
通过变频控制,能使空调系统运行中的能源消耗与实际需求保持动态平衡,从而在稳定发挥空调功能的同时,避免能源资源的过度浪费。
基于此,本文分析了变频控制节能技术在中央空调循环水泵中应用的原理及意义,并提出了相应的设计建议。
关键词:变频技术;中央空调;节能控制引言:根据资料统计显示,我国大型公共建筑单位面积能耗约180kWh/(m2·年),中央空调系统耗电占到了建筑总耗电的 40%-60%。
要降低大型公建的能耗,空调系统作为建筑的“用能大户”,其节能减排十分重要。
由此一来,基于变频技术的空调节能新思路应运而生,并越来越广泛地应用于中央空调循环水泵系统的设计实践中。
一、中央空调循环水泵变频节能的相关概述(一)中央空调循环水泵变频节能的基本原理受技术条件、生产条件、设计理念等多方面因素的限制,传统时期运行状态中电气设备的交流电使用频率都是相对固定的。
这样一来,电气设备的实际用电情况很难随应用场景变化而变化,进而很容易引发电能资源的浪费问题,且不利于设备使用寿命与使用安全的有效保障。
随着社会经济、科技、工业等领域的不断发展,人们逐渐意识到了控制电气设备用电方式的可行性与价值性,进而研究开发出了相应的变频技术、自动化技术。
简单来讲,变频技术的原理就是一种以交流电为作用对象,以多种频率交流电为输出对象的转换技术。
在此过程当中,电能资源的基本属性并不发生改变,只有频率随着变频器或变频系统的控制调节而变化。
在中央空调循环水泵这一具体电气设备的应用视域下,变频技术主要用于实现水泵转速的调节控制,从而进一步控制冷却水的流量,避免水资源的过度浪费。
除此之外,变频技术还可用于控制循环水泵中的冷却水温度参数,从而避免中央空调的运行热负荷超出允许范围,在降低空调能耗、确保做功稳定的同时,有效延长循环水泵乃至空调整体的使用寿命。
闭环控制的区别闭环控制的区别Ⅰ——EV2000,TD3300,TD2100㈠、EV2000变频器:实现闭环控制,一般是一台变频器驱动一台电机,并且不支持变频器循环的功能。
380VEV2000UVWPEMP24CCIVRFVCIGNDFWDCOM1-3KRST P外送压力变送器.GND.......QFVRFVCIGND1-3KRST380VQF···UVWPEMFWDCOMPGA/AB/BPG电源X7P24X8PG工作地·····EV2000根据反馈量的不同可以分为模拟闭环和脉冲闭环两种形式。
如上左图和右图是EV2000组成的模拟闭环控制和脉冲反馈闭环控制接线图。
1、模拟反馈控制系统:采用压力变送器作为内置PI的反馈传感器,可以组成模拟反馈控制系统。
如上左图所示,压力给定量用电位器设定以电压形式通过VCI口输入,而压力反馈量以0(4)~20mA电流形式从CCI口输入,给定量和反馈量均通过模拟通道采集,由端子FWD实现闭环运行的起停。
以上系统也可以用于TG(测速发电机)作速度闭环控制。
2、PG闭环速度控制系统:采用外接控制端子X7、X8,配合脉冲编码器(PG)可以组成速度闭环控制系统。
如上右图所示,速度闭环的给定量用电位器以电压形式通过模拟通道VCI设定,而PG闭环的反馈量用脉冲编码器以脉冲形式通过外部端子X7、X8输入,由部端子FWD实现闭环运行的起停。
㈡、TD3300变频器:主要针对张力控制的场合,用于收放卷的比较多,最大的区别就是卷经的计算功能。
㈢、TD2100变频器:主要是供水专用的变频器,不仅可以实现恒压控制,也可以有许多供水专用的功能:比如:定时轮换,变频器循环等等。
主要功能如下:1,有8种供水模式可以选择。
2,6段定时压力可以给定。
3,休眠泵的控制功能。
4,小流量的停机节能控制。
5,定时轮换的控制。
6,消防的控制功能。
进行闭环控制的变频节能系统的研究与设计
引言
触摸屏是一种新型可编程控制终端,是新一代高科技人机界面产品,适用于现场控制,可靠性高,编程简单,使用维护方便。
在工艺参数较多又需要人机交互时使用触摸屏,可使整个生产的自动化控制的功能得到大大的加强。
PLC有着运算速度高、指令丰富、功能强大、可靠性高、使用方便、编程灵活、抗干扰能力强等特点。
近几年,随着科学技术的不断进步,各行业对其生产设备和系统的自动化程度要求越来越高,采用现代自动化控制技术对减轻劳动强度、优化生产工艺、提高劳动生产率和降低生产成本起着很重要的作用。
触摸屏结合PLC在闭环控制的变频节能系统中的应用是一种自动控制的趋势。
触摸屏和PLC在闭环控制的变频节能系统中的使用,可以让操作者在触摸屏中直接设定目标值(压力及温度等),通过PLC与实际值(传感器的测量值)进行比较运算,直接向变频节能系统发出运算指令(模拟信号),调节变频器的输出频率。
并可实时监控到被控系统实际值的大小及变频器内的多个参数,实现报警、记录等功能。
一般PLC结合触摸屏的闭环调节的变频节能系统如下图所示。
1、闭环控制的变频节能系统用途各种场合的变频节能系统的拖动方式及控制方式各有不同,具体应用时应根据实际情况选择设计。
下面列举一些:
中央空调节能:冷冻泵、冷却泵、主机、却塔风机、风机盘管等。
恒压供水:水厂一、二级泵,供水管网增压泵、大厦供水水泵等
锅炉:引风机、送风机、给水泵等,变频节能系统的控制调节预处理信号由锅炉自动控制系统、DCS或多冲量控制系统给出。
汽轮机:循环泵、凝结泵等,其控制调节预处理信号由汽轮机自动控制系统及DCS给出。
纯水处理系统:软化水泵、增压泵等。
洁净室:增压风机、FFU群控等等。