CFD2020-第5讲-差分方法3
- 格式:pptx
- 大小:1.21 MB
- 文档页数:36
第三章 有限差分法函数()f x ,x 为定义在区间[]a b ,上的连续变 量。
将区间[]a b ,等分成n 份,令()h b a n =-称为 步长,x 在这些离散点处的取值为x a ih i =+ ()i n =01,,,称为节点。
函数()f x 在这些节点处的差值()()()()()()f x h f x f x f x h f x h f x h i i i i i i +---+--⎧⎨⎪⎩⎪(5-1)分别称为一阶向前、向后和中心差分,可以用它 们作为函数()f x 在x i 处的微分近似值。
这些差分 与相应x 区间的比值()()[]()()[]()()[]1112h f x h f x h f x f x h h f x h f x h i i i i i i +---+--⎧⎨⎪⎪⎪⎩⎪⎪⎪ (5-2) 分别称为一阶向前、向后和中心差商,可以用它 们作为函数()f x 在x i 处的导数近似值。
完全类似地可以定义高阶差商,例如常用的二阶中心差商()()()[]122hf x h f x f x h i i i +-+- (5-3)可以作为函数()f x 在x i 处的二阶导数近似值。
§3.1 常微分方程初值问题的差分解法考虑电学中的一个问题:如图5-1。
研究 电容器上的电荷随时间的变化规律。
图5-1 RC 放电回路这个问题对应的微分方程及其定解条件为:d d Q tQ RC QQ t =-=⎧⎨⎪⎩⎪=00(5-4) 这是一阶微分方程的初值问题,它的解析解为 Q Q e t RC =-0 (5-5)一、欧拉(Euler )折线法求解下列普遍形式的一阶微分方程的初值 问题:()[]()'=∈=⎧⎨⎪⎩⎪y f x y x a b y a y ,,0(5-6) 首先,将区间[]a b ,等分n 份,取值a x x xb n =<<<=01 ,步长h x x i i =-+1。