10.3二项式定理及其应用
- 格式:doc
- 大小:42.00 KB
- 文档页数:3
§10.3 二项式定理1. 二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n a n -r b r +…+C n n b n(n ∈N +).这个公式所表示的规律叫做二项式定理,等式右边的多项式叫做(a +b )n 的二项展开式,其中的系数C r n (r =0,1,2,…,n )叫做二项式系数.式中的C r n an -r b r 叫做二项展开式的通项,用T r +1表示,通项是展开式的第r +1项,即T r +1=C r n an -r b r (其中0≤r ≤n ,r ∈N ,n ∈ N +).2. 二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n. (2)增减性与最大值:二项式系数C r n ,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项T 12+n 的二项式系数最大.当n 是奇数时,那么其展开式中间两项T 21+n 和T 121++n 的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C r n +…+C n n =2n . 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n +…=2n -1.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r 是二项展开式的第r 项. ( × )(2)二项展开式中,系数最大的项为中间一项或中间两项. ( × ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关. ( √ ) (4)在(1-x )9的展开式中系数最大的项是第五、第六两项. ( × ) 2. (1+2x )5的展开式中,x 2的系数等于( )A .80B .40C .20D .10答案 B解析 T r +1=C r n a n -r b r =C r 515-r (2x )r =C r 5×2r ×x r,令r =2, 则可得含x 2项的系数为C 25×22=40.3. 在(x 2-13x)n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .28答案 B解析 由题意有n =8,T r +1=C r 8(12)8-r (-1)rx r348-,r =6时为常数项,常数项为7.4. 已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =729,则C 1n +C 2n +C 3n +…+C nn 等于( )A .63B .64C .31D .32答案 A解析 逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =3n =729,即3n=36,所以n =6,所以C 1n +C 2n +C 3n +…+C n n =26-C 0n =64-1=63.故选A.5. 设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.答案 0解析 a 10,a 11分别是含x 10和x 11项的系数,所以a 10=-C 1121,a 11=C 1021, 所以a 10+a 11=C 1021-C 1121=0.题型一 求二项展开式的指定项或指定项系数例1 已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.思维启迪 先根据第6项为常数项利用通项公式求出n ,然后再求指定项. 解 (1)通项公式为T r +1=C rn x 3r n -⎝⎛⎭⎫-12r x 3r-=C r n ⎝⎛⎭⎫-12rx32rn -.因为第6项为常数项,所以r =5时,n -2×53=0,即n =10.(2)令10-2r 3=2,得r =2,故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2r 3∈Z0≤r ≤10r ∈N,令10-2r 3=m (m ∈Z ),则10-2r =3m ,r =5-32m ,∵r ∈N ,∴m 应为偶数.∴m 可取2,0,-2,即r 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2. 思维升华 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(1)(2013·江西)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( )A .80B .-80C .40D .-40(2)(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40答案 (1)C (2)D解析 (1)T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫-2x 3r =C r 5(-2)r x 10-5r, 令10-5r =0得r =2.∴常数项为T 3=C 25(-2)2=40.(2)令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此(x +1x )(2x -1x )5展开式中的常数项即为(2x -1x )5展开式中1x 的系数与x 的系数的和.(2x-1x)5展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r ·x -r =C r 525-r x 5-2r·(-1)r . 令5-2r =1,得2r =4,即r =2,因此(2x -1x )5展开式中x 的系数为C 2525-2(-1)2=80.令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x 的系数为C 3525-3·(-1)3=-40.所以(x +1x )(2x -1x )5展开式中的常数项为80-40=40.题型二 二项式系数的和或各项系数的和的问题 例2 在(2x -3y )10的展开式中,求:(1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.思维启迪 求二项式系数的和或各项系数的和的问题,常用赋值法求解. 解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1, ①令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N +)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.解 (1)由已知得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝ ⎛⎭⎪⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116.∵m∈N+,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2+…+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=-1,a0-a1+a2-a3+a4-a5=-1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.题型三二项式定理的应用例3(1)已知2n+2·3n+5n-a能被25整除,求正整数a的最小值;(2)求1.028的近似值.(精确到小数点后三位)思维启迪(1)将已知式子按二项式定理展开,注意转化时和25的联系;(2)近似值计算只要看展开式中的项的大小即可.解(1)原式=4·6n+5n-a=4(5+1)n+5n-a=4(C0n5n+C1n5n-1+…+C n-2n 52+C n-1n5+C n n)+5n-a=4(C0n5n+C1n5n-1+…+C n-2n52)+25n+4-a,显然正整数a的最小值为4.(2)1.028=(1+0.02)8≈C08+C18·0.02+C28·0.022+C38·0.023≈1.172.思维升华(1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.(1)(2012·湖北)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a等于() A.0 B.1 C.11 D.12(2)S=C127+C227+…+C2727除以9的余数为________.答案 (1)D (2)7解析 (1)512 012+a =(52-1)2 012+a =C 02 012522 012-C 12 012522 011+…+C 2 0112 012×52× (-1)2 011+C 2 0122 012×(-1)2 012+a .因为52能被13整除,所以只需C 2 0122 012×(-1)2 012+a 能被13整除, 即a +1能被13整除,所以a =12.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.混淆二项展开式的系数与二项式系数致误典例:(12分)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992.求在⎝⎛⎭⎫2x -1x 2n 的展开式中, (1)二项式系数最大的项; (2)系数的绝对值最大的项.易错分析 本题易将二项式系数和系数混淆,利用赋值来求二项式系数的和导致错误;另外,也要注意项与项的系数,系数的绝对值与系数的区别. 规范解答解 由题意知,22n -2n =992,即(2n -32)(2n +31)=0,∴2n =32,解得n =5.[2分](1)由二项式系数的性质知,⎝⎛⎭⎫2x -1x 10的展开式中第6项的二项式系数最大, 即C 510=252.∴二项式系数最大的项为T 6=C 510(2x )5⎝⎛⎭⎫-1x 5=-8 064. [6分](2)设第k +1项的系数的绝对值最大, ∴T k +1=C k 10·(2x )10-k ·⎝⎛⎭⎫-1x k =(-1)k C k 10·210-k ·x 10-2k , ∴⎩⎪⎨⎪⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得⎩⎪⎨⎪⎧ C k 10≥2C k -1102C k 10≥C k +110,即⎩⎪⎨⎪⎧11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤113,[10分]∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项, T 4=-C 310·27·x 4=-15 360x 4.[12分]温馨提醒 (1)本题重点考查了二项式的通项公式,二项式系数、项的系数以及项数和项的有关概念.(2)解题时要注意区别二项式系数和项的系数的不同;项数和项的不同. (3)本题的易错点是混淆项与项数,二项式系数和项的系数的区别.方法与技巧1. 通项为T r +1=C r n an -r b r是(a +b )n 的展开式的第r +1项,而不是第r 项,这里r =0,1,…,n .2. 二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.3. 因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4. 运用通项求展开式的一些特殊项,通常都是由题意列方程求出r ,再求所需的某项;有时需先求n ,计算时要注意n 和r 的取值范围及它们之间的大小关系. 失误与防范1. 区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正. 2. 切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念. 3. 赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. 4. 在化简求值时,注意二项式定理的逆用,要用整体思想看待a 、b .A 组 专项基础训练 (时间:40分钟)一、选择题1. (2012·天津)在⎝⎛⎭⎫2x 2-1x 5的二项展开式中,x 的系数为 ( )A .10B .-10C .40D .-40答案 D解析 因为T k +1=C k 5(2x 2)5-k ⎝⎛⎭⎫-1x k=C k 525-k x 10-2k (-1)k x -k =C k 525-k(-1)k x 10-3k , 令10-3k =1,得k =3,所以x 的系数为C 3525-3(-1)3=-40. 2. (1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( )A .6B .7C .8D .9答案 B解析 (1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7. 3. (x -1x)10的展开式中含x 的正整数指数幂的项数是( )A .0B .2C .4D .6答案 B解析 (x -1x)10的展开式中第r +1项为C r 10(x )10-r (-1x)r =(-1)r C r 10x 235r-, 当5-3r2为正整数时,r =0,2,∴项数为2.4. 若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为( )A .-4B.52C .4D.72答案 C解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1), ∴x 4的系数为4a -1=15,∴a =4.5. 若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于 ( )A.34(3n -1) B.34(3n -2) C.32(3n -2)D.32(3n -1) 答案 D解析 在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n -1). 二、填空题6. 二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答)答案 10 解析T k +1=C k 5x5-k y k(k =0,1,2,3,4,5),由题意知⎩⎪⎨⎪⎧5-k =2k =3,∴含x 2y 3的系数为C 35=10. 7. (2012·浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T k +1=C k 5(1+x )5-k·(-1)k , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.8. (1-x )20的二项展开式中,x 的系数与x 9的系数之差为________.答案 0 解析∵T k +1=C k 20(-x 21)k =(-1)k ·C k20·x 2k,∴x 与x 9的系数分别为C 220与C 1820. 又∵C 220=C 1820,∴C 220-C 1820=0.三、解答题9. 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1. ① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094) =2 187.方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187. 10.已知⎝⎛⎭⎫12+2x n,(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝⎛⎭⎫12423=352, T 5的系数为C 47⎝⎛⎭⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C 714⎝⎛⎭⎫12727=3 432. (2)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C 1012·⎝⎛⎭⎫122·210·x 10=16 896x 10. B 组 专项能力提升 (时间:15分钟)1. 若(x +a )2(1x-1)5的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9答案 D解析 由于(x +a )2=x 2+2ax +a 2,而(1x -1)5的展开式通项为T r +1=(-1)r C r 5·x r -5,其中r =0,1,2,…,5.于是(1x-1)5的展开式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的展开式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9.2. 若(3x -1x)n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为( )A .-5B .5C .-405D .405答案 C解析 令x =1得2n =32,所以n =5, 于是(3x -1x)5展开式的通项为T r +1=(-1)r C r 5(3x )5-r (1x)r =(-1)r C r 535-r x 5-2r, 令5-2r =3,得r =1,于是展开式中含x 3的项的系数为(-1)1C 1534=-405,故选C.3. 从(4x +1x)20的展开式中任取一项,则取到有理项的概率为( )A.521B.27C.310D.37答案 B解析 (4x +1x )20的展开式通项为T r +1=C r 20(4x )20-r (1x)r =C r20x r 435 ,其中r =0,1,2,…,20. 而当r =0,4,8,12,16,20时,5-34r 为整数,对应的项为有理项,所以从(4x +1x )20的展开式中任取一项,则取到有理项的概率为P =621=27.4. (x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________.答案 -240解析 ∵T r +1=(-1)r C r 10x 10-r y r, ∴-C 310+(-C 710)=-2C 310=-240.5.在(1+x)3+(1+x)3+(1+3x)3的展开式中,x的系数为________(用数字作答).答案7解析由条件易知(1+x)3、(1+x)3、(1+3x)3展开式中x的系数分别是C13、C23、C33,即所求系数是3+3+1=7.6.若(2-x)10=a0+a1x+a2x2+…+a10x10,则(a0+a2+…+a10)2-(a1+a3+…+a9)2的值为________.答案 1解析设f(x)=(2-x)10,则(a0+a2+…+a10)2-(a1+a3+…+a9)2=(a0+a1+…+a10)(a0-a1+a2-…-a9+a10)=f(1)f(-1)=(2-1)10(2+1)10=1.。
二项式定理的应用与实例解析二项式定理是代数学中的重要概念之一,它在数学推理和实际问题求解中具有广泛的应用。
本文将介绍二项式定理的概念及其应用,并通过具体的实例进行解析,以帮助读者更好地理解和应用该定理。
一、二项式定理的概念二项式定理是指对于任意非负整数n和实数a、b,有以下的公式:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n) * a^0 * b^n其中,C(n, k)表示组合数,表示从n个元素中选取k个元素的组合数,计算公式为:C(n, k) = n! / (k! * (n-k)!)二、二项式定理的应用1. 概率计算二项式定理在概率计算中起到了重要作用。
例如,设有一枚正反面均匀的硬币,进行n次独立的抛掷,求正面出现k次的概率。
根据二项式定理,可以得到概率公式:P(X = k) = C(n, k) * p^k * (1-p)^(n-k)其中,p表示正面出现的概率。
2. 组合数学二项式定理在组合数学中应用广泛,可以用于求解组合数、排列数等问题。
例如,求集合中元素的子集个数,可以通过二项式定理计算:对于一个集合,它的子集个数为2^n个,其中n表示集合中元素的个数。
3. 计算多项式展开式系数二项式定理可以用于计算多项式展开式中各项的系数。
例如,对于多项式(a + b)^n,可以通过二项式定理的应用,直接得到展开式中各项的系数。
这对于计算多项式的展开式提供了效率和便利。
三、应用实例解析1. 概率计算实例假设有一枚硬币,进行10次独立抛掷,求正面出现2次的概率。
根据二项式定理的应用,可以得到:P(X = 2) = C(10, 2) * 0.5^2 * 0.5^8 = 45 * 0.25 * 0.00390625 = 0.04395因此,正面出现2次的概率约为0.044。
二项式定理及其应用二项式定理是数学中的一条重要定理,它揭示了如何展开和求解(x + y)ⁿ这种形式的表达式。
本文将介绍二项式定理的公式及其应用,并探讨其在数学和实际问题中的意义。
1. 二项式定理的公式二项式定理的公式如下所示:(x + y)ⁿ = C(n,0) · xⁿ · y⁰ + C(n,1) · xⁿ⁻¹ · y¹ + C(n,2) · xⁿ⁻² · y² + ... + C(n,n-1) · x · yⁿ⁻¹ + C(n,n) · x⁰ · yⁿ其中,C(n,k)表示从n个元素中选取k个元素的组合数,也可以表示为n! / (k! · (n-k)! )。
在展开(x + y)ⁿ时,每一项的系数就是组合数C(n,k),指数是x和y的幂次。
2. 二项式定理的应用2.1 二项式系数二项式定理中的组合数C(n,k)被称为二项式系数,它具有很多重要的性质。
其中最为著名的是杨辉三角形,每一行的数字都是由上一行相邻两个数字相加而来。
杨辉三角形也是计算二项式系数的一种常用方法。
2.2 展开式的应用二项式定理的展开式可以用于求解多项式的乘法、计算多项式在某一点的值等问题。
通过展开(x + y)ⁿ,可以直观地观察到每一项的系数和指数之间的关系,从而简化计算。
2.3 组合恒等式二项式定理可以通过一些代数推导得到一些有用的组合恒等式,如:- C(n,0) + C(n,1) + C(n,2) + ... + C(n,n) = 2ⁿ- C(n,0) - C(n,1) + C(n,2) - ... + (-1)ⁿ · C(n,n) = 0这些恒等式在组合数学、概率论等领域中有着重要的应用。
3. 二项式定理的意义二项式定理的意义不仅仅局限于数学领域,它在实际问题中也有广泛的应用。
二项式定理及其应用二项式定理是高中数学中的重要内容之一,在代数和组合数学中具有广泛的应用。
它可以帮助我们在求解各种数学问题时简化计算,提高效率。
本文将介绍二项式定理的基本概念、公式及其应用领域。
一、二项式定理的基本概念二项式定理是指对于任意实数a和b,以及任意正整数n,有以下公式成立:(a+b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中C(n,r)表示组合数,即从n个不同元素中取r个元素的组合数。
根据组合数的性质,可以得出C(n,r) = n! / (r! * (n-r)!)的计算公式。
二、二项式定理的公式1. 二项式展开式:根据二项式定理,可以将(a+b)^n展开为一系列单项式相加的形式。
每个单项式的系数即为组合数C(n,r),而a和b的幂分别为n-r和r。
例如,(a+b)^3 = C(3,0) * a^3 * b^0 + C(3,1) * a^2 *b^1 + C(3,2) * a^1 * b^2 + C(3,3) * a^0 * b^3。
2. 二项式系数:在二项式展开式中,各个单项式前的系数即为二项式系数。
二项式系数具有一些特殊性质,比如对称性和递推性。
例如,C(n,r) = C(n-1,r-1) + C(n-1,r)。
3. 常见的二项式定理公式:- (a+b)^2 = a^2 + 2ab + b^2- (a-b)^2 = a^2 - 2ab + b^2- (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3- (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3- ...三、二项式定理的应用领域二项式定理在代数和组合数学中有广泛的应用,以下列举其中几个常见的领域:1. 多项式的展开和化简:通过二项式定理,我们可以将高次多项式展开为各项系数的和,进而进行化简和计算。
二项式定理及其应用二项式定理是数学中非常基础的一个定理,它的重要性不亚于勾股定理和皮克定理。
在高中数学学习中,学生一定会接触到它,它被广泛应用于高中数学乃至进一步的数学学习中。
下面我们就来介绍一下什么是二项式定理以及它的应用。
一、二项式定理的定义二项式定理又称为二项式展开定理,是可以展开(a+b)^n的定理。
其中a、b为任意数,n为正整数。
它的一般形式为:(a+b)^n = C(n,0)·a^n·b^0 + C(n,1)·a^(n-1)·b^1 + … + C(n,k)·a^(n-k)·b^k + … + C(n,n)·a^0·b^n其中C(n,k)表示组合数。
二、组合数的定义组合数是数学中一个非常重要的概念,它的作用非常广泛,不仅仅在二项式定理中使用,还在概率论、统计学、组合数学等多个领域中都有应用。
组合数C(n,k)表示从n个不同元素中取出k个元素的组合数,公式为:C(n,k) = n!/(k!(n-k)!),其中0≤k≤n,n!表示n的阶乘。
三、二项式定理的应用1.幂的展开(a+b)^n = C(n,0)·a^n·b^0 + C(n,1)·a^(n-1)·b^1 + … + C(n,k)·a^(n-k)·b^k + … + C(n,n)·a^0·b^n中,幂的展开就是应用二项式定理的一个实际应用。
例如:(2x+3)^3 = C(3,0)·2^3·3^0 + C(3,1)·2^2·3^1 + C(3,2)·2^1·3^2 + C(3,3)·2^0·3^3 = 8x^3+36x^2+54x+272.排列组合排列组合问题是组合数学中的一个重要分支,可以通过二项式定理来解决。
二项式定理及其应用1. 引言二项式定理是数学中的一个重要定理,它描述了如何展开二项式的幂。
该定理在代数、组合数学、数论以及其他数学领域有着广泛的应用。
本文将介绍二项式定理的数学表达式、证明过程以及一些常见的应用。
2. 二项式定理的表达式二项式定理可以用以下的数学表达式来描述:$$(a + b)^n = C(n,0) \\cdot a^n \\cdot b^0 + C(n,1) \\cdot a^{n-1} \\cdot b^1+ ... + C(n,k) \\cdot a^{n-k} \\cdot b^k + ... + C(n,n) \\cdot a^0 \\cdot b^n$$ 其中,C(n,k)表示组合数,即从n个元素中选取k个元素的不同组合数量。
3. 二项式定理的证明为了证明二项式定理,我们可以使用数学归纳法。
首先,考虑当n=1时的情况:(a+b)1=a+b显然,上述等式成立。
假设当n=m时,二项式定理成立,即:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 我们需要证明当n=m+1时,二项式定理也成立。
首先,考虑展开(a+b)m+1:$$(a + b)^{m+1} = (a + b) \\cdot (a + b)^m$$根据归纳假设,我们可以将(a+b)m展开为:$$(a + b)^m = C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdot a^{m-1} \\cdotb^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdot a^0 \\cdot b^m$$ 将上述展开式代入$(a + b) \\cdot (a + b)^m$中,我们可以得到:$$(a + b) \\cdot (a + b)^m = (C(m,0) \\cdot a^m \\cdot b^0 + C(m,1) \\cdota^{m-1} \\cdot b^1 + ... + C(m,k) \\cdot a^{m-k} \\cdot b^k + ... + C(m,m) \\cdota^0 \\cdot b^m) \\cdot (a + b)$$将上式展开并合并同类项,我们可以得到:$$(a + b) \\cdot (a + b)^m = C(m,0) \\cdot a^{m+1} \\cdot b^0 + (C(m,1)\\cdot a^m \\cdot b^1 + C(m,0) \\cdot a^m \\cdot b^1) + ... + (C(m,k) \\cdota^{m-k+1} \\cdot b^k + C(m,k-1) \\cdot a^{m-k} \\cdot b^{k+1}) + ... + a^0 \\cdot C(m,m) \\cdot b^{m+1}$$我们可以通过重新排列项来证明上式等于展开式(a+b)m+1的每一项。
§二项式定理最新考纲能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题..二项式定理二项式定理(+)=+-+…+-+…+(∈*) 二项展开式的通项公式+=-,它表示第+项 二项式系数二项展开式中各项的系数(∈{,…,}).二项式系数的性质()=,=. =+.()=. ()当是偶数时,12nT +项的二项式系数最大;当是奇数时,12n T +与112n T ++项的二项式系数相等且最大.()(+)展开式的二项式系数和:+++…+=.概念方法微思考.(+)与(+)的展开式有何区别与联系?提示(+)的展开式与(+)的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同..二项展开式形式上有什么特点?提示二项展开式形式上的特点()项数为+.()各项的次数都等于二项式的幂指数,即与的指数的和为.()字母按降幂排列,从第一项开始,次数由逐项减直到零;字母按升幂排列,从第一项起,次数由零逐项增直到.()二项式的系数从,,一直到,..二项展开式中二项式系数最大时该项的系数就最大吗?提示不一定最大,当二项式中,的系数为时,此时二项式系数等于项的系数,否则不一定.题组一思考辨析.判断下列结论是否正确(请在括号中打“√”或“×”)()-是二项展开式的第项.(×)()二项展开式中,系数最大的项为中间一项或中间两项.(×)()(+)的展开式中某一项的二项式系数与,无关.(√)()(-)的展开式第+项的系数为-.(×)()(-)的展开式二项式系数和为-.(×)题组二教材改编.(+)的展开式中,的系数等于()....答案解析+=()=,当=时,的系数为·=.。
高中数学中的二项式定理及其应用在高中数学中,二项式定理是不可避免的一个重要话题。
二项式定理是指将一个二元式(a+b)的n次幂展开后,各项的系数满足一定规律。
这个定理的重要性不仅在于它本身的理论意义,更在于它的广泛应用。
本文将从二项式定理的基本概念开始,探讨它的应用。
一、二项式定理首先,我们来看一下二项式定理的公式:(a+b)ⁿ = C(n,0)aⁿb⁰ + C(n,1)aⁿ⁻¹b¹ + … + C(n,r)aⁿ⁻ʳbr + … +C(n,n)a⁰bⁿ其中,C(n,r)是组合数,它表示从n个元素中取r个元素的方案数,也可以用以下公式表示:C(n,r) = n!/(r!(n-r)!)例如,C(4,2) = 4!/(2!2!) = 6,表示从{1,2,3,4}这4个元素中取出2个元素的所有方案数为6个。
二项式定理告诉我们,将二元式(a+b)的n次幂展开后,每一项的系数都可以用组合数来表示。
这个规律具有很强的普适性,不论a、b是什么数,n是什么值,都能套用这个定理。
二、二项式系数的性质在实际应用中,二项式系数的性质也是我们需要掌握的。
这里列举几个常见的性质:1.对称性:C(n,r) = C(n,n-r)即从n个元素中取出r个元素的方案数等于从n个元素中取出n-r个元素的方案数。
这个性质的证明比较简单,可以通过对组合公式的变形来完成。
2.递推关系:C(n,r) = C(n-1,r-1) + C(n-1,r)即从n个元素中取出r个元素的方案数等于从n-1个元素中取出r-1个元素的方案数加上从n-1个元素中取出r个元素的方案数。
这个递推关系非常有用,可以应用于组合恒等式的证明,也可以结合递归算法来解决一些实际问题。
3.二项式系数的对数性质:∑C(n,r) = 2ⁿ即二项式系数C(n,0) + C(n,1) + … + C(n,n)的和等于2的n次幂。
这个性质的证明也比较简单,可以利用二项式定理将(a+b)ⁿ展开来证明。
1.二项式定理2.二项式系数的性质(1)C 0n =1,C n n =1. C m n +1=C m -1n+C m n . (2)C m n =C n -mn .(3)n 是偶数时,12nT +项的二项式系数最大;n 是奇数时,12+n T 与112n T ++项的二项式系数相等且最大.(4)C 0n +C 1n +C 2n +…+C n n =2n .【知识拓展】二项展开式形式上的特点 (1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n a n-k b k是二项展开式的第k项.(×)(2)二项展开式中,系数最大的项为中间一项或中间两项.(×)(3)(a+b)n的展开式中某一项的二项式系数与a,b无关.(√)(4)在(1-x)9的展开式中系数最大的项是第五、第六两项.(×)(5)若(3x-1)7=a7x7+a6x6+…+a1x+a0,则a7+a6+…+a1的值为128.(×)1.(教材改编)(x-y)n的二项展开式中,第m项的系数是()A.C m n B.C m+1nC.C m-1n D.(-1)m-1C m-1n答案 D解析(x-y)n展开式中第m项的系数为C m-1n(-1)m-1. 2.(2016·四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为() A.-15x4B.15x4C.-20i x4D.20i x4答案 A解析由题意可知,含x4的项为C26x4i2=-15x4.故选A.3.(2016·云南部分名校1月统一考试)已知6e11d=⎰n xx,那么⎝⎛⎭⎫x-3xn展开式中含x2项的系数为()A.130B.135C.121D.139 答案 B解析根据题意,66ee111d ln|6,===⎰n x xx则⎝⎛⎭⎫x-3x6中,由二项式定理得通项公式为Tk+1=C k6(-3)k x6-2k,令6-2k=2,得k=2,所以系数为C26×9=135.4.在(x2-13x)n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.答案7解析 由题意知n2+1=5,解得n =8,(x 2-13x )8的展开式的通项T k +1=C k 8(x 2)8-k (-13x )k =48838(1)2C ---k kk kx,令8-4k3=0,得k =6,则展开式中的常数项为(-1)626-8C 68=7.题型一 二项展开式命题点1 求二项展开式中的特定项或指定项的系数例1 (1)(2016·全国乙卷)(2x +x )5的展开式中,x 3的系数是______________.(用数字填写答案)(2)(2015·课标全国Ⅰ)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60答案 (1)10 (2)C 解析(1)(2x+x)5展开式的通项公式5552551C (2)C 2,---+==k kk kk kk x xT k ∈{0,1,2,3,4,5},令5-k2=3,解得k =4,得454543255C 210,--==xx T∴x 3的系数是10.(2)方法一 利用二项展开式的通项公式求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个取y ,两个取x 2,一个取x 即可,所以x 5y 2的系数为C 25C 23=30.故选C.命题点2 已知二项展开式某项的系数求参数例2 (1)(2015·课标全国Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =____________.(2)(2016·山东)若⎝⎛⎭⎫ax 2+1x 5的展开式中x 5的系数为-80,则实数a =________. 答案 (1)3 (2)-2解析 (1)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5, 令x =1,得16(a +1)=a 0+a 1+a 2+a 3+a 4+a 5,① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.② ①-②,得16(a +1)=2(a 1+a 3+a 5),即展开式中x 的奇数次幂的系数之和为a 1+a 3+a 5=8(a +1),所以8(a +1)=32,解得a =3. (2)510,2552551C ()C ---+==k k kk k kk ax a x T∴10-52k =5,解得k =2,∴a 3C 25=-80,解得a =-2. 思维升华 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.(1)(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案)(2)(x +a )10的展开式中,x 7的系数为15,则a =________.(用数字填写答案) 答案 (1)-20 (2)12解析 (1)x 2y 7=x ·(xy 7),其系数为C 78, x 2y 7=y ·(x 2y 6),其系数为-C 68,∴x 2y 7的系数为C 78-C 68=8-28=-20. (2)设通项为T k +1=C k 10x10-k a k ,令10-k =7, ∴k =3,∴x 7的系数为C 310a 3=15,∴a 3=18,∴a =12.题型二 二项式系数的和或各项系数的和的问题 例3 在(2x -3y )10的展开式中,求: (1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数的和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.(1)(2016·北京海淀区模拟)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b ,若13a =7b ,则m 等于( )A .5B .6C .7D .8 答案 B解析 由题意得a =C m 2m ,b =C m +12m +1,∴13C m 2m =7C m +12m +1,∴13·(2m )!m !·m !=7·(2m +1)!m !·(m +1)!,∴7(2m +1)m +1=13,解得m =6,经检验符合题意,故选B.(2)若(1-2x )2016=a 0+a 1x +a 2x 2+…+a 2016x 2016,则a 12+a 222+…+a 201622016的结果是多少?解 当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 201622016,∴0=1+a 12+a 222+…+a 201622016.即a 12+a 222+…+a 201622016=-1. 题型三 二项式定理的应用例4 (1)设a ∈Z 且0≤a <13,若512012+a 能被13整除,则a 等于( ) A .0B .1C .11D .12(2)1.028的近似值是________.(精确到小数点后三位) 答案 (1)D (2)1.172解析 (1)512012+a =(52-1)2012+a =C 02012·522012-C 12012·522011+…+C 20112012×52·(-1)2011+C 20122012·(-1)2012+a , ∵C 02012·522012-C 12012·522011+…+C 20112012×52·(-1)2011能被13整除且512012+a 能被13整除, ∴C 20122012·(-1)2012+a =1+a 也能被13整除,因此a 的值为12. (2)1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172. 思维升华 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.(1)1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87 答案 B解析 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1,∵前10项均能被88整除,∴余数是1.(2)已知2n +2·3n +5n -a 能被25整除,求正整数a 的最小值.解 原式=4·6n +5n -a =4(5+1)n +5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52+C n -1n 5+C n n )+5n -a=4(C 0n 5n +C 1n 5n -1+…+C n -2n 52)+25n +4-a ,显然正整数a 的最小值为4.15.二项展开式的系数与二项式系数典例 (1)(2016·河北武邑中学期末)若(x -3x )n 展开式的各项系数绝对值之和为1024,则展开式中含x 项的系数为________.(2)(2016·河北邯郸一中调研)已知(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7的展开式中x 4的系数是-35,则a 1+a 2+…+a 7=________. 错解展示解析 (1)(x +3x)n 展开式中,令x =1可得4n =1024,∴n =5,∴(x -3x)n 展开式的通项T k +1=(-3)k ·C k 5·532k x , 令5-3k2=1,得k =1. 故展开式中含x 项的系数为C 15=5.(2)a 1+a 2+…+a 7=C 17+C 27+…+C 77=27-1.答案 (1)5 (2)27-1 现场纠错解析 (1)在(x +3x)n 的展开式中,令x =1,可得(x -3x)n 展开式的各项系数绝对值之和为4n =22n =1024=210,∴n =5.故(x -3x)5展开式的通项为T k +1=(-3)k ·C k5·532k x -, 令5-3k2=1,得k =1, 故展开式中含x 项的系数为-15. (2)∵(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7, 令x =0,∴a 0=(-m )7.又∵展开式中x 4的系数是-35,∴C 37·(-m )3=-35, ∴m =1.∴a 0=(-m )7=-1.在(x -m )7=a 0+a 1x +a 2x 2+…+a 7x 7中, 令x =1,得0=-1+a 1+a 2+…+a 7, 即a 1+a 2+a 3+…+a 7=1. 答案 (1)-15 (2)1纠错心得 和二项展开式有关的问题,要分清所求的是展开式中项的系数还是二项式系数, 是系数和还是二项式系数的和.1.在x 2(1+x )6的展开式中,含x 4项的系数为( ) A .30B .20C .15D .10 答案 C解析 因为(1+x )6的展开式的第k +1项为T k +1=C k 6x k ,x 2(1+x )6的展开式中含x 4的项为C 26x 4=15x 4,所以系数为15.2.(2015·湖南)已知⎝⎛⎭⎫x -a x 5的展开式中含32x 的项的系数为30,则a 等于( )A.3B .-3C .6D .-6 答案 D解析 ⎝⎛⎭⎫x -ax 5的展开式通项52522551C (1)(1)C ,k k k kk k k k kk xa xa x T ---+=-⋅=-令52-k =32,则k =1,31252C ,a x T ∴=-∴-a C 15=30,∴a =-6,故选D.3.(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20答案 C解析 设展开式中的常数项是第k +1项,则T k +1=C k 6·(4x )6-k ·(-2-x )k =C k 6·(-1)k ·212x -2kx·2-kx=C k 6·(-1)k ·212x -3kx,∵12x -3kx =0恒成立,∴k =4, ∴T 5=C 46·(-1)4=15. 4.(2015·湖北)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ) A .29B .210C .211D .212 答案 A解析 由题意,C 3n =C 7n ,解得n =10,则奇数项的二项式系数和为2n -1=29.故选A. 5.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为( ) A .-4B.52C .4D.72答案 C解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1),∴x 4的系数为4a -1=15,∴a =4. 6.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-a 3+…+(-1)n a n 等于( ) A.34(3n -1) B.34(3n -2) C.32(3n -2) D.32(3n -1) 答案 D解析 在展开式中,令x =2,得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)na n =3(1-3n )1-3=32(3n -1). 7.若(x +a )2(1x -1)5的展开式中常数项为-1,则a 的值为( )A .1B .9C .-1或-9D .1或9答案 D解析 由于(x +a )2=x 2+2ax +a 2,而(1x -1)5的展开式通项为T k +1=(-1)k C k 5·x k -5,其中k =0,1,2,…,5.于是(1x -1)5的展开式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的展开式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9. 8.(2016·北京)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答) 答案 60解析 展开式的通项T k +1=C k 6·16-k ·(-2x )k =C k 6(-2)k ·x k .令k =2,得T 3=C 26·4x 2=60x 2,即x 2的系数为60.9.(2016·天津)⎝⎛⎭⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答) 答案 -56解析 ⎝⎛⎭⎫x 2-1x 8的通项T k +1=C k 8(x 2)8-k ⎝⎛⎭⎫-1x k =(-1)k C k 8x 16-3k ,当16-3k =7时,k =3,则x 7的系数为(-1)3C 38=-56.10.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T k +1=C k 5(1+x )5-k·(-1)k , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.11.(1+x )8(1+y )4的展开式中x 2y 2的系数是________. 答案 168解析 ∵(1+x )8的通项为C k 8x k ,(1+y )4的通项为C t 4y t ,∴(1+x )8(1+y )4的通项为C k 8C t 4x k y t ,令k =2,t =2,得x 2y 2的系数为C 28C 24=168.12.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7 =-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1093. (4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1093-(-1094)=2187. 方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1,∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2187.13.求证:1+2+22+…+25n -1(n ∈N *)能被31整除. 证明 ∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数, ∴原式能被31整除.*14.若(x +124x)n 展开式中前三项的系数成等差数列,求: (1)展开式中所有x 的有理项;(2)展开式中系数最大的项.解 (1)易求得展开式前三项的系数为1,12C 1n ,14C 2n . 据题意得2×12C 1n =1+14C 2n⇒n =8. 设展开式中的有理项为T k +1,163848811C ()C ,2k k k kk k k x T --+==由 ∴k 为4的倍数,又0≤k ≤8,∴k =0,4,8. 故有理项为16300044811()C ,2x x T -⨯== 163444485135()C ,28x x T -⨯==163888482911()C .2256x xT -⨯== (2)设展开式中T k +1项的系数最大, 则⎩⎨⎧ (12)k C k 8≥(12)k +1C k +18,(12)k C k 8≥(12)k -1C k -18⇒k =2或k =3.故展开式中系数最大的项为163252242831()C 7,2x x T -⨯==163373344841()C 7.2x x T -⨯==。
二项式定理及其应用
一、高考要求
(1)掌握二项式定理及二项式系数的性质;会求展开式中的特定项。
(2)掌握二项式定理的简单应用,包括:近似计算;求系数;证明整除性问题;证明等式、不等式等。
二、考向指南
常见考题:
(1)求展开式的某一项或适合某种条件的特殊项;
(2)求展开式各项系数的和;
(3)取二项展开式的前几项进行近似计算。
应对策略:
牢固掌握二项展开式及其通项公式的结构与特征和二项式系数的特征。
三、典型例题
(一)二项式定理及其通项公式
例1:已知41
()2n x x -的展开式中,前三项系数的绝对值成等差数列。
(1)求n;
(2) 求展开式中T 3的系数与二项式系数;
(3)证明展开式中没有常数项;
(4)求展开式中所有有理项;
(5)求二项式系数最大的项;
(6)求系数最大的项;
(7)求展开式中的系数和及二项式系数和;
(8)求系数绝对值最大的项。
例2:(求某一项的系数问题)
(1)(1+x )(2+x) (3+x)…(10+x) 展开式中x 9的系数;
(2)45(1)(1)x x +-展开式中x 4的系数;
(3)26(123)x x +-展开式中x 5的系数; (4) 求3415(
1)(1)(1)x x x ++++++的展开式中x 3
的系数;
(5)(x+2y+3z )7的展开式中x 4y 2z 的系数。
例3(求系数和问题)
1.已知:(1-2x )7=a 0+a 1x+a 2x 2+…+a 7x 7
求:(1)a 1+a 2+…+a 7= ;
(2) a 1+a 3+…+a 7= ;
(3)| a 1|+|a 2|+…+|a 7|= ;
2.已知:x 9=a 0+a 1(x+2)+a 2(x+2)2+…+a 9(x+2)9.
求:(1)a 0+ a 1+a 2+…+a 9= ;
(2)a 2.
(二)二项式定理的应用
1.求近似值
例5.求1.9975的近似值(精确到0.0001)。
练习4:
(1)某公司的股票今天的指数是2,以后每天的指数都比上一天的指数增长0.02%,则100天后这家公司的股票指数约为 (精确到0.001)。
(2)P312:例4。
2.求余数,证明整除性问题
例6.(1)求证:32n+2-8n-9能被64整除;
(2)今天是星期四,再过260天后的第一天是星期几?
题后反思:
幂指数含n 的整除性问题,通常是将底数适当拆成2个数的和,利用二项式定理展开,然后说明各项是否能被整除。
3.证明等式与不等式
例7.(1)求和:12122n n n n n C C C -++
(2)求证: 0123234(1)(1)0n n n n n n n C C C C n C -+-+
-+=
例8:(1)已知n ∈N*,x>-1,
求证:2320n n n n n C C x C x -+++>。
(2)设a>1,n ∈N,且n ≥2,求证:11n a a n
--<。
题后反思:
利用二项展开式定理证题时,只要适当的展开,取必要的几项即可。
四.作业:
P310:9,11
P312:10,11。