实验2.9 圆孔衍射光斑图样的观测(2014年09月19日更新)
- 格式:pdf
- 大小:301.96 KB
- 文档页数:6
光的圆孔衍射实验报告包含流程图
报告标题:光的圆孔衍射实验报告
一、实验目的
通过实验,探究光的圆孔衍射现象,并研究影响衍射现象的因素。
二、实验器材
光源、圆孔、光屏、尺子、卡尺、光学平台等。
三、实验流程
1. 准备器材,将圆孔固定在光学平台上,并将光屏放置在离圆孔一定距离处;
2. 开始实验前,先关闭其他的灯光,确保实验室内光线较暗,开启光源,并调节光源的亮度;
3. 在圆孔照射下,观察光屏上形成的光斑,可根据距离和光斑大小计算光的波长;
4. 更换不同大小的圆孔,继续观察光屏上的光斑大小变化,探究孔径对衍射图案的影响;
5. 更换不同大小的光屏,观察光斑在不同距离处的直径变化,探究距离对衍射图案的影响。
四、实验结果及分析
1. 随着圆孔孔径的减小,衍射光斑的直径变大,并且衍射条纹逐渐变模糊,说明孔径大小对衍射现象有较大的影响;
2. 在同一距离处,光斑大小随距离的增加而变小,并且衍射的条纹变得更加清晰,证明距离的变化也对衍射现象有影响;
3. 根据光斑的大小和距离,可计算出光的波长,实验结果与理论值较为接近,证明实验的可靠性。
五、实验结论
光的圆孔衍射现象受圆孔孔径和观察距离影响,通过实验可计算出光的波长。
该实验有助于深入理解光的物理性质及其在各种实际应用中的重要作用。
六、实验思考
1. 在实验中,如何避免环境光的干扰对衍射实验结果的影响?
2. 制作圆孔时,如何保证孔径大小的精度?
3. 如何利用衍射现象进行精密测量?。
一、实验目的1. 理解光的衍射现象及其基本原理。
2. 掌握衍射光路的组装与调整,使用不同结构衍射屏实现夫琅禾费衍射现象。
3. 研究不同结构衍射屏的衍射光强分布,加深对衍射理论的理解。
二、实验原理圆孔衍射是光波通过圆形孔径后,由于波的波动性,光在孔径边缘发生弯曲,从而在远场屏上形成衍射图样。
实验基于惠更斯-菲涅尔原理,即每一个波前上的点都可以看作是一个次波源,这些次波源发出的波在空间中相互干涉,形成衍射图样。
夫琅禾费衍射是圆孔衍射的一种特殊形式,发生在远场区域,即孔径与观察屏之间的距离远大于孔径本身。
在这种情况下,光波经过圆孔后,衍射图样呈现出明暗相间的同心圆环,称为夫琅禾费衍射图样。
三、实验仪器1. He-Ne激光器2. 单缝及二维调节架3. 光电探测器及移动装置4. 数字式万用表5. 钢卷尺6. 圆孔衍射屏四、实验步骤1. 组装光路:将He-Ne激光器发出的激光束照射到圆孔衍射屏上,调节衍射屏与激光器之间的距离,使其满足夫琅禾费衍射条件。
2. 调整观察屏:将观察屏放置在衍射屏后,调节观察屏与衍射屏之间的距离,使其满足夫琅禾费衍射条件。
3. 测量光强分布:使用光电探测器测量不同位置的光强,记录数据。
4. 计算衍射图样:根据测量数据,绘制光强分布曲线,分析衍射图样的特征。
五、实验结果与分析1. 衍射图样:观察屏上出现了明暗相间的同心圆环,即夫琅禾费衍射图样。
图样的中央是一个亮斑,称为艾里斑,其大小与圆孔半径有关。
2. 光强分布:根据测量数据,绘制光强分布曲线。
曲线呈现出明暗相间的特征,中央亮斑的光强最大,随着距离的增加,光强逐渐减小。
3. 理论分析:将实验结果与理论计算结果进行对比,发现两者吻合良好。
六、实验结论1. 光的衍射现象是光的波动性的一种表现,通过实验验证了惠更斯-菲涅尔原理。
2. 夫琅禾费衍射是圆孔衍射的一种特殊形式,在远场区域出现明暗相间的同心圆环。
3. 通过实验,加深了对衍射理论的理解,掌握了衍射光路的组装与调整方法。
圆孔衍射实验报告圆孔衍射实验报告引言衍射是光学中的重要现象,指的是当光通过一个孔或者绕过一个物体时,光波会发生偏折和干涉,产生新的波纹和光斑。
圆孔衍射实验是研究光的衍射现象的经典实验之一。
本报告旨在详细介绍圆孔衍射实验的原理、实验装置和实验结果,并对实验结果进行分析和讨论。
实验原理圆孔衍射实验基于惠更斯-菲涅耳原理,即光波在传播过程中会沿着各个方向传播,并在传播的过程中发生干涉。
当光通过一个圆孔时,光波会在孔的边缘发生衍射,形成一系列的光环,称为菲涅耳衍射环。
这些衍射环的大小和形状与孔的大小和光的波长有关。
实验装置圆孔衍射实验的装置主要包括光源、圆孔、屏幕和测量仪器。
光源可以选择白光或单色光源,如激光。
圆孔通常由金属或者玻璃制成,直径可以调节。
屏幕用于接收和观察衍射光斑。
测量仪器可以是尺子、卡尺或者显微镜,用于测量光斑的直径和位置。
实验步骤1. 将光源放置在适当的位置,并调整光源的亮度和位置,使光线垂直照射到圆孔上。
2. 调节圆孔的直径,观察和记录不同直径下的衍射光斑。
3. 将屏幕放置在合适的位置,接收和观察衍射光斑。
4. 使用测量仪器测量光斑的直径和位置,并记录数据。
实验结果通过圆孔衍射实验,我们观察到了一系列的衍射光斑。
随着圆孔直径的增大,衍射光斑的直径也增大,但是衍射环的亮度和清晰度会减弱。
当圆孔直径非常小的时候,衍射光斑会呈现出明亮而清晰的环状结构。
而当圆孔直径逐渐增大时,衍射光斑会变得模糊,环状结构逐渐消失。
讨论与分析圆孔衍射实验的结果符合光的波动性质。
当光通过一个孔时,光波会沿着各个方向传播,并在传播的过程中发生干涉。
衍射光斑的大小和形状取决于孔的大小和光的波长。
当孔的直径非常小的时候,光波会在孔的边缘发生强烈的衍射,形成明亮而清晰的衍射环。
而当孔的直径逐渐增大时,衍射光斑的清晰度和亮度会减弱,因为光波的干涉效应逐渐减弱。
圆孔衍射实验还可以用来测量光的波长。
根据衍射光斑的直径和圆孔的直径,可以利用菲涅耳衍射公式计算出光的波长。
圆孔衍射现象描述概述解释说明1. 引言1.1 概述本篇长文旨在描述和解释圆孔衍射现象。
圆孔衍射是光学中的一种重要现象,当光通过一个小孔时会发生衍射,形成一个特定的光斑图案。
本文将从衍射现象的起因和原理、实验设备和方法等方面进行描述和概述。
1.2 文章结构本文分为五个主要部分:引言、圆孔衍射现象描述、结果与分析、应用与意义以及结论与展望。
其中,引言部分对文章的内容进行概述,介绍了文章的目的和结构。
1.3 目的本文旨在全面而详细地描述圆孔衍射现象,并解释其原理和机制。
通过对实验结果的观察和数据分析,探讨其中存在的差异,并探讨圆孔衍射在光学器件中的应用以及其对科学发展的意义。
最后,在总结研究结论的基础上提出未来研究方向建议,为进一步深入研究圆孔衍射提供指导。
2. 圆孔衍射现象描述:2.1 衍射现象简介圆孔衍射是一种光的传播现象,当光通过一个圆形孔径时发生偏折和扩散,形成特定的衍射图样。
这一现象是由光波在遇到障碍物或孔径较小时发生的干涉效应造成的。
圆孔衍射是光学中最基本且常见的几何衍射实验之一,对我们深入理解光的性质和行为具有重要意义。
2.2 圆孔衍射的起因和原理当平行光线垂直照射到一个小孔时,光波会从该小孔中穿过并呈球面传播。
根据背后的赫曼德-费米原理,每个次级波都可以看作是来自前方各个点上的波源。
这些次级波会相互干涉,并在进入观察屏幕后形成明暗相间、呈环状分布的衍射图样。
根据菲涅尔-柯西公式,我们可以计算出在观察屏上不同位置处的光强分布情况。
这个分布与外部条件(例如光源的波长、观察距离等)以及孔径的大小有关。
在圆孔衍射中,光强最强的环为中央亮斑,其内外依次是一系列交替的明暗环。
2.3 圆孔衍射实验设备和方法进行圆孔衍射实验通常需要准备以下设备和工具:1. 光源:可以使用激光器或白光灯作为照明光源。
2. 狭缝:用于产生平行光束,确保入射到圆孔上的光线是平行的。
3. 圆孔:可以通过刻蚀或机械加工在一片无色玻璃板上制作一个小而圆形的孔口。
一、实验目的1. 通过观察圆孔衍射现象,加深对光的波动性和衍射理论的理解。
2. 学习使用光电元件测量圆孔衍射的相对光强分布,掌握其分布规律。
3. 分析圆孔衍射的实验结果,验证衍射理论,并探讨影响衍射效果的因素。
二、实验原理圆孔衍射是光波遇到障碍物(如圆孔)时发生的一种波动现象。
根据惠更斯-菲涅尔原理,光波在传播过程中,每个点都可以看作是次级波源,这些次级波源发出的波在几何阴影区域相互干涉,形成衍射图样。
当单色光束垂直照射到圆孔上时,经过圆孔的光波在远场(远离圆孔的位置)会发生衍射,形成一系列明暗相间的同心圆环,称为圆孔衍射图样。
其中,圆孔的直径D、光波的波长λ、圆孔到屏幕的距离L等因素会影响衍射图样的形状和大小。
三、实验仪器1. He-Ne激光器2. 单缝及二维调节架3. 光电探测器及移动装置4. 数字式万用表5. 钢卷尺6. 圆孔衍射屏7. 屏幕板四、实验步骤1. 将He-Ne激光器、圆孔衍射屏和屏幕板依次安装在二维调节架上。
2. 调节激光器的发射角度,使其垂直照射到圆孔衍射屏上。
3. 移动屏幕板,观察圆孔衍射图样的变化。
4. 使用光电探测器测量圆孔衍射图样上不同位置的光强。
5. 记录实验数据,分析圆孔衍射的规律。
五、实验结果与分析1. 圆孔衍射图样的观察当激光垂直照射到圆孔衍射屏上时,在屏幕上观察到一系列明暗相间的同心圆环,称为圆孔衍射图样。
图样中央有一个亮斑,称为艾里斑,其大小与圆孔直径D和光波波长λ有关。
2. 圆孔衍射光强分布的测量使用光电探测器测量圆孔衍射图样上不同位置的光强,得到以下结果:- 圆孔衍射图样上,光强分布呈现明暗相间的同心圆环。
- 艾里斑中心的光强最大,随着距离中心越远,光强逐渐减弱。
- 圆孔衍射图样上,相邻亮环和暗环的光强比约为1:3。
3. 圆孔衍射规律的分析根据实验结果,分析圆孔衍射的规律如下:- 圆孔衍射图样中,艾里斑的大小与圆孔直径D和光波波长λ有关,即艾里斑的半角宽度为:\[ w_0 = 1.22 \frac{\lambda}{D} \]其中,\( w_0 \)为艾里斑的半角宽度,λ为光波波长,D为圆孔直径。
圆孔衍射和泊松亮斑和牛顿环首先,让我们先来了解一下圆孔衍射的基本原理。
当光线射入一个孔径较小的圆孔时,光波会沿着孔径的边缘传播,并在边缘附近发生衍射。
在衍射的过程中,光波在孔径中的传播将受到限制,导致光波的干涉和衍射现象。
这种现象使得在孔径后的屏幕上会出现一系列的亮斑和暗斑,这就是圆孔衍射的典型特征。
接下来,我们来介绍一下泊松亮斑。
泊松亮斑是指当平行光线通过一个小孔后,在接收屏上会出现一系列亮暗相间的光斑。
这些光斑的分布规律是不规则的,呈现出明暗交替的规律。
泊松亮斑的产生是由光的波动特性引起的,在光波传播的过程中,波的相位和振幅会发生变化,从而产生干涉和衍射现象。
这种现象使得泊松亮斑成为了研究光波传播特性和衍射现象的重要实验现象。
此外,牛顿环也是圆孔衍射的一个重要实验现象。
牛顿环是指当平行光线通过一个凸透镜后,在接收屏上会出现一系列圆形的亮暗交替的光斑。
这些光斑的特点是亮斑呈圆环状分布,而暗斑则呈圆形分布。
牛顿环和泊松亮斑一样,都是由光波的传播特性和衍射现象引起的。
在牛顿环中,光波在经过凸透镜的过程中会发生衍射和干涉,从而产生出这种圆形的亮暗交替的光斑。
在实际应用中,泊松亮斑和牛顿环有着广泛的应用。
首先,泊松亮斑和牛顿环可以用来研究和验证光波的传播特性和衍射现象。
通过观察泊松亮斑和牛顿环的分布规律,可以了解光波在传播过程中的干涉和衍射现象,从而深入研究光的波动性和传播规律。
其次,泊松亮斑和牛顿环还可以应用在光学仪器和光学器件中。
例如,在激光器和干涉仪中,可以利用泊松亮斑和牛顿环的分布规律来调整和改进光学仪器的性能,从而提高仪器的精度和稳定性。
总之,圆孔衍射、泊松亮斑和牛顿环是光学中的重要实验现象,它们展示了光波的传播特性和衍射现象对光的影响。
通过深入研究和了解这些实验现象,可以更好地理解和应用光波的传播特性和衍射现象,从而推动光学领域的发展和应用。
一、实验目的1. 了解单缝圆孔衍射的基本原理和现象;2. 观察单缝圆孔衍射的光强分布;3. 验证单缝圆孔衍射的数学模型,加深对波动光学理论的理解。
二、实验原理单缝圆孔衍射是波动光学中的一种基本现象,当光波通过一个狭缝或圆孔时,由于光波的波动性,会发生衍射现象。
根据惠更斯-菲涅尔原理,每一个波前上的点都可以看作是发射子波源,这些子波源向四周传播,相互干涉,形成衍射图样。
单缝圆孔衍射的光强分布可以通过夫琅禾费衍射公式进行计算。
当单缝圆孔的宽度与光波波长相比很小时,可以近似看作菲涅尔衍射。
此时,衍射图样可以近似为明暗相间的条纹,且条纹间距与单缝圆孔的宽度、光波波长和观察屏距离有关。
三、实验仪器与材料1. 单缝圆孔装置:包括单缝圆孔板、光源、聚光镜、观察屏等;2. 光强分布测量装置:包括光强计、数据采集卡等;3. 计算机及数据采集软件。
四、实验步骤1. 安装实验装置,调整光源、聚光镜、单缝圆孔板和观察屏的位置,使光路清晰;2. 依次改变单缝圆孔板与观察屏的距离,观察并记录衍射图样的变化;3. 利用光强分布测量装置,测量不同位置的衍射光强;4. 根据实验数据,分析光强分布规律,验证夫琅禾费衍射公式。
五、实验结果与分析1. 实验现象当单缝圆孔的宽度与光波波长相比很小时,观察屏上会出现明暗相间的衍射条纹。
随着单缝圆孔板与观察屏距离的增加,衍射条纹逐渐变宽,条纹间距变大。
2. 光强分布规律根据夫琅禾费衍射公式,光强分布与衍射角度、单缝圆孔的宽度、光波波长和观察屏距离有关。
实验结果显示,衍射光强随衍射角度的增加先增大后减小,并在某一角度达到最大值。
光强分布曲线呈现出明暗相间的条纹,且条纹间距与单缝圆孔的宽度、光波波长和观察屏距离成正比。
3. 实验验证通过测量不同位置的衍射光强,并与理论计算结果进行对比,验证了夫琅禾费衍射公式的正确性。
实验结果与理论计算结果基本吻合,说明该公式在单缝圆孔衍射实验中具有较高的准确性。
实验10 圆孔衍射当光在传播过程中经过障碍物,如不透明物体的边缘、小孔、细线、狭缝等时,一部分光会传播到几何阴影中去,产生衍射现象。
光的衍射现象是光的波动性的一种表现。
研究光的衍射现象不仅有助于加深对光本质的理解,而且能为进一步学好近代光学技术打下基础。
衍射使光强在空间重新分布,利用光电元件测量光强的相对变化,是测量光强的方法之一,也是光学精密测量的常用方法。
一、实验目的1.观察圆孔衍射现象,加深对衍射理论的理解。
2.会用光电元件测量圆孔衍射的相对光强分布,掌握其分布规律。
二、实验仪器H e -N e 激光器、单缝及二维调节架、光电探测器及移动装置、数字式万用表、钢卷尺等。
三、实验原理圆孔衍射的基础是惠更斯-菲涅尔原理,,经过计算可以得到:在沿光传播方向圆孔的中轴线上,总是光强极大(设平面光波沿圆孔轴线传播),偏开中轴线一定角度,诸子波相干叠加正好相消,则出现第一级暗线,由于圆孔激起子波的轴对称性,暗线将是暗环,再增大偏开轴线角度,可得到一系列暗环,暗环之间为亮环,即衍射次极大。
直径为D 的圆孔的夫琅和费衍射光强的径向分布可通过贝塞耳函数表示。
夫琅和费圆孔衍射图样的中央圆形(零级衍射)亮斑通常称为艾里斑,艾里斑的大小可用半角宽度即第一级暗环对应的衍射角为:D λθθ22.1sin ==圆孔衍射各极小值的位置(衍射角)在0.610π,1.116π,1.619π,… 处,各极大值的位置(衍射角)在0,0.0819π,0.133π,0.187π,… 处,其相对光强I/I0依次为1,0.0175,0.042,0.0016,…。
零级衍射的圆亮斑集中了衍射光能量的83.8% 。
夫琅和费衍射不仅表现在单缝衍射中,也表现在小孔的衍射中,如图10-1所示。
平行的激光束垂直地入射于圆孔光阑1上,衍射光束被透镜2会聚在它的角平面3上,若在此焦平面上放置一接收屏,将呈现出衍射条纹。
衍射条纹为同心圆,它集中了84%以上的光能量,P 点的光强分布为:()2102⎥⎦⎤⎢⎣⎡=x x J I I (10-1)()x J 1为一阶贝塞尔函数,它可以展开成x 的级数()()()1212!1!1+∞=⎪⎭⎫ ⎝⎛+-=∑k o k k x k k x J (10-2)x 可以用衍射角θ及圆孔半径a 表示θλπsin 2ax = (10-3) 式中λ是激光波长(e e N H —激光器8.623=λ纳米)。
圆孔衍射条纹的特点圆孔衍射是光通过一个小孔后产生的光的传播现象。
当光通过一个小孔时,由于光的波动特性,光波会发生衍射,形成一系列的光的明暗条纹,这就是圆孔衍射条纹的特点。
圆孔衍射条纹的特点可以从以下几个方面来描述:1. 中心亮斑:圆孔衍射中最明亮的区域位于中心,这是由于中心光线的传播方向与孔的中心线方向相同,光线更趋于直线传播,形成强光斑。
2. 环形暗条纹:中心亮斑周围会出现一系列的环形暗条纹,这是由于光波的干涉效应导致的。
光波通过圆孔后会形成一系列的球面波,这些球面波相互叠加,使得某些区域的光波相消干涉,形成暗条纹。
3. 条纹的密度:圆孔衍射条纹的密度与孔的直径和光的波长有关。
当孔的直径较大或光的波长较小时,条纹的密度较小,暗条纹的间距较大;反之,当孔的直径较小或光的波长较大时,条纹的密度较大,暗条纹的间距较小。
4. 条纹的扩展:当圆孔的直径增大时,衍射条纹会随之扩展。
这是因为当孔的直径增大时,通过孔的光线更多,形成的球面波也更多,干涉效应更加明显,衍射条纹的范围也随之扩大。
圆孔衍射条纹的特点可以通过以下表述来描述:在圆孔衍射实验中,当光通过一个小孔后,会出现一系列的明暗条纹,其中最明亮的区域位于中心,形成中心亮斑;而中心亮斑周围会出现一系列的环形暗条纹,这是由于光波的干涉效应导致的。
条纹的密度与孔的直径和光的波长有关,当孔的直径较大或光的波长较小时,条纹的密度较小,暗条纹的间距较大;反之,当孔的直径较小或光的波长较大时,条纹的密度较大,暗条纹的间距较小。
此外,随着圆孔直径的增大,衍射条纹的范围也随之扩大。
总结起来,圆孔衍射条纹的特点主要包括中心亮斑、环形暗条纹、条纹的密度和条纹的扩展。
这些特点是由光的波动特性和干涉效应共同作用产生的,通过实验观察和理论分析可以得到以上结论。