2020中考实数专题测试题及答案
- 格式:doc
- 大小:159.82 KB
- 文档页数:9
2020-2021初中数学实数经典测试题及答案解析(1)一、选择题1.下列说法中,正确的是( )A .-(-3)2=9B .|-3|=-3C ±3D【答案】D【解析】【分析】根据绝对值的意义,乘方、平方根、立方根的概念逐项进行计算即可得.【详解】A. -(-3)2=-9,故A 选项错误;B. |-3|=3,故B 选项错误;3,故C 选项错误;D. 4,=-4,故D 选项正确,故选D.【点睛】本题考查了绝对值的意义,乘方运算、平方根、立方根的运算,熟练掌握各运算的运算法则是解题的关键.2.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5, 1.==按照此规定, 1⎤⎦的值为( )A 1B 3C 4D 1+ 【答案】B【解析】【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由34,得4+1<5.3-,故选:B .【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.3.若a 、b 分别是2a-b 的值是( )A .B .CD .【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a 为2,b 为2a-b=4-(故选C.4.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间 【答案】C【解析】【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.5.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.6.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③ 【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.7.下列各数中比3大比4小的无理数是( )A B C .3.1 D .103【答案】A【解析】【分析】由于带根号的且开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解.【详解】>4,3<4∴选项中比3大比4.故选A.【点睛】此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.8.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b【答案】C【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:∵由数轴可知,b>0>a,且 |a|>|b|,()2a ab a a b b+=-++=.故选C.考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.9.下列说法正确的是()A.﹣81的平方根是±9 B.77C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,77B,选项正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.在实数范围内,下列判断正确的是()A.若212Lt,则m=n B.若22a b>,则a>bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.11.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.若x2=16,则5-x的算术平方根是()A.±1 B.±3 C.1或9 D.1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.13.若一个正数的平方根是2a ﹣1和﹣a+2,则这个正数是( )A .1B .3C .4D .9【答案】D【解析】∵一正数的两个平方根分别是2a −1与−a +2,∴(2a −1)+(−a +2)=0,解得a =−1.∴−a +2=1+2=3,∴这个正数为32=9.故选:D.14.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10【答案】C【解析】【分析】 先根据123=☆计算出a 的值,进而再计算48☆的值即可.【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系17.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .2或12B .1或﹣1C .12或1D .2或﹣1 【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =2(12<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.18.实数 )A 3<<B .3<C 3<< D 3<< 【答案】D 【解析】【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=>3<<,故D 为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a的算术平方根是a,π-的算术平方根是4-π,⑤正③错误;算术平方根不可能是负数,④正确;()24确.所以不正确的个数为3个,选B.【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.。
2020年中考数学试题分类汇编之一实数的运算填空题解析1.(2020小的整数 . 【解析】14942<<<,可得2或3均可,故答案不唯一,2或3都对2.(2020安徽)(51= 2 .【解答】解:原式312=-=.故答案为:2.3.(2020= * .4.(2020福建)计算:8-=__________.【答案】85.(2020福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为_________米.【答案】10907-【详解】解:∵高于马里亚纳海沟所在海域的海平面100米的某地的高度记为100+米, ∴“海斗一号”下潜至最大深度10907米处,可记为-10907,6.(2020陕西)计算:(2+ 3)(2﹣3)= 1 .【分析】先利用平方差公式展开得到原式=22﹣(3)2,再利用二次根式的性质化简,然后进行减法运算.【解答】解:原式=22﹣(3)2=4﹣3=1.7.(2020哈尔滨)(3分)将数4790000用科学记数法表示为 64.7910⨯ .【解答】解:64790000 4.7910=⨯,故答案为:64.7910⨯.8.(2020哈尔滨)(3的结果是【解答】解:原式==.故答案为:.9.(2020天津)计算1)+的结果等于_______.答案:610.(2020==,则ab =_________.【答案】6【详解】-==∴a=3,b=2 ∴ab =6故答案为:6.11.(2020河南)请写出一个大于1且小于2的无理数: .(答案不唯一).12.(2020乐山)用“>”或“<”符号填空:7-______9-.【答案】>13.(2020南京)(2分)写出一个负数,使这个数的绝对值小于3: (答案不唯一) . 答案为:-2(答案不唯一).14.(2020湖北黄冈)计算:= ▲ .【答案】﹣2.15.(2020山东青岛)计算的结果是___.解:2=4-. 故答案为4.16.(2020南京)(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 8210-⨯ s .17.(2020南京)(2的结果是 3. 18.(2020无锡)2019年我市地区生产总值逼近12000亿元,用科学记数法表示12000 是__________.【答案】41.210⨯19.(2020齐齐哈尔)((3分)2020年初新冠肺炎疫情发生以来,近4000000名城乡社区工作者奋战在中国大地的疫情防控一线.将数据4000000用科学记数法表示为 4×106 . 解:将数据4000000用科学记数法表示为4×106,20.(2020湖北武汉)计算2(3)-的结果是_______.【答案】321.(2020重庆A 卷)计算:0(1)|2|π-+-=__________.【答案】322.(2020重庆B 卷)计算: = . 答案3.14.(2020重庆B 卷)经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人,请把数94000000用科学记数法表示为 .答案9.4×107. 23.(2020四川南充)(4分)计算:|1|+20= .解:原式1+1. 故答案为:. 24.(2020甘肃定西)如果盈利100元记作+100元,那么亏损50元记作_________元. 答案:-5025.(2020辽宁抚顺)(3分)截至2020年3月底,我国已建成5G 基站198000个,将数据198000用科学记数法表示为 1.98×105 .26.(2020黑龙江牡丹江)(3分)新冠肺炎疫情期间,全国各地约42000名医护人员驰援湖北.请将数42000用科学记数法表示为 44.210⨯ .答案为:44.210⨯.27.(2020江苏连云港)(3分)我市某天的最高气温是4C ︒,最低气温是1C ︒-,则这天的日温差是 5 C ︒.解:4(1)415--=+=.故答案为:5.28.(2020江苏连云港)(3分)“我的连云港” APP 是全市统一的城市综合移动应用服务端.一年来,实名注册用户超过1600000人.数据“1 600 000”用科学记数法表示为 61.610⨯ . 解:数据“1600000”用科学记数法表示为61.610⨯, 故答案为:61.610⨯.29.(2020黑龙江龙东)(3分)5G 信号的传播速度为300000000/m s ,将数据300000000用科学记数法表示为 8310⨯ .解:8300000000310=⨯.故答案为:8310⨯.30.(2020江苏泰州)(3分)9的平方根等于 3± .解:2(3)9±=,9∴的平方根是3±.故答案为:3±.31.(2020江苏泰州)(3分)据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 44.2610⨯ . 解:将42600用科学记数法表示为44.2610⨯,故答案为:44.2610⨯.32.(2020四川遂宁)(4分)下列各数3.1415926,,1.212212221…,71,2﹣π,﹣2020,中,无理数的个数有 3 个.解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,故答案为:3. 33.(2020广西南宁)(3分)计算:12﹣3= 3 .解:12-3=23﹣3=3. 故答案为:3.34.(3分)(2020•玉林)计算:0﹣(﹣6)= 6 .解:原式=0+6=6.故答案为:6.35.(3分)(2020•常德)计算: 3 .解:原式2=3.故答案为:3.36.(3分)(2020•徐州)7的平方根是±.解:7的平方根是±.故答案为:±.37.(3分)(2020•徐州)原子很小,1个氧原子的直径大约为0.000000000148m,将0.000000000148用科学记数法表示为 1.48×10﹣10.解:0.000000000148=1.48×10﹣10.故答案为:1.48×10﹣10.38.(2020贵州遵义)(4分)计算:的结果是.解:2.39.(3分)(2020•荆门)计算:tan45°+(﹣2020)0﹣()﹣1=.解:原式=21+1故答案为:.40.(3分)(2020•烟台)5G是第五代移动通信技术,其网络下载速度可以达到每秒1300000KB 以上,正常下载一部高清电影约需1秒.将1300000用科学记数法表示为 1.3×106.解:将数据1300000用科学记数法可表示为:1.3×106.故答案为:1.3×106.41.(2020山西)(3分)计算:(3+2)2﹣24=5.解:原式=3+26+2﹣26=5.的相反数是_________.42.(2020东莞)3答案:343.(2020四川自贡)(4分)与2最接近的自然数是2.解:∵3.54,∴1.52<2,∴与2最接近的自然数是2.故答案为:2.44.(2020青海)(4分)(﹣3+8)的相反数是﹣5;16的平方根是±2.45.(2020青海)(2分)岁末年初,一场突如其来的新型冠状病毒肺炎疫情席卷全球,我国在党中央的坚强领导下,全国人民团结一心、众志成城,取得了抗击疫情的阶段性胜利;据科学研究表明,新型冠状病毒颗粒的最大直径为125纳米;125纳米用科学记数法表示为 1.25×10﹣7米.(1纳米=10﹣9米)46.(2020山东滨州)(5在实数范围内有意义,则x的取值范围为x.547.(2020云南)(3分)中国是最早采用正负数表示相反意义的量的国家.某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为﹣8吨.48.(2020浙江宁波)(5分)实数8的立方根是2.。
中考数学总复习《实数》专项测试卷-附带有参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.在π,√1121,√3,0.303003,−227中,无理数的个数是( )A.1个B.2个C.3个D.4个2.不小于−√8的最小整数是( )A.−3B.−2C.−4D.−13.一个数的立方根等于它本身,这个数是( )A.0B.1C.0或1D.0或±14.下列说法正确的是( )A.4的平方根是±2B.8的立方根是±2C.√4=±2D.√(−2)2=−25.下列无理数中,与3最接近的是( )A.√6B.√8C.√11D.√136.下列判断正确的有( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;③ √33是3的立方根;④无理数是带根号的数;⑤ 2的算术平方根是√2.A.2个B.3个C.4个D.5个7.如图,数轴上点A表示的数可能是( )A.3的算术平方根B.4的算术平方根C.7的算术平方根D.9的算术平方根8.估算9−√10的值,下列结论正确的是( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间二、填空题(共5题,共15分)9.已知m<2√7<m+1,m为整数,则m= .10.已知x,y是两个连续整数,z是面积为15的正方形的边长,且x<z<y,则y x=.11.如图是一个简单的数值运算程序,当输入x的值为16时,输出的数值为.(用科学计算器计算或笔算)12.已知实数a,b,c,d,e,f且a,b互为倒数,c,d互为相反数,e的绝对值为√2,f的算术平方根是8,则12ab+c+d5+e2+√f3的值是.13..在数轴上,如果点A、点B所对应的数分别为−√7,2√7,那么A,B两点的距离AB=.三、解答题(共3题,共45分)14.已知实数x,y满足关系式√x−2+∣y2−1∣=0.(1) 求x,y的值;(2) 判断√y+5x是有理数还是无理数?并说明理由.15.小丽手中有块长方形的硬纸片,其中长BC比宽AB多10cm,长方形的周长是100cm.(1) 求长方形的长和宽;(2) 小丽想用这块长方形的硬纸片,沿着边的方向裁出一块长与宽的比为5:4,面积为520cm2的新纸片作为他用,试判断小丽能否成功,并说明理由.16.某小区为了促进全民健身活动的开展,决定在一块面积约为1000m2的正方形空地上建一个篮球场.已知篮球场的面积为420m2,其中长是宽的28倍,篮球场的四周必须留出15不少于1m宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?参考答案1. 【答案】B2. 【答案】B3. 【答案】D4. 【答案】A5. 【答案】B6. 【答案】B7. 【答案】C8. 【答案】B9. 【答案】510. 【答案】6411. 【答案】312. 【答案】61213. 【答案】−314. 【答案】(1) x=2y=±1.x=√6是无理数;(2) 若x=2,y=1时,√y+5x=√4=2是有理数.若x=2,y=−1时,√y+5x可能是有理数,也可能是无理数.∴√y+515. 【答案】(1) AB=20cm BC=30cm.(2) 设宽为4x cm则长为5x cm.所以5x⋅4x=520.解得x=√26.因为4x=4√26>20所以小丽不能成功.x m.16. 【答案】设篮球场的宽为x m,那么长为2815由题意知2815x2=420所以x2=225因为x为正数所以x=15.又因为(2815x+2)2=900<1000所以能按规定在这块空地上建一个篮球场.。
中考数学----《实数混合运算》专项练习题(含答案解析) 1.计算:()2022192sin 30−︒. 【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:()20221192sin 3013213132−︒=+−⨯=+−=. 【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.2.计算:021(3)3624−−π−−+. 【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式111644=−++7= 【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.3.计算:01(10)1620222⎛⎫−⨯− ⎪⎝⎭. 【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式541=−+=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.4.计算:0(2022)2tan 45|2|9−−︒+−+【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式12123=−⨯++1223=−++4=;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.5.()()0212 3.143tan 60132π−−−︒+−.【答案】14【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 0212 3.143tan 6013())2(π−−−︒+−123133314=−+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.6.计算:20(2)|325(33)−+−− 3【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可. 【详解】解:原式43513=+【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,2a a . 7.计算:(011322452−+︒−−. 【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1211222+=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.8.019(2022)2−−+.【答案】52【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 019(2022)2−−+1312=−+ 52=. 【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.9.计算:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒.【答案】3【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:201(2)2sin 602π−⎛⎫−+−− ⎪⎝⎭︒33 【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则. 10.计算:015(3)|67⎛⎫⨯−+−− ⎪⎝⎭. 【答案】166−【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解. 【详解】解:015(3)|67⎛⎫⨯−+− ⎪⎝⎭1561=−+166=−【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键. 11.计算:(()2623+⨯−.【答案】0【分析】先算乘方,再算乘法和减法,即可.【详解】()26(6)623606=+−=+−−=⨯ 【点睛】本题考查实数的混合运算,关键是掌握2(a a =.12.2324 【答案】6−【分析】根据二次根式的混合运算进行计算即可求解. 【详解】解:原式626=6=−【点睛】本题考查了次根式的混合运算,正确的计算是解题的关键.13.计算:2013sin3082−︒︒⎛⎫− ⎪⎝⎭【答案】1【分析】根据零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质进行计算即可求解.【详解】解:原式=12 14222−⨯+1=.【点睛】本题考查了实数的混合运算,掌握零次幂,负整指数幂,特殊角的三角函数值,二次根式的性质是解题的关键.14.计算:2sin60°﹣32|+(π10012(﹣12)﹣2.【答案】3【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】解:2sin60°﹣32|+(π10012+(﹣12)﹣2333333=3.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.15.计算:12022125(1)3−⎛⎫+−⎪⎝⎭.5【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3−⎛⎫+−⎪⎝⎭3521=−5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.16.124sin3032︒;3【分析】先化简二次根式,把特殊角三角函数值代入,并求绝对值,再计算乘法,最后合并同类二次根式即可; 【解析】解:原式1234232=⨯+3=【点睛】本题考查实数的混合运算,分式的混合运算,熟练掌握实数混合运算法则,熟记特殊角的三角函数值.17.计算:2022032tan 45(1)(3)π−−︒+−−.【答案】1 【分析】根据特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值等计算法则求解即可. 【详解】解:2022032tan 45(1)(3)π−−︒+−−32111=−⨯+−3211=−+−1=.【点睛】本题考查了特殊角的三角函数值,零指数幂,实数的运算,有理数的乘方,绝对值,准确熟练地化简各式是解题的关键.18.计算:201tan 452(3)(21)2(6)23−︒−++−−+⨯−. 【答案】6【分析】原式分别利用乘方,特殊角的三角函数值,零指数幂,负整数指数幂,乘法法则分别计算,再作加减法. 【详解】解:201tan 452(3)(21)2(6)23−︒−++−+⨯− =1191422++−− =6【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解本题的关键.19.计算:()20211+84sin 45+2−︒−.【答案】1【分析】利用乘方的意义,二次根式的化简,特殊角的函数值,绝对值的化简,化简后合并计算即可 【详解】解:原式2122422=−+⨯+ 122222=−+1=.【点睛】本题考查了二次根式的化简,特殊角的三角函数值,绝对值的化简等知识,熟练运用各自的运算法则化简是解题的关键.20.23862−−.【答案】4. 38=2,-6=6,计算出结果.【详解】解:原式2644=+−=故答案为:4.【点睛】本题主要考查了实数的混合运算,关键是开三次方与绝对值的计算. 21.计算:()043897⨯−+−. 【答案】-6;.【分析】直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;【详解】解:()043897⨯−+−− 12831=−+−+6=−;【点睛】此题主要考查了实数运算的混合运算,正确掌握相关运算法则是解题关键. 22.025|7|(23)−−+.【答案】1−【分析】利用算术平方根、绝对值的性质、零指数幂分别计算各项即可求解.【详解】解:原式5711=−+=−.【点睛】本题考查实数的混合运算,掌握算术平方根、绝对值的性质、零指数幂是解题的关键.23.计算:0|2021|(3)4−+−【答案】2020【分析】先计算绝对值、零指数幂和算术平方根,最后计算加减即可; 【详解】解:0|2021|(3)4−+−202112=+−,2020=.【点睛】本题主要考查实数的混合运算,解题的关键是掌握实数的混合运算顺序及相关运算法则.24.计算:011(2021)()2cos 452π−−+−︒. 【答案】32【分析】先进行零指数幂和负整数指数幂,余弦函数值计算,再计算二次根式的乘法,合并同类项即可.【详解】解:011(2021)()2cos 452π−−+−︒, 2122=+− 32=【点睛】本题主要考查零指数幂和负整数指数幂,特殊角三角函数值,掌握零指数幂和负整数指数幂的运算法则,特殊角锐角三角函数值是解题的关键.25.计算:()101tan 60233122−⎛⎫−+︒−+−− ⎪⎝⎭π【答案】-3【分析】分别利用负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的性质化简,再进行计算即可. 【详解】解:()101tan 60233122−⎛⎫−+︒−−+− ⎪⎝⎭π ()=2+3233−+1-2=2323123−−=3−【点睛】本题考查了负整指数幂,特殊角的三角函数值,绝对值,零指数幂,二次根式的化简等知识点,熟悉相关性质是解题的关键.26.计算:()03.1427134sin 60π−+︒.【答案】0【分析】分别化简各数,再作加减法.【详解】解:()03.1427134sin 60π−︒ =3133314−+ =1333123−+=0【点睛】本题考查了实数的混合运算,特殊角的三角函数值,解题的关键是掌握运算法则.27.计算:()2012sin 602020233π−︒⎛⎫+−+−+ ⎪⎝⎭ 【答案】12【解析】【分析】分别根据特殊锐角三角函数值、零指数幂、负指数幂和实数性质化简各式,再计算即可.【详解】解:原式329123=++3123=12=.【点睛】本题考查了特殊锐角三角函数值、零指数幂、负指数幂和实数的有关性质,解答关键是根据相关法则进行计算.28.计算:552×822)0. 【答案】0【解析】【分析】先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;【详解】 解:原式=12352522122− =35521−=0;【点睛】本题主要考查实数的混合运算,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.29.计算:0(23)(23)tan 60(23)π++︒−− 3【解析】【分析】先计算平方差公式、特殊角的正切函数值、零指数幂,再计算实数的混合运算即可.【详解】 原式222(3)31=− 4331=−+3=【点睛】本题考查了平方差公式、特殊角的正切函数值、零指数幂等知识点,熟记各运算法则是解题关键.30.()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o ; 36.【解析】【分析】根据算术平方根、特殊角三角函数值、负整数指数评价的人意义以及绝对值的意义进行计算即可;【详解】 ()220201272603232cos −⎛⎫−−+ ⎪⎝⎭o 3314323=−−−36=;【点睛】本题考查了实数的混合运算,二次根式的加减法,解答此题的关键是熟练掌握运算法则. 31.计算:120201(1)|132sin 602−︒⎛⎫−+−+− ⎪⎝+⎭. 【答案】2【解析】【分析】分别利用零指数幂、负指数幂的性质,绝对值的性质和特殊角的三角函数值分别化简即可.【详解】 解:原式=)312312++−=12313+=2【点睛】此题主要考查了根式运算,指数计算,绝对值,三角函数值等知识点,正确应用记住它们的化简规则是解题关键.32.计算:2cos45(2020)|22π︒︒+−+−.【答案】3【解析】【分析】根据特殊角的三角函数值,零指数幂运算及去绝对值法则进行计算即可.【详解】 解:2cos45(2020)|22π︒︒+−+=2×22+1+22 =2+1+22=3.【点睛】本题考查零次幂的性质、特殊角的三角函数值,绝对值性质实数的运算,熟练掌握计算法则是正确计算的前提.33.计算:11()18|2|6sin 453−−−︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=2332262+−⨯ 332232=+−5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.34.计算:0|122sin45(2020)︒−+−;【答案】0;【解析】【分析】根据实数的混合运算法则计算即可;【详解】解:原式221212−⨯+ =0;【点睛】本题考查了实数的混合运算,以及特殊角的三角函数值,解题的关键是掌握运算法则.35.计算:10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3【解析】【分析】根据负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值进行计算即可【详解】10311345( 3.14)273π−⎛⎫+︒+− ⎪⎝⎭3|131|13=++−33113=+−3=【点睛】 本题考查了负整数指数幂,绝对值的性质,零指数幂,立方根,特殊角的三角函数值,熟知以上计算是解题的关键.36.计算:101()2cos 4512(31)3−−+−【答案】1【分析】根据负整指数幂的性质,特殊角的三角函数值,绝对值,零指数幂的性质,直接计算即可.【详解】101()2cos 4512(31)3−−+ 2322211=−⨯− 22131=−1=.【点睛】 本题主要考查了实数的混合运算,包含零指数幂,负整数指数幂,绝对值及特殊角的余弦值等,灵活运用是解题关键.37.计算:013120208302−⎛⎫+︒− ⎪⎝⎭. 【答案】0【解析】【分析】依次计算零指数幂,化简立方根乘以特殊的三角函数值,最后一项利用负指数幂,最后相加减即可得出答案.【详解】解:原式11222=+⨯− 112=+−0=【点睛】此题主要考查了实数的运算以及特殊的三角函数值,熟练掌握运算法则是解题的关键. 38.计算:1202138(π﹣3.14)0﹣(﹣15)-1. 【答案】5【解析】算出立方根、零指数幂和负指数幂即可得到结果;【详解】解:原式=1﹣2+1+5=5.【点睛】本题主要考查了实数的运算,计算是解题的关键.39.计算:13182cos60-(-1) 2π−⎛⎫−⎪⎝⎭.【答案】0【解析】【分析】先化简各项,再作加减法,即可计算.【详解】解:原式=1 22212−++⨯−=0,故答案为:0.【点睛】此题考查实数的混合运算以及特殊角的三角函数值,关键是掌握运算法则和运算顺序.40.0 31 8312sin604⎛⎫−−︒+ ⎪⎝⎭【答案】2−.【解析】【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式323121−+−+ =23131 =−+【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.41.计算:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 【答案】-3【解析】【分析】根据负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则分别对每项进行化简,再进行加减计算即可. 【详解】 解:()10124sin 601232π−⎛⎫−−−+︒− ⎪⎝⎭ 2223231=−−+3=−【点睛】本题考查实数的混合运算、熟练掌握负整数指数幂、绝对值、特殊角的三角函数值、二次根式和零次幂的运算法则是解题的关键.42.计算:()10131012454−︒⎛⎫−−++ ⎪⎝⎭ 【答案】7【解析】【分析】根据绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则分别对每项进行化简,再进行加减计算即可.【详解】解:)10131012454−︒⎛⎫−−+ ⎪⎝⎭ =3114−++=7【点睛】本题考查实数的混合运算、熟练掌握绝对值、零次幂、特殊角的三角函数值、二次根式和负整数指数幂的运算法则是解题的关键.43.101313tan 30(3.14)2π−⎛⎫−︒+−+ ⎪⎝⎭ 【答案】2.【解析】【分析】先计算绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,再计算实数的混合运算即可得.【详解】 原式331312=−++ 31312=+2=.【点睛】本题考查了绝对值运算、特殊角的正切函数值、零指数幂、负整数指数幂,熟记各运算法则是解题关键.44.()(202 3.14219π−+ 【答案】10.【解析】【分析】先计算零指数幂、绝对值运算、算术平方根,再计算二次根式的乘法、去括号、有理数的乘方,然后计算二次根式的加减法即可得.【详解】原式221(21)3=−+2219=+10=.【点睛】本题考查了零指数幂、绝对值运算、算术平方根、二次根式的加减法与乘法等知识点,熟记各运算法则是解题关键.18。
2019-2020年中考数学试题分类 专题1实数选择题 1.(2002年江苏淮安3分)—3的绝对值是【】【答案】C ・ L 考点】绝对值°【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点・3到 原点的距离是灵所[次-』的绝对值是灵 故选G 2.(2002年江苏淮安3分)长江三峡工程电站的总装机容量是18 200 000千瓦,如果用科学记数法表示电站的总装机容量,应记作【 】千瓦.A. 1.82 X 106 B . 1.82 X 107 C . 0.182 X 108 D . 18.2 X 106【答案1B.【若点】科学记颤法.【分析】根据科学记数法的定义,科学记数法的表示形式为廿1〔鬥 其中l<a<135 n 淘整 熟 表示时关诞要正确确定a 的值収及n 的值.在确定n 的值时,養该数是大于或等于1 还是小于1H 当该数犬于或等于1时,n 为它的整魏位数滅h 当该数小于1时,-n 沖它藹 一个有放数字前0的个数(含小数点前的1个0)・18 200 009 -共&位,从而 I£200000-L82xl0\ 故选玄13.(2003年江苏淮安3分) 2的相反数是【】 11A. — 2 B 2 C. 2 D2【答案】 Bo【考点】 相反数。
【分析】相反数的定义是:如果两个数只有符号不同, 我们称其中一个数为另一个数的相反11数,特别地,0的相反数还是0。
因此 2的相反数是2。
故选B 。
4.(2003年江苏淮安3分)截至5月22日全国各地民政、卫生部门、红十字会、中华 慈善总会等系统共接收防治非典型肺炎社会捐赠款物总计约 177000万元,用科学记数法应表示为(【 】A. 1.77 X 104 万元 B . 1.77 X 105 万元 C . 17.7 X 104 万元 D . 177X 106万元A. 2 B12 C .3 D . ±3【答^13.I考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为凶叽其中口沟整数,表示时关键要正确确定a的值以及n的值B在确定n的值时,看诗数是大于或等于1 还是小于1.当该数大于或等于1时,n为它的整数位数减I;当该数小于1时.一口为它第—个有■效数字前0的个数(含小数点前的1个0)・177000 —共6位,从而17兀曲=1一?"1叽故选Bn5. (2004年江苏淮安3分)下列式子中,不成立的是【】A .—2>—l B. 3>2 C. 0>—I D. 2>—1【答案】九【考点】有理数的大小比较.【分析】有理数犬小的比较方法;一、数轴比较法;在数轴上表示的两个数匚右边朗数总比左边的数大.二、直捋比较法;h正数都犬于零,负数都小于零.正数大于一切负敷* 2.两个正数匕濒大小,购个负数比较大小,绝对值大的数反而小.因此,一2>—1错误.故选丄6. (2004年江苏淮安3分)据统计,今年1至4月份,全国入境旅游约3371.9万人次,将它保留两位有效数字的结果为【】A. 3.37 X 103 万人次B. 3.4 X 103 万人次C. 3.3 X 10 3 万人次D. 3.4 X 104万人次【答案】氏【若点】科学记数法,有效数字.【分析】根据科学记数法的定义,科学记数法的表示形式为沪1俨,其中l<a<10, 整数,表示时关键要正确确定a的值以及n怖值.在确定n的值时,看该数是丈于或等于1 还是小于L当该数大于或等于1时,n为它的整数位数减1,当该数小于1时,一H为它第字前0的个数(含小数点前的1个0)・3371.9 —共」位,从而33^1.9=1371 -有效数字的计算方法是’从左辺第一个不是。
实数易错清单1.用科学记数法表示较大或较小的数时指数n的确定.【例1】(2014·湖北随州)2013年,我市以保障和改善民生为重点的“十件实事”全面完成,财政保障民生支出达74亿元,占公共财政预算支出的75%,数据74亿元用科学记数法表示为().A. 74×108元B. 7.4×108元C. 7.4×109元D. 0.74×1010元【解析】①本题考查了科学记数法的相关知识.一些较大的数,可以用a×10n的形式来表示,其中1≤a<10,n是所表示的数的整数位数减1.②a×10n中n所表示的数容易搞错.74亿元=7.4×109元.【答案】 C2.实数的运算,要先弄清楚按怎样的顺序进行,要注意负指数幂、零次幂和三角函数等在算式中的出现.【解析】本题考查实数的运算法则、方法、技巧.运算时要认真审题,确定符号,明确运算顺序.本题易错点有三处:①不能正确理解算术平方根、负指数幂、绝对值的意义;②不能正确确定符号;③把三角函数值记错.3.实数计算中整体思想的运用.【例3】(2014.甘肃兰州)为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+ (2100)则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32014的值是.【解析】根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.设M=1+3+32+33+…+32014,①则3M=3+32+33+…+32015.②②-①得2M=32015-1,两边都除以2,得名师点拨1.能记住有理数、数轴、相反数、倒数、绝对值等概念,运用概念进行判断.2.能说明任意两个有理数之间的大小关系.3.能利用有理数运算法则熟练进行有理数的混合运算.4.利用科学记数法表示当下热点问题.5.能解释实数与数轴的一一对应关系.6.能利用估算思想估算一个无理数的大致大小.7.能利用运算律快速进行实数的运算.提分策略1.实数的运算.(1)在进行实数的混合运算时,首先要明确与实数有关的概念、性质、运算法则和运算律,要弄清按怎样的运算顺序进行.中考中常常把绝对值、锐角三角函数、二次根式结合在一起考查.(2)要注意零指数幂和负指数幂的意义.负指数幂的运算:a-p=(a≠0,且p是正整数),零指数幂的运算:a0=1(a≠0).【例1】计算:+(-1)0+2×(-3).【解析】根据零指数幂:a0=1(a≠0),以及负整数指数幂运算法则得出即可.【答案】原式=5+1-6=0.2.实数的大小比较.两个实数的大小比较方法有:(1)正数大于零,负数小于零;(2)利用数轴;(3)差值比较法;(4)商值比较法;(5)倒数法;(6)取特殊值法;(7)计算器比较法等.3.探索实数中的规律.关于数式规律性问题的一般解题思路:(1)先对给出的特殊数式进行观察、比较;(2)根据观察猜想、归纳出一般规律;(3)用得到的规律去解决其他问题.对数式进行观察的角度及方法:(1)横向观察:看等号左右两边什么不变,什么在变,以及变化的数字或式子间的关系;(2)纵向观察:将连续的几个式子上下对齐,观察上下对应位置的式子什么不变,什么在变,以及变化的数字或式子间的关系.【例3】观察下列等式:请解答下列问题:(1)按以上规律列出第5个等式:a5= = ;(2)用含n的代数式表示第n个等式:a n= = (n为正整数);(3)求a1+a2+a3+a4+…+a100的值.专项训练一、选择题2. (2014·河南洛阳模拟)在实数中,最小的数是().A. 0B. -πC. D. -43. (2014·浙江温州模拟)在0,-1,-2,-3.5这四个数中,最小的负整数是().A. 0B. -1C. -2D. -3.54. (2014·江苏泰州洋思中学模拟)在数轴上表示-2的点离原点的距离等于().A. 2B. -2C. ±2D. 45. (2014·浙江杭州模拟)若|x-5|=5-x,则下列不等式成立的是().A. x-5>0B. x-5<0C. x-5≥0D. x-5≤06. (2014·安徽安庆二模)数轴上点A表示的实数可能是().(第6题)8. (2013·吉林镇赉县一模)下列各数中最大的是().A. -2B. 09. (2013·浙江湖州模拟) 的平方根是().A. 4B. 2C. ±4D. ±210.(2013·浙江湖州模拟)3月11日,日本发生地震和海啸,3月12日,中国红十字会向日本红十字会提供100万元人民币的紧急援助,同时发出慰问电,向日本受灾群众表示诚挚的慰问,对地震遇难者表示深切的哀悼,并表示将根据灾区需求继续提供及时的人道援助.100万这个数用科学记数法表示为().A. 1.0×104B. 1.0×106C. 1.0×105D. 0.1×10611. (2013·河北三模)在下列各数(-1)0,-|-1|,(-1)3,(-1)-2中,负数的个数为().A. 0B. 1C. 2D. 312. (2013·江苏扬州弘扬中学二模)下列计算错误的是().13. (2013·山东德州一模)-7的相反数的倒数是().二、填空题15. (2014·甘肃天水一模)若0<a<1,则三者的大小关系是.16. (2013·安徽芜湖一模)2012年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有695万人以不同方式向她表示问候和祝福,将695万人用科学记数法表示为人.(结果精确到十万位)17.(2013·山东德州一模)某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是元.三、解答题20. (2014·江苏南通海安县模拟)计算:21. (2014·内蒙古赤峰模拟)计算:22. (2014·甘肃天水一模)计算:|-3|+(-1)2014×(-2)0-+.23. (2013·浙江湖州模拟)计算:24. (2013·广东深圳育才二中一模)计算:参考答案与解析1. C[解析]可利用特殊值法解,例如令n=2,m=-3.2. D[解析]正数大于零,负数小于零,正数大于负数.3. C[解析]-3.5不是整数.4. A[解析]-2的绝对值等于2.5. D[解析]非负数的绝对值等于其相反数.7. D[解析]正数大于零,负数小于零,正数大于负数.10. B[解析]100万=1.0×106.11. C[解析](-1)0=1,-|-1|=-1,(-1)3=-1,(-1)-2=1.13. C[解析]-7的相反数是7,7的的倒数是.16. 7.0×106[解析]695万=6.95×106≈7.0×106.17. 128[解析]设每件的进价为x元,由题意,得200×80%=x(1+25%),解得x=128.18.原式=9+2-1-3+2=9.22.原式=3+1-3+4=5.23.原式=2+2×-3+1-1=1.。
实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简:=.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b=.14.已知互为相反数,则a:b=.15.若的值在x与x+1之间,则x=.16.,则x y=.17.计算:=.18.化简二次根式:=.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解:=2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6 C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a>﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为 1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简:=.【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b=11.【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b=.【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x=2.【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y=﹣1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算:=.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式:=﹣2.【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解:=3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1).【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵÷3=671,∴x=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。
中考数学第六章 实数练习题含答案一、选择题1.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N > C .M N D .M N ≥2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( )A .132B .146C .161D .6663.在-2,117,0,23π,3.14159265 ) A .3个 B .4个 C .5个 D .6个4.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3-5.下列命题中,①81的平方根是9±2;③−0.003没有立方根;④−64的立方根为±4 )A .1B .2C .3D .4 6.估计65的立方根大小在( )A .8与9之间B .3与4之间C .4与5之间D .5与6之间7.若4a =,且a +b <0,则a -b 的值是( )A .1或7B .﹣1或7C .1或﹣7D .﹣1或﹣7 8.下列说法中不正确的是( )A .是2的平方根B 2的平方根C .2D .2 9.在下列实数中,无理数是( )A .337B .πCD .13 10.若x ,y 都表示有理数,那么下列各式一定为正数的是( ) A .212x + B .()2x y + C .22x y + D .5x +二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.若()2320m n ++-=,则m n 的值为 ____.13.若实数a 、b 满足240a b +-=,则a b=_____. 14.m 的平方根是n +1和n ﹣5;那么m +n =_____.15.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.16.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).17.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.18.49的平方根是________,算术平方根是______,-8的立方根是_____.19.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214 (1)计算:25-=__;22-(﹣)=__;(2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 22.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程).23.已知32x y --的算术平方根是3,26x y +-的立方根是的整数部分是z ,求42x y z ++的平方根.24.已知:b 是立方根等于本身的负整数,且a 、b 满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a 、b 、c 的值:a=_______,b=_______,c=_______.(2)a 、b 、c 在数轴上所对应的点分别为A 、B 、C ,点D 是B 、C 之间的一个动点(不包括B 、C 两点),其对应的数为m ,则化简|m+12|=________. (3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 、点C 都以每秒1个单位的速度向左运动,同时点A 以每秒2个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点C 之间的距离表示为AC ,点A 与点B 之间的距离表示为AB ,请问:AB−AC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences ).这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q = ;如果a n (n 为正整数)表示这个等比数列的第n 项,那么a 18= ,a n = ;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S =1+2+4+8+16+…+230…①等式两边同时乘以2,得2S =2+4+8+16++32+…+231…②由② ﹣ ①式,得2S ﹣S =231﹣1即(2﹣1)S =231﹣1所以 3131212121S -==-- 请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a 1,a 2,a 3,…,a n ,从第二项开始每一项与前一项之比的常数为q ,请用含a 1,q ,n 的代数式表示a n ;如果这个常数q ≠1,请用含a 1,q ,n 的代数式表示a 1+a 2+a 3+…+a n .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++, ∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•; ()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.2.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.3.C解析:C【分析】根据有理数包括整数和分数,无理数包括无限不循环小数、开方开不尽的数、含π的数,逐一判断,找出有理数即可得答案.【详解】-2、0是整数,是有理数,117、3.14159265是分数,是有理数, 23π是含π的数,是无理数,,是整数,是有理数,综上所述:有理数有-2,117,0,3.141592655个, 故选C.【点睛】本题考查实数的分类,有理数包括整数和分数;无理数包括无限不循环小数、开方开不尽的数、含π的数. 4.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.A解析:A【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断.【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误;−64的立方根为-4,所以④错误;故选:A .【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.6.C解析:C【分析】先确定65介于64、125这两个立方数之间,从而可以得到45<<,即可求得答案. 【详解】解:∵3464=,35125=∴6465125<<∴45<.故选:C【点睛】本题考查了无理数的估算,“夹逼法”是估算的一种常用方法,找到与65临界的两个立方数是解决问题的关键.7.D解析:D【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a 与b 的值,即可求出-a b 的值.【详解】解:∵3a ==,且a +b <0, ∴a =−4,a =−3;a =−4,b =3,则a −b =−1或−7.故选D .【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.8.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C .9.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.10.A解析:A【分析】根据平方的非负性、绝对值的非负性以及实数的分类进行判断即可得解.【详解】解:A.∵20x ≥ ∴21122x +≥ ∴212x +一定是正数; B. ∵()20x y +≥∴()2x y +一定是非负数;C.∵20x ≥,20y ≥∴220≥+x y∴22x y +一定是非负数;D. ∵50x +≥ ∴5x +一定是非负数.故选:A【点睛】本题考查了平方的非负性、绝对值的非负性以及实数的分类,熟练掌握相关知识点是解决问题的关键.二、填空题11.-4【解析】解:该圆的周长为2π×2=4π,所以A′与A 的距离为4π,由于圆形是逆时针滚动,所以A′在A 的左侧,所以A′表示的数为-4π,故答案为-4π. 解析:-4π【解析】解:该圆的周长为2π×2=4π,所以A ′与A 的距离为4π,由于圆形是逆时针滚动,所以A ′在A 的左侧,所以A ′表示的数为-4π,故答案为-4π.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n =(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.14.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.15.-1.【分析】根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+解析:-1.根据多项式的乘法得出字母的值,进而代入解答即可.【详解】解:(x+1)5=x5+5x4+10x3+10x2+5x+1,∵(x+1)5=a0x5+a1x4+a2x3+a3x2+a4x+a5,∴a0=1,a1=5,a2=10,a3=10,a4=5,a5=1,把a0=1,a1=5,a2=10,a3=10,a4=5,a5=1代入﹣32a0+16a1﹣8a2+4a3﹣2a4+a5中,可得:﹣32a0+16a1﹣8a2+4a3﹣2a4+a5=﹣32+80﹣80+40﹣10+1=﹣1,故答案为:﹣1【点睛】本题考查了代数式求值,解题的关键是根据题意求得a0,a1,a2,a3,a4,a5的值. 16.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a※b=ab+b,b※a=ab+a,若a=b,两式相等,若a≠b,则两式不相等,所以②错误;方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a※b)※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c右边=a※(b※c)=a※(b×c+c)=a(b×c+c) +(b×c+c)=abc+ac+bc+c2两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.17.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!18.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.19.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.20.12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】,即的整数部分是2,即则故答案为:.【点睛】本题考查了算术平方根的解析:12【分析】先根据算术平方根的定义求出a 的值,再根据无理数的估算得出b 的值,然后计算有理数的乘法即可.【详解】6a==479<<<<23<<∴的整数部分是2,即2b=则6212ab=⨯=故答案为:12.【点睛】本题考查了算术平方根的定义、无理数的估算,根据无理数的估算方法得出b的值是解题关键.三、解答题21.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p=18,那么p=3;如果a﹣2=116,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键. 22.(1)1;-7;-x;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.23.6±【分析】根据算术平方根、立方根的定义列出二元一次方程组,之后对方程组进行求解,得到x 和y 的值,再根据题意得到z 的值,即可求解本题.【详解】解:由题意可得3x 29268y x y --=⎧⎨+-=⎩, 解得54x y =⎧⎨=⎩,36<<67∴<<,6z ∴=,424542636∴++=⨯++⨯=x y z ,故42x y z ++的平方根是6±.【点睛】本题考查了平方根、立方根、算术平方根,解决本题的关键是熟记平方根、立方根、算术平方根的定义.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC 的值不会随着时间t 的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出AB−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.26.(1)12 ,1712 ,n-112 ;(2)24332-;(3)()11111n a a a -- 【分析】(1)12÷1即可求出q ,根据已知数的特点求出a 18和a n 即可; (2)根据已知先求出3S ,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。
中考数学模拟题汇总《实数》专项练习(带答案解析)一.选择题1、2的相反数是()A.−12B.12C.2D.−22、赤道长约为40 000 000m,用科学记数法可以把数字40 000 000表示为()A.4×107B.40×106C.400×105D.4000×1033、根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×1094、2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×1055、2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元6、﹣2的绝对值是()A.﹣2 B.1 C.2 D.127、−72的相反数是()A.−72B.−27C.27D.728.数轴上点A表示的数是﹣3,将点A在数轴上平移7个单位长度得到点B.则点B表示的数是()A.4 B.﹣4或10 C.﹣10 D.4或﹣109.若1x=−4,则x的值是()A.4 B.14C.−14D.﹣410.下列各数中,最小的数是()A.﹣3 B.0 C.1 D.211.数1,0,−23,﹣2中最大的是()A.1 B.0 C.−23D.﹣2 12.下列各数中,是负数的为()A.﹣1 B.0 C.0.2 D.12 13.|﹣2020|的结果是()A.12020B.2020 C.−12020D.﹣202014.下列等式成立的是()A.√81=±9 B.|√5−2|=−√5+2C.(−12)﹣1=﹣2 D.(tan45°﹣1)0=115.3的绝对值是()A.﹣3 B.3 C.√3D.1316.实数2√10介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间17.在实数﹣1,−√2,0,14中,最小的实数是()A.﹣1 B.14C.0 D.−√218.无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间19.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()A.a>b B.﹣a<b C.a>﹣b D.﹣a>b 20.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b| C.﹣a<b D.a+b>0 21.数4的算术平方根是()A.2 B.﹣2 C.±2 D.√222.下列各数中,比3大比4小的无理数是( ) A .3.14B .103C .√12D .√17二.填空题(共16小题)23.请你写出一个大于1,且小于3的无理数是 .24.计算:|1−√2|+20= .25.与√14−2最接近的自然数是 .26.计算:(15)﹣1−√4= .27.下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 个.28.实数8的立方根是 .29.计算:√9−1= .30.9的平方根等于 .31.请写出一个大于1且小于2的无理数 .32.计算:√12−√3的结果是 .33.新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为 .34.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 .35.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 ℃.36.将数4790000用科学记数法表示为 .37.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为 .38.用“>”或“<”符号填空:﹣7 > ﹣9.三、解答题35.计算:(√3)0+2−1+√2cos45°−|−12|.36.计算:√9−(−2022)0+2−1.37.计算:(−10)×(−12)−√16+20220.38.计算:(−1)2022+|−2|−(12)0−2tan45°.39.计算:(−2022)0−2tan45°+|−2|+√9.40.计算:(12)0−√16+(−2)2.41.计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x +2)≥2x +5 ①x2−1<x−23 ②.42.计算:√12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2.43.对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N 是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中为整数,求出满足任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.参考答案与解析一.选择题(共22小题)1、【答案】D【解析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.2、【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,故选:A.【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.3、【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,n为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为a×10n,其中1≤|a |<10,n 是正整数,正确确定a 的值和n 的值是解题的关键.4、【答案】B 【解析】 【分析】科学记数法的表现形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案. 【详解】解:14600000=1.46×107. 故选:B . 【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求. 5、【答案】C 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a|<10,n 为整数. 【详解】解:26.62亿=2662000000=2.662×109. 故选C . 【点睛】本题考查了科学记数法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数,确定a 与n 的值是解题的关键.6、【分析】利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案. 【解析】﹣2的绝对值为2. 故选:C .7、【分析】直接利用相反数的定义分析得出答案. 【解析】−72的相反数是:72.故选:D . 8.【分析】根据题意,分两种情况,数轴上的点右移加,左移减,求出点B 表示的数是多少即可. 【解析】点A 表示的数是﹣3,左移7个单位,得﹣3﹣7=﹣10, 点A 表示的数是﹣3,右移7个单位,得﹣3+7=4. 所以点B 表示的数是4或﹣10. 故选:D . 9.【分析】根据倒数的定义求出即可. 【解析】∵1x =−4, ∴x =−14,故选:C . 10.【分析】根据正数大于0,0大于负数,正数大于负数,可得答案. 【解析】∵﹣3<0<1<2,∴这四个数中最小的数是﹣3. 故选:A . 11.【分析】根据有理数大小比较的方法即可得出答案. 【解析】﹣2<−23<0<1,所以最大的是1. 故选:A . 12.【分析】利用正数与负数的定义判断即可.【解析】﹣1是负数;0既不是正数也不是负数;0.2是正数;12是正数.故选:A . 13.【分析】根据绝对值的性质直接解答即可. 【解析】|﹣2020|=2020; 故选:B . 14.【分析】根据算术平方根的定义、绝对值的性质、负整数指数幂和零指数幂的规定逐一判断即可得. 【解析】A .√81=9,此选项计算错误; B .|√5−2|=√5−2,此选项错误;C .(−12)﹣1=﹣2,此选项正确; D .(tan45°﹣1)0无意义,此选项错误; 故选:C .15、【分析】根据绝对值的意义,可得答案. 【解析】|3|=3, 故选:B .16.【分析】首先化简2√10=√40,再估算√40,由此即可判定选项. 【解析】∵2√10=√40,且6<√40<7, ∴6<2√10<7. 故选:C . 17.【分析】直接利用实数比较大小的方法得出答案. 【解析】∵|−√2|>|﹣1|, ∴﹣1>−√2,∴实数﹣1,−√2,0,14中,−√2<−1<0<14.故4个实数中最小的实数是:−√2. 故选:D .18.【分析】由√9<√10<√16可以得到答案. 【解析】∵3<√10<4, 故选:B . 19.【分析】根据数轴即可判断a 和b 的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解.【解析】根据数轴可得:a <0,b >0,且|a |>|b |, 则a <b ,﹣a >b ,a <﹣b ,﹣a >b . 故选:D . 20.【分析】直接利用数轴上a ,b 的位置进而比较得出答案.【解析】如图所示:A 、a <b ,故此选项错误; B 、|a |>|b |,正确;C 、﹣a >b ,故此选项错误;D 、a +b <0,故此选项错误; 故选:B . 21.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解析】∵2的平方为4, ∴4的算术平方根为2. 故选:A . 22.【分析】由于带根号的要开不尽方是无理数,无限不循环小数为无理数,根据无理数的定义即可求解. 【解析】3=√9,4=√16,A 、3.14是有理数,故此选项不合题意;B 、103是有理数,故此选项不符合题意;C 、√12是比3大比4小的无理数,故此选项符合题意;D 、√17比4大的无理数,故此选项不合题意; 故选:C .二.填空题(共16小题)23.请你写出一个大于1,且小于3的无理数是 √2 .【分析】根据算术平方根的性质可以把1和3写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可. 【解析】∵1=√1,3=√9,∴写出一个大于1且小于3的无理数是√2. 故答案为√2(本题答案不唯一).24.计算:|1−√2|+20= √2 .【分析】原式利用绝对值的代数意义,以及零指数幂法则计算即可求出值.【解析】原式=√2−1+1 =√2.故答案为:√2.25.与√14−2最接近的自然数是 2 .【分析】根据3.5<√14<4,可求1.5<√14−2<2,依此可得与√14−2最接近的自然数. 【解析】∵3.5<√14<4, ∴1.5<√14−2<2,∴与√14−2最接近的自然数是2. 故答案为:2. 26.计算:(15)﹣1−√4= 3 .【分析】先计算负整数指数幂和算术平方根,再计算加减可得. 【解析】原式=5﹣2=3, 故答案为:3.27.下列各数3.1415926,√9,1.212212221…,17,2﹣π,﹣2020,√43中,无理数的个数有 3 个.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.3这3个,【解析】在所列实数中,无理数有1.212212221…,2﹣π,√4故答案为:3.28.实数8的立方根是 2 .【分析】根据立方根的性质和求法,求出实数8的立方根是多少即可.【解析】实数8的立方根是:3=2.√8故答案为:2.29.计算:√9−1= 2 .【分析】直接利用二次根式的性质化简进而得出答案.【解析】原式=3﹣1=2.故答案为:2.30.9的平方根等于±3 .【分析】直接根据平方根的定义进行解答即可.【解析】∵(±3)2=9,∴9的平方根是±3.故答案为:±3.31.请写出一个大于1且小于2的无理数√3.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【解析】大于1且小于2的无理数是√3,答案不唯一.故答案为:√3.32.计算:√12−√3的结果是√3.【分析】首先化简√12,然后根据实数的运算法则计算.【解析】√12−√3=2√3−√3=√3.故答案为:√3.33.新型冠状病毒蔓延全球,截至北京时间2020年6月20日,全球新冠肺炎累计确诊病例超过8500000例,数字8500000用科学记数法表示为8.5×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解析】数字8500000用科学记数法表示为8.5×106,故答案为:8.5×106.34.据新华社2020年5月17日消息,全国各地和军队约42600名医务人员支援湖北抗击新冠肺炎疫情,将42600用科学记数法表示为 4.26×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解析】将42600用科学记数法表示为4.26×104,故答案为:4.26×104.35.我市某天的最高气温是4℃,最低气温是﹣1℃,则这天的日温差是 5 ℃.【分析】先用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上它的相反数”计算.【解析】4﹣(﹣1)=4+1=5. 故答案为:5.36.将数4790000用科学记数法表示为 4.79×106.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】4790000=4.79×106,故答案为:4.79×106. 37.2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日,某市党员“学习强国”客户端注册人数约1180000,将数据1180000用科学记数法表示为 1.18×106.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】1180000=1.18×106,故答案为:1.18×106.38.用“>”或“<”符号填空:﹣7 > ﹣9. 【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可解答.【解析】∵|﹣7|=7,|﹣9|=9,7<9, ∴﹣7>﹣9, 故答案为:>.三、解答题35.计算:(√3)0+2−1+√2cos45°−|−12|.【答案】2 【解析】 【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可. 【详解】原式=1+12+√2×√22−12=2. 【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键. 36.计算:√9−(−2022)0+2−1. 【答案】52【解析】 【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得. 【详解】解:√9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.计算:(−10)×(−12)−√16+20220.【答案】2【解析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.计算:(−1)2022+|−2|−(12)0−2tan45°. 【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.计算:(−2022)0−2tan45°+|−2|+√9.【答案】4【解析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.计算:(12)0−√16+(−2)2. 【答案】1【解析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】(12)0−√16+(−2)2 =1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.计算:(12)−1−√9+3tan30°+|√3−2|.(2)解不等式组:{3(x +2)≥2x +5 ①x 2−1<x−23 ②. 【答案】(1)1;(2)−1≤x <2【解析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(1)(12)−1−√9+3tan30°+|√3−2|=2−3+3×√33+2−√3 =−1+√3+2−√3=1.(2){3(x +2)≥2x +5 ①x 2−1<x−23 ②不等式①的解集是x ≥-1;不等式②的解集是x <2;所以原不等式组的解集是-1≤x <2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.计算:√12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2.【答案】14【解析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解: √12+(3.14−π)0−3tan60°+|1−√3|+(−2)−2=2√3+1−3√3+√3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.对于一个各数位上的数字均不为0的三位自然数N ,若N 能被它的各数位上的数字之和m 整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=214÷7=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且a>b>c.在a,b,c中为整数,求出满足任选两个组成两位数,其中最大的两位数记为F(A),最小的两位数记为G(A),若F(A)+G(A)16条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出a+b+c=12,根据a>b>c,F(A)是最大的两位数,G(A)是=k(k为整数),结合a+b+c=12得出b=最小的两位数,得出F(A)+G(A)=10a+2b+10c,F(A)+G(A)1615−2k,根据已知条件得出1<b<6,从而得出b=3或b=5,然后进行分类讨论即可得出答案.(1)解:∵357÷(3+5+7)=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷(4+4+1)=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴a+b+c=12,∵a>b>c,∴在a,b,c中任选两个组成两位数,其中最大的两位数F(A)=10a+b,最小的两位数G(A)=10c+b,∴F(A)+G(A)=10a+b+10c+b=10a+2b+10c,为整数,∵F(A)+G(A)16=k(k为整数),设F(A)+G(A)16=k,则10a+2b+10c16整理得:5a+5c+b=8k,根据a+b+c=12得:a+c=12−b,∵a>b>c,∴12−b>b,解得b<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴a>b>c>0,∴b>1,∴1<b<6,把a+c=12−b代入5a+5c+b=8k得:5(12−b)+b=8k,整理得:b=15−2k,∵1<b<6,k为整数,∴b=3或b=5,当b=3时,a+c=12−3=9,∵a>b>c>0,∴a>3,0<c<3,∴a=7,b=3,c=2,或a=8,b=3,c=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当a=7,b=3,c=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当a=8,b=3,c=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当b=5时,a+c=12−5=7,∵a>b>c>0,∴5<a<7,∴a=6,b=5,c=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。
2020-2021初中数学实数经典测试题及答案(1)一、选择题1.如图所示,数轴上表示3、13的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.13B.13C.13D13【答案】C【解析】点C是AB的中点,设A表示的数是c1333c=-,解得:13C.点睛:本题考查了实数与数轴的对应关系,注意利用“数形结合”的数学思想解决问题.2.下列说法正确的是()A.﹣81的平方根是±9 B.77C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,77B,选项正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.3.一个自然数的算术平方根是x,则它后面一个自然数的算术平方根是().A.x+1 B.x2+1 C1x D21x+【答案】D【解析】一个自然数的算术平方根是x,则这个自然数是2,x则它后面一个数的算术平方根是21x+.故选D.4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是±16=±4,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D .5.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.6.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.7.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D 【答案】A 【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.8.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误; ③3a -=﹣3a ,故原说法正确;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A .【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.9.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形,22222+=②当2,3222313+=③当2为一直角边,3为斜边时,则第三边是直角,22325-=.故选D .考点:1.非负数的性质;2.勾股定理.10.在实数范围内,下列判断正确的是( )A 21L m=nB .若22a b >,则a >bC2=,则a=b D=a=b【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.11.实数a、b+4a2+4ab+b2=0,则b a的值为()A.2 B.12C.﹣2 D.﹣12【答案】B【解析】【分析】【详解】+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=12.故选:B.【点睛】本题考查非负数的性质.12.25的平方根是()A.±5 B.5 C.﹣5 D.±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.13.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】3 1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】≈-,3 1.732()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,-表示的点与点B最接近,所以3故选B.14.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选D.15.如图,已知x2=3,那么在数轴上与实数x对应的点可能是()A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .16.下列运算正确的是( )A 4 =-2B .|﹣3|=3C 4=± 2D 39【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.17.已知443y x x =--,则yx 的值为()n nA .43B .43-C .34D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则yx =34,18.下列说法正确的是( )A .a 的平方根是±aB .a 的立方根是3aC .0.01的平方根是0.1D .2(3)3-=-【答案】B【解析】试题解析:A 、当a≥0时,a 的平方根为±a ,故A 错误; B 、a 的立方根为3a ,本B 正确;C 、0.01=0.1,0.1的平方根为±0.1,故C 错误;D 、()23-=|-3|=3,故D 错误,故选B .19.14的算术平方根为( )A .116B .12± C .12- D .12【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14,∴14的算术平方根是12,故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .3B 7C 11D .无法确定【答案】B【分析】【详解】解:根据二次根式的估算可知-2<-1,2<3,3<4,.故选B.。
(实数)
(试卷满分 150 分,考试时间 120 分钟)
一、选择题(本题共10 小题,每小题4 分,满分40分)
每一个小题都给出代号为A,B,C,D的四个结论,其
中只有一个是正确的,把正确结论的代号写在题后的括号
内.每一小题:选对得4分,不选、选错或选出的代号超过
一个的(不论是否写在括号内)一律得0分。
1.下列命题中,假命题是( )。
A.9的算术平方根是3 B.16的平方根是±
2
C.27的立方根是±3 D.立方根等于-1
的实数是-1
2.近似数1.30所表示的准确数A的范围是( )。
A.1.25≤A<1.35 B.1.20<A
<1.30
C.1.295≤A<1.305 D.1.300≤A
<1.305
3.已知|a|=8,|b|=2,|a-b|=b-a,则a+b的值是( )。
A.10 B.-6 C.-6或-10
D.-10
4.绝对值小于8的所有整数的和是( )。
A.0 B.28 C.-28
D.以上都不是
5.由四舍五入法得到的近似数4.9万精确到( )。
A.万位 B.千位 C.十分位
D.千分位
6.一个数的绝对值等于这个数的相反数,这样的数是( )。
A.非负数 B.非正数 C.负数
D.正数
7.若2a与1-a互为相反数,则a等于( )。
A.1 B.-1 C.12
D.13
8.在实数中,-25 ,0, 3 ,-3.14, 4 无理数有( )。
A.1 个 B.2个 C.3个
D.4个
9.不借助计算器,估计76的大小应为( )。
A.7~8之间 B.8.0~8.5之间
C.8.5~9.0之间 D.9~10之间
10.若4a,
2
3b
,且0ab,则ab的值是( )。
A.1,7 B.1,7 C.1,7 D.1,7
二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)
11.数轴上与表示数2的点距离为6个单位长的数
_________。
12.我们的数学课本的字数大约是21万字,这个数精确到
_________位,请用科学记数法表示课本的字数大约是
_________。
13.已知一个矩形的长为 3cm,宽为 2cm,试估算它的对
角线长为_________(结果保留两个有效数字)。
14.已知a、b互为相反数,c、d互为倒数,m的绝对值
是2,那么代数式
|a+b|
2m2+1
+4m-3cd=_________。
三、(本题共2小题,每小题8分,满分 16 分)
15.计算:122323;
16.2323331(2)(4)(4)272
四、(本题共2小题,每小题8分,满分16分)
17.已知x<0,y>0,且y<|x|,用"<"连结x,-x,-|y|,
y。
18.已知x、y是实数,且(x-2 )2和|y+2|互为
相反数,求x ,y的值。
五、(本题共2小题,每小题10分,满分20分)
19.已知一个数的平方根是31a和11a.求这个数的立方根.
20.求下列各式中的x.
(1)(x-2)2-4=0;
(2)(x+3)3+27=0.
六、(本题满分12 分)
21.一个等边圆柱(•底面直径与高相等的圆柱称为等边圆
柱)•的体积为16cm3,求其表面积.
0
1 -2 2 3 -1
-3
七、(本题满分12分)
22.如图,我们在数轴上以单位线段为边做一个正方形,然
后以O为圆心,正方形的对角线长为半径画弧交x轴上于
一点A,则OA的长就是2个单位.动手试一试,你能用
类似的方法在数轴上找出表示3,5的点吗?矩形对角
线的长的平方等于矩形长的平方与宽的平方的和.(提
示:
222213,2
2
2
215
)
八、(本题满分14 分)
23.如下图,一个点从数轴上的原点开始,先向右移动了3
个单位长度,再向左移动5个单位长度,可以看到终点
表示的数是-2,
已知点A、B是数轴上的点,完成下列各题:
(1)如果点A表示数-3,将点A向右移动7个单位长度,
那么终点B表示的数是_________,A、B两点间的距离
是________。
(2)如果点A表示数是3,将点A向左移动7个单位长
度,再向右移动5个单位长度,那么终点B表示的数是
_______,A、B两点间的距离是________。一般地,如
果点A表示数为a,将点A向右移动b个单位长度,再
向左移动c个单位长度,那么请你猜想终点B表示的数
是________,A、B两点间的距离是_________。
2020中考数学总复习专题测试卷(一)参考答案
一、1、C 2、A 3、C 4、A 5、B 6、B 7、
B 8、B
9、C 10、D
二、11、8或-4; 12、万,
4
101.2
; 13、3.6; 14、
5或-11。
三、 15、1; 16、-36。
四、17. x<-|y|<y<-x。 18.x=2 ,y=-2。
五、19.4。提示:3a,这个数为64。
20.(1)4或0; (2)-6。
六、21. 24cm2.(提示:设这个等边圆柱的高为2rcm,
依题意得r2·2r=16.解得x=2.
所以这个等边圆柱的表面积为2r2+2r·2r=24
(cm2).)
七、22.
八、23.(1)4,7;(2)1,2;cba,cb。