4.命题及其关系(2)
- 格式:ppt
- 大小:250.50 KB
- 文档页数:16
命题及其关系、充分条件与必要条件一、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.二、四种命题及其关系1.四种命题间的相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系。
三、充分条件与必要条件1.如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件.2.如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.抓住关键词:大必小充。
即大范围推小范围时,大范围是必要条件,小范围是充分条件。
例1:|x|>1是x>1的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 解: |x|>1⇔x>1或x<-1,故x>1⇒|x|>1,但|x|>1 x>1,∴|x|>1是x>1的必要不充分条件.另解:根据大必小充原理,容易判断|x|>1是大范围,x>1是小范围,故|x|>1是x>1的必要不充分条件. 例2:下列命题是真命题的为 ( )A .若1x =1y,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =y D .若x <y ,则x 2<y 2 解:由1x =1y得x =y ,A 正确,易知B 、C 、D 错误. 3.命题“若a 2+b 2=0,a ,b ∈R ,则a =b =0”的逆否命题是 ( )A .若a ≠b ≠0,a ,b ∈R ,则a 2+b 2=0B .若a =b ≠0,a ,b ∈R ,则a 2+b 2≠0C .若a ≠0且b ≠0,a ,b ∈R ,则a 2+b 2≠0D .若a ≠0或b ≠0,a ,b ∈R ,则a 2+b 2≠0 解:写逆否命题只要交换命题的条件与结论,并分别否定条件与结论即可.答案D 。
命题及其关系、充分条件与必要条件1.命题2.四种命题及其相互关系 (1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件p ⇒q 且q ppq 且q ⇒p p ⇔qpq 且qp1.下列命题是真命题的为( ) A .若1x =1y ,则x =y B .若x 2=1,则x =1 C .若x =y ,则x =yD .若x <y ,则x 2<y 2解析:选A 由1x =1y 易得x =y ;由x 2=1,得x =±1;若x =y <0,则x 与y 均无意义; 若x =-2,y =1,虽然x <y ,但x 2>y 2. 所以真命题为A.2.已知集合A ={1,m 2+1},B ={2,4},则“m =3”是“A ∩B ={4}”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A A ∩B ={4}⇒m 2+1=4⇒m =±3,故“m =3”是“A ∩B ={4}”的充分不必要条件.3.已知命题:若m >0,则方程x 2+x -m =0有实数根.则其逆否命题为________________________________________________________________________.答案:若方程x 2+x -m =0无实根,则m ≤01.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.[小题纠偏]1.设x ∈R ,则“x >1”是“x 3>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C ∵x >1,∴x 3>1,又x 3-1>0,即(x -1)(x 2+x +1)>0,解得x >1,∴“x >1”是“x 3>1”的充要条件.2.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:________________.解析:原命题的条件:在△ABC 中,∠C =90°, 结论:∠A ,∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”. 答案:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角考点一 命题及其相互关系(基础送分型考点——自主练透)[题组练透]1.命题“若a2>b2,则a>b”的否命题是()A.若a2>b2,则a≤b B.若a2≤b2,则a≤bC.若a≤b,则a2>b2D.若a≤b,则a2≤b2解析:选B根据命题的四种形式可知,命题“若p,则q”的否命题是“若綈p,则綈q”.该题中,p为a2>b2,q为a>b,故綈p为a2≤b2,綈q为a≤b.所以原命题的否命题为:若a2≤b2,则a≤b.2.命题“若x2+3x-4=0,则x=-4”的逆否命题及其真假性为()A.“若x=4,则x2+3x-4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A,D,因为x2+3x-4=0,所以x=4或-1,故原命题为假命题,即逆否命题为假命题.3.(易错题)给出以下四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab是正整数,但a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题.答案:①③[谨记通法]1.写一个命题的其他三种命题时的2个注意点(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.如“题组练透”第3题②易忽视.2.命题真假的2种判断方法(1)联系已有的数学公式、定理、结论进行正面直接判断.(2)利用原命题与逆否命题,逆命题与否命题的等价关系进行判断.考点二充分必要条件的判定(重点保分型考点——师生共研)[典例引领]1.设a,b是非零向量,“a·b=|a||b|”是“a∥b”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A a·b=|a||b|cos〈a,b〉.而当a∥b时,〈a,b〉还可能是π,此时a·b=-|a||b|,故“a·b=|a||b|”是“a∥b”的充分而不必要条件.2.设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A|x-2|<1⇔1<x<3,x2+x-2>0⇔x>1或x<-2.由于{x|1<x<3}是{x|x>1或x<-2}的真子集,所以“|x-2|<1”是“x2+x-2>0”的充分而不必要条件.3.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1,或y≠-1,所以綈p:x+y=-2,綈q:x=-1,且y=-1,因为綈q⇒綈p但綈p⇒/綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.[由题悟法]充要条件的3种判断方法(1)定义法:根据p⇒q,q⇒p进行判断;(2)集合法:根据p,q成立的对象的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1或y≠1”的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.[即时应用]1.若p:|x|=x,q:x2+x≥0.则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A设p:{x||x|=x}={x|x≥0}=A,q:{x|x2+x≥0}={x|x≥0或x≤-1}=B,∵A B,∴p是q的充分不必要条件.2.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A当四边形ABCD为菱形时,必有对角线互相垂直,即AC⊥BD;当四边形ABCD中AC⊥BD时,四边形ABCD不一定是菱形,还需要AC与BD互相平分.综上知,“四边形ABCD为菱形”是“AC⊥BD”的充分不必要条件.考点三充分必要条件的应用………………………(题点多变型考点——纵引横联) [典型母题]已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P是x∈S 的必要条件,求m的取值范围.[解]由x2-8x-20≤0,得-2≤x≤10,∴P={x|-2≤x≤10},由x∈P是x∈S的必要条件,知S⊆P.则{1-m≤1+m,1-m≥-2,1+m≤10,∴0≤m≤3.所以当0≤m≤3时,x∈P是x∈S的必要条件,即所求m的取值范围是[0,3].[类题通法]根据充要条件求参数的值或取值范围的关键:先合理转化条件,常通过有关性质、定理、图象将恒成立问题和有解问题转化为最值问题等,得到关于参数的方程或不等式(组),再通过解方程或不等式(组)求出参数的值或取值范围.[越变越明][变式1] 母题条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[变式2] 母题条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由母题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件, ∴P ⇒S 且S ⇒/P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.∴m ≥9,即m 的取值范围是[9,+∞).本题运用等价法求解,也可先求綈P ,綈S ,再利用集合法列出不等式,求出m 的范围.的必要不充分条件,求m 的取值范围.解:记P ={x |(x -m )2>3(x -m )}={x |(x -m )(x -m -3)>0}={x |x <m 或x >m +3},S ={x |x 2+3x -4<0}={x |(x +4)(x -1)<0}={x |-4<x <1},p 是s 成立的必要不充分条件,即等价于SP .所以m +3≤-4或m ≥1,解得m ≤-7或m ≥1. 即m 的取值范围为(-∞,-7]∪[1,+∞).一抓基础,多练小题做到眼疾手快 1.“(2x -1)x =0”是“x =0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件[破译玄机]解析:选B 若(2x -1)x =0,则x =12或x =0,即不一定是x =0;若x =0,则一定能推出(2x -1)x =0.故“(2x -1)x =0”是“x =0”的必要不充分条件.2.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:选C 命题“若α=π4,则tan α=1”的逆否命题是“若tan α≠1,则α≠π4”.3.原命题p :“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 当c =0时,ac 2=bc 2,所以原命题是错误的;由于原命题与逆否命题的真假一致,所以逆否命题也是错误的;逆命题为“设a ,b ,c ∈R ,若ac 2>bc 2,则a >b ”,它是正确的;由于否命题与逆命题的真假一致,所以逆命题与否命题都为真命题.综上所述,真命题有2个.4.已知p :|x |<2;q :x 2-x -2<0,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 由x 2-x -2<0,得(x -2)(x +1)<0,解得-1<x <2;由|x |<2得-2<x <2.注意到由-2<x <2不能得知-1<x <2,即由p 不能得知q ;反过来,由-1<x <2可知-2<x <2,即由q 可得知p .因此,p 是q 的必要不充分条件.5.已知集合A ,B ,全集U ,给出下列四个命题: ①若A ⊆B ,则A ∪B =B ; ②若A ∪B =B ,则A ∩B =B ; ③若a ∈(A ∩∁U B ),则a ∈A ; ④若a ∈∁U (A ∩B ),则a ∈(A ∪B ) 其中真命题的个数为( ) A .1B .2C.3D.4解析:选B①正确;②不正确,由A∪B=B可得A⊆B,所以A∩B=A;③正确;④不正确.二保高考,全练题型做到高考达标1.已知复数z=a+3ii(a∈R,i为虚数单位),则“a>0”是“z在复平面内对应的点位于第四象限”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选C z=a+3ii=-(a+3i)i=3-a i,若z位于第四象限,则a>0,反之也成立,所以“a>0”是“z在复平面内对应的点位于第四象限”的充要条件.2.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是()A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0解析:选D a=b=0的否定为a≠0或b≠0;a2+b2=0的否定为a2+b2≠0.3.如果x,y是实数,那么“x≠y”是“cos x≠cos y”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A.于是“x≠y”是“cos x≠cos y”的必要不充分条件.4.下列说法正确的是()A.命题“若x2=1,则x=1”的否命题是“若x2=1,则x≠1”B.“x=-1”是“x2-x-2=0”的必要不充分条件C.命题“若x=y,则sin x=sin y”的逆否命题是真命题D.“tan x=1”是“x=π4”的充分不必要条件解析:选C由原命题与否命题的关系知,原命题的否命题是“若x2≠1,则x≠1”,即A不正确;因为x2-x-2=0,所以x=-1或x=2,所以由“x=-1”能推出“x2-x-2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即B 不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故C 正确;由x =π4能推得tan x =1,但由tan x =1推不出x=π4,所以“tan x =1”是“x =π4”的必要不充分条件,即D 不正确. 5.若条件p :|x |≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( )A .a ≥2B .a ≤2C .a ≥-2D .a ≤-2解析:选A 因为|x |≤2,则p :-2≤x ≤2,q :x ≤a ,由于p 是q 的充分不必要条件,则p 对应的集合是q 对应的集合的真子集,所以a ≥2.6.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:37.设等比数列{a n }的公比为q ,前n 项和为S n ,则“|q |=1”是“S 4=2S 2”的________条件.解析:∵等比数列{a n }的前n 项和为S n ,又S 4=2S 2, ∴a 1+a 2+a 3+a 4=2(a 1+a 2),∴a 3+a 4=a 1+a 2,∴q 2=1⇔|q |=1,∴“|q |=1”是“S 4=2S 2”的充要条件. 答案:充要8.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________. 解析:α:x ≥a ,可看作集合A ={x |x ≥a }, ∵β:|x -1|<1,∴0<x <2, ∴β可看作集合B ={x |0<x <2}. 又∵α是β的必要不充分条件, ∴B A ,∴a ≤0. 答案:(-∞,0]10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2, ∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716, 解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 三上台阶,自主选做志在冲刺名校 1.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析:选C C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”. 若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0,所以不是真命题.2.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1 D .a ≤0或a >1解析:选A 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x+a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无交点.数形结合可得,a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y =-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.3.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解:因为“A ∩B =∅”是假命题,所以A ∩B ≠∅.设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m | m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2均非负,则有⎩⎪⎨⎪⎧ m ∈U ,x 1+x 2≥0,x 1x 2≥0即⎩⎪⎨⎪⎧ m ∈U ,4m ≥0,2m +6≥0解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m | m ≥32关于全集U 的补集是{m |m ≤-1},所以实数m 的取值范围是(-∞,-1].。
第二节 命题及其关系、充分条件与必要条件【考纲下载】1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件.(2)若p⇔q,则p与q互为充要条件.(3)若p⇒/ q,且q⇒/ p,则p是q的既不充分也不必要条件.1.一个命题的否命题与这个命题的否定是同一个命题吗?提示:不是,一个命题的否命题是既否定该命题的条件,又否定该命题的结论,而这个命题的否定仅是否定它的结论.2.“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的说法相同吗?提示:两者说法不相同.“p的一个充分不必要条件是q”等价于“q是p的充分不必要条件”,显然这与“p是q的充分不必要条件”是截然不同的.1.(2013·福建高考)已知集合A={1,a},B={1,2,3},则“a=3”是“A⊆B”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选A 当a=3时,A={1,3},A⊆B;反之,当A⊆B时,a=2或3,所以“a=3”是“A⊆B”的充分而不必要条件.2.命题“若x2>y2,则x>y”的逆否命题是( )A.“若x<y,则x2<y2”B.“若x>y,则x2>y2”C.“若x≤y,则x2≤y2”D.“若x≥y,则x2≥y2”解析:选C 根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.3.(教材习题改编)命题“如果b2-4ac>0,则方程ax2+bx+c=0(a≠0)有两个不相等的实根”的否命题、逆命题和逆否命题中,真命题的个数为( )A.0 B.1 C.2 D.3解析:选D 原命题为真,则它的逆否命题为真,逆命题为“若方程ax2+bx+c=0(a≠0)有两个不相等的实根,则b2-4ac>0”,为真命题,则它的否命题也为真.4.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 ( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:选B 原命题的否命题是既否定题设又否定结论,故“若f(x)是奇函数,则f(-x)是奇函数”的否命题是B选项.5.下面四个条件中,使a>b成立的充分而不必要的条件是 ( )A.a>b+1 B.a>b-1 C.a2>b2D.a3>b3解析:选A 由a>b+1,且b+1>b,得a>b;反之不成立.考点一四种命题的关系 [例1] (1)命题“若x>1,则x>0”的否命题是( )A.若x>1,则x≤0B.若x≤1,则x>0C.若x≤1,则x≤0D.若x<1,则x<0(2)命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是( )A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数[自主解答] (1)因为“x>1”的否定为“x≤1”,“x>0”的否定为“x≤0”,所以命题“若x>1,则x>0”的否命题为:“若x≤1,则x≤0”.(2)由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案] (1)C (2)C【互动探究】试写出本例(2)中命题的逆命题和否命题,并判断其真假性.解:逆命题:若x+y是偶数,则x,y都是偶数.是假命题.否命题:若x,y不都是偶数,则x+y不是偶数.是假命题. 【方法规律】判断四种命题间关系的方法(1)由原命题写出其他三种命题,关键要分清原命题的条件和结论,将条件与结论互换即得逆命题,将条件与结论同时否定即得否命题,将条件与结论互换的同时进行否定即得逆否命题.(2)原命题和逆否命题、逆命题和否命题有相同的真假性,解题时注意灵活应用.1.命题p:“若a≥b,则a+b>2 012且a>-b”的逆否命题是 ( )A.若a+b≤2 012且a≤-b,则a<bB.若a+b≤2 012且a≤-b,则a>bC.若a+b≤2 012或a≤-b,则a<bD.若a+b≤2 012或a≤-b,则a≤b解析:选C “且”的否定是“或”,根据逆否命题的定义知,逆否命题为“若a+b≤2 012或a≤-b,则a<b”.2.下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B .命题“若x >1,则x 2>1”的否命题C .命题“若x =1,则x 2+x -2=0”的否命题D .命题“若x 2>0,则x >1”的逆否命题解析:选A A 中逆命题为“若x >|y |,则x >y ”是真命题;B 中否命题为“若x ≤1,则x 2≤1”是假命题;C 中否命题为“若x ≠1,则x 2+x -2≠0”是假命题;D 中原命题是假命题,从而其逆否命题也为假命题.考点二命题的真假判断 [例2] (1)下列命题是真命题的是( )A .若=,则x =y1x 1y B .若x 2=1,则x =1C .若x =y ,则=x yD .若x <y ,则x 2<y 2(2)(2014·济南模拟)在空间中,给出下列四个命题:①过一点有且只有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条相交直线在同一平面内的射影必为相交直线;④两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A .①②B .②③C .③④D .①④[自主解答] (1)取x =-1排除B ;取x =y =-1排除C ;取x =-2,y =-1排除D ,故选A.(2)对于①,由线面垂直的判定可知①正确;对于②,若点在平面的两侧,则过这两点的直线可能与该平面相交,故②错误;对于③,两条相交直线在同一平面内的射影可以为一条直线,故③错误;对于④,两个相互垂直的平面,一个平面内的任意一条直线必垂直于另一个平面内的无数条与交线垂直的直线,故④正确.综上可知,选D.[答案] (1)A (2)D【方法规律】命题的真假判断方法(1)给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假.给出下列命题:①函数y =sin(x +k π)(k ∈R )不可能是偶函数;②已知数列{a n }的前n 项和S n =a n -1(a ∈R ,a ≠0),则数列{a n }一定是等比数列;③若函数f (x )的定义域是R ,且满足f (x )+f (x +2)=3,则f (x )是以4为周期的周期函数;④过两条异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交.其中所有正确的命题有________(填正确命题的序号).解析:①当k =时,y =sin(x +k π)就是偶函数,故①错;②当a =1时,S n =0,则a n 的12各项都为零,不是等比数列,故②错;③由f (x )+f (x +2)=3,则f (x +2)+f (x +4)=3,相减得f (x )-f (x +4)=0,即f (x )=f (x +4),所以f (x )是以4为周期的周期函数,③正确;④过两条异面直线外一点,有时没有一条直线能与两条异面直线都相交,故④错.综上所述,正确的命题只有③.答案:③高频考点考点三充 要 条 件 1.充分条件、必要条件是每年高考的必考内容,多以选择题的形式出现,难度不大,属于容易题.2.高考对充要条件的考查主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件;(3)与命题的真假性相交汇命题.[例3] (1)(2013·北京高考)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2012·四川高考)设a 、b 都是非零向量,下列四个条件中,使=成立的充分条件a |a|b|b|是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a|=|b|(3)给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件;④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =,则3“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.[自主解答] (1)当φ=π时,y =sin(2x +π)=-sin 2x ,则曲线y =-sin 2x 过坐标原点,所以“φ=π”⇒“曲线y =sin(2x +φ)过坐标原点”;当φ=2π时,y =sin(2x +2π)=sin 2x ,则曲线y =sin 2x 过坐标原点,所以“φ=π”⇐/“曲线y =sin(2x +φ)过坐标原点”,所以“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的充分而不必要条件.(2),分别是与a ,b 同方向的单位向量,由=,得a 与b 的方向相同.而a ∥b 时,a |a |b |b |a |a |b |b |a 与b 的方向还可能相反.故选C.(3)对于①,当数列{a n }为等比数列时,易知数列{a n a n +1}是等比数列,但当数列{a n a n +1}为等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确;对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确;对于③,当m =3时,相应的两条直线互相垂直,反之,这两条直线垂直时,不一定有m =3,也可能m =0.因此③不正确;对于④,由题意得=ba =,若B =60°,则sin A =,注意到b >a ,故A =30°,反之,当A =30°时,有sin B =sin Bsin A 312,由于b >a ,所以B =60°或B =120°,因此④正确.综上所述,真命题的序号是①④.32[答案] (1)A (2)C (3)①④充要条件问题的常见类型及解题策略(1)判断指定条件与结论之间的关系.解决此类问题应分三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.(2)探究某结论成立的充要、充分、必要条件.解答此类题目,可先从结论出发,求出使结论成立的必要条件,然后再验证得到的必要条件是否满足充分性.(3)充要条件与命题真假性的交汇问题.依据命题所述的充分必要性,判断是否成立即可.1.(2014·西安模拟)如果对于任意实数x ,[x ]表示不超过x 的最大整数,那么“[x ]=[y ]”是“|x -y |<1成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若[x ]=[y ],则|x -y |<1;反之,若|x -y |<1,如取x =1.1,y =0.9,则[x ]≠[y ],即“[x ]=[y ]”是“|x -y |<1成立”的充分不必要条件.2.已知p :<1,q :x 2+(a -1)x -a >0,若p 是q 的充分不必要条件,则实数a 的1x -1取值范围是( )A .(-2,-1]B .[-2,-1]C .[-3,1]D .[-2,+∞)解析:选A 不等式<1等价于-1<0,即>0,解得x >2或x <1,所以p 为1x -11x -1x -2x -1(-∞,1)∪(2,+∞).不等式x 2+(a -1)x -a >0可以化为(x -1)(x +a )>0,当-a ≤1时,解得x >1或x <-a ,即q 为(-∞,-a )∪(1,+∞),此时a =-1;当-a >1时,不等式(x -1)(x +a )>0的解集是(-∞,1)∪(-a ,+∞),此时-a <2,即-2<a <-1.综上可知a 的取值范围为(-2,-1].3.设n ∈N *,一元二次方程x 2-4x +n =0有整数根的充要条件是n =________.解析:一元二次方程x 2-4x +n =0的根为x ==2±,因为x 是整数,4±16-4n24-n 即2±为整数,所以为整数,且n ≤4,又因为n ∈N *,取n =1,2,3,4,验证可知4-n 4-n n =3,4符合题意,所以n =3,4时可以推出一元二次方程x 2-4x +n =0有整数根.答案:3或4——————————[课堂归纳——通法领悟]——————————— 1个区别——“A 是B 的充分不必要条件”与“A 的充分不 必要条件是B ”的区别 “A 是B 的充分不必要条件”中,A 是条件,B 是结论;“A 的充分不必要条件是B ”中,B 是条件,A 是结论.在进行充分、必要条件的判断中,要注意这两种说法的区别. 2条规律——四种命题间关系的两条规律 (1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用. 3种方法——判断充分条件和必要条件的方法 (1)定义法;(2)集合法;(3)等价转化法.方法博览(一)三法破解充要条件问题1.定义法定义法就是将充要条件的判断转化为两个命题——“若p ,则q ”与“若q ,则p ”的判断,根据两个命题是否正确,来确定p 与q 之间的充要关系.[典例1] 设0<x <,则“x sin 2x <1”是“x sin x <1”的( )π2A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 由0<x <可知0<sin x <1,分别判断命题“若x sin 2x <1,则x sin x <1”π2与“若x sin x <1,则x sin 2x <1”的真假即可.[解析] 因为0<x <,所以0<sin x <1,不等式x sin x <1两边同乘sin x ,可得x sin 2x <sin x ,π2所以有x sin 2x <sin x <1.即x sin x <1⇒x sin 2x <1;不等式x sin 2x <1两边同除以sin x ,可得x sin x <,而由0<sin x <1,知>1,故x sin 1sin x 1sin x x <1不一定成立,即x sin 2x <1⇒/ x sin x <1.综上,可知“x sin 2x <1”是“x sin x <1”的必要不充分条件.[答案] C[点评] 判断p 、q 之间的关系,只需判断两个命题A :“若p ,则q ”和B :“若q ,则p ”的真假.(1)若p ⇒q ,则p 是q 的充分条件;(2)若q ⇒p ,则p 是q 的必要条件;(3)若p ⇒q 且q ⇒p ,则p 是q 的充要条件;(4)若p ⇒q 且q ⇒/ p ,则p 是q 的充分不必要条件;(5)若p ⇒/ q 且q ⇒p ,则p 是q 的必要不充分条件;(6)若p ⇒/ q 且q ⇒/ p ,则p 是q 的既不充分也不必要条件.2.集合法集合法就是利用满足两个条件的参数取值所构成的集合之间的关系来判断充要关系的方法.主要解决两个相似的条件难以进行区分或判断的问题.[典例2] 若A :log 2a <1,B :x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一根小于零,则A 是B 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解题指导] 分别求出使A 、B 成立的参数a 的取值所构成的集合M 和N ,然后通过集合M 与N 之间的关系来判断.[解析] 由log 2a <1,解得0<a <2,所以满足条件A 的参数a 的取值集合为M ={a |0<a <2};而方程x 2+(a +1)x +a -2=0的一根大于零,另一根小于零的充要条件是f (0)<0,即a -2<0,解得a <2,即满足条件B 的参数a 的取值集合为N ={a |a <2},显然M N ,所以A 是B 的充分不必要条件.[答案] B[点评] 利用集合间的关系判断充要条件的方法记法条件p 、q 对应的集合分别为A 、B 关系A ⊆B B ⊆A A B⊂B A ⊂A =B A B 且⊄B A ⊄结论p 是q 的充分条件p 是q 的必要条件p 是q 的充分不必要条件p 是q 的必要不充分条件p 是q 的充要条件p 是q 的既不充分也不必要条件3.等价转化法等价转化法就是在判断含有逻辑联结词“否”的有关条件之间的充要关系时,根据原命题与其逆否命题的等价性转化为形式较为简单的两个条件之间的关系进行判断.[典例3] 已知条件p :≤-1,条件q :x 2-x <a 2-a ,且q 的一个充分不必要条4x -1⌝件是p ,则a 的取值范围是________.⌝[解题指导] “q 的一个充分不必要条件是p ”等价于“p 是q 的一个必要不充分⌝⌝条件”.[解析] 由≤-1,得-3≤x <1.由x 2-x <a 2-a ,得(x -a )[x +(a -1)]<0,4x -1当a >1-a ,即a >时,不等式的解为1-a <x <a ;当a =1-a ,即a =时,不等式的解为∅;1212当a <1-a ,即a <时,不等式的解为a <x <1-a .12由q 的一个充分不必要条件是p ,可知p 是q 的充分不必要条件,即p 为q 的一个⌝⌝⌝⌝必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集.当a >时,由{x |1-a <x <a } {x |-3≤x <1},得Error!解得<a ≤1;1212当a =时,因为空集是任意一个非空集合的真子集,所以满足条件;12当a <时,由{x |a <x <1-a } {x |-3≤x <1},得Error!解得0≤a <.1212综上,a 的取值范围是[0,1].[答案] [0,1][点评] 条件和结论带有否定性词语的命题,常转化为其逆否命题来判断真假.p 、q 之间的关系和之间的关系p ⌝q ⌝p 是q 的充分不必要条件是的必要不充分条件p ⌝q ⌝p 是q 的必要不充分条件是的充分不必要条件p ⌝q ⌝p 是q 的充要条件是的充要条件p ⌝q ⌝p 是q 的既不充分也不必要条件是的既不充分也不必要条件p ⌝q ⌝[全盘巩固]1.“若b 2-4ac <0,则ax 2+bx +c =0没有实根”,其否命题是 ( )A .若b 2-4ac >0,则ax 2+bx +c =0没有实根B .若b 2-4ac >0,则ax 2+bx +c =0有实根C .若b 2-4ac ≥0,则ax 2+bx +c =0有实根D .若b 2-4ac ≥0,则ax 2+bx +c =0没有实根解析:选C 由原命题与否命题的关系可知,“若b 2-4ac <0,则ax 2+bx +c =0没有实根”的否命题是“若b 2-4ac ≥0,则ax 2+bx +c =0有实根”.2.f (x ),g (x )是定义在R 上的函数,h (x )=f (x )+g (x ),则“f (x ),g (x )均为偶函数”是“h (x )为偶函数”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B 因为f (x ),g (x )均为偶函数,可推出h (x )为偶函数,反之,则不成立.3.(2014·黄冈模拟)与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是( )A .若a ,b ,c 成等比数列,则b 2≠acB .若a ,b ,c 不成等比数列,则b 2≠acC .若b 2=ac ,则a ,b ,c 成等比数列D .若b 2≠ac ,则a ,b ,c 不成等比数列解析:选D 因为原命题与其逆否命题是等价的,所以与命题“若a ,b ,c 成等比数列,则b 2=ac ”等价的命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.4.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A “函数f (x )=a x 在R 上是减函数”的充要条件是p :0<a <1.因为g ′(x )=3(2-a )x 2,而x 2≥0,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是2-a >0,即a <2.又因为a >0且a ≠1,所以“函数g (x )=(2-a )x 3在R 上是增函数”的充要条件是q :0<a <2且a ≠1.显然p ⇒q ,但q ⇒/ p ,所以p 是q 的充分不必要条件,即“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件.5.(2014·南昌模拟)下列选项中正确的是( )A .若x >0且x ≠1,则ln x +≥21ln x B .在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件C .命题“所有素数都是奇数”的否定为“所有素数都是偶数”D .若命题p 为真命题,则其否命题为假命题解析:选B 当0<x <1时,ln x <0,此时ln x +≤-2,A 错;当|a n +1|>a n 时,{a n }不1ln x 一定是递增数列,但若{a n }是递增数列,则必有a n <a n +1≤|a n +1|,B 对;全称命题的否定为特称命题,C 错;若命题p 为真命题,其否命题可能为真命题,也可能为假命题,D 错.6.已知p :≤1,q :(x -a )(x -a -1)≤0.若p 是q 的充分不必要条件,则实数2x -1a 的取值范围是( )A. B. C .(-∞,0)∪ D .(-∞,0)∪[0,12](0,12)[12,+∞)(12,+∞)解析:选A 令A ={x |≤1},得A =Error!,令B ={x |(x -a )(x -a -1)≤0},得2x -1B ={x |a ≤x ≤a +1},若p 是q 的充分不必要条件,则A B ,需Error!⇒0≤a ≤.127.在命题p 的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f (p ),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f (p )=________.解析:原命题p 显然是真命题,故其逆否命题也是真命题,而其逆命题是:若a 1b 2-a 2b 1=0,则两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,这是假命题,因为当a 1b 2-a 2b 1=0时,还有可能l 1与l 2重合,逆命题是假命题,从而否命题也为假命题,故f (p )=2.答案:28.下列四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“若x 2+x -6≥0,则x >2”的否命题;③在△ABC 中,“A >30°”是“sin A >”的充分不必要条件;12④“函数f (x )=tan(x +φ)为奇函数”的充要条件是“φ=k π(k ∈Z )”.其中真命题的序号是________(把真命题的序号都填上).解析:①原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,①是真命题;“若x 2+x -6≥0,则x >2”的否命题是“若x 2+x -6<0,则x ≤2”,②也是真命题;在△ABC 中,“A >30°”是“sin A >”的必要不充分条件,③是假命题;“函数f (x )=tan(x +φ)为奇函数”12的充要条件是“φ=(k ∈Z )”,④是假命题.k π2答案:①②9.已知α:x ≥a ,β:|x -1|<1.若α是β的必要不充分条件,则实数a 的取值范围为________.解析:α:x ≥a ,可看作集合A ={x |x ≥a },由|x -1|<1,得0<x <2,∴β可看作集合B ={x |0<x <2}.又∵α是β的必要不充分条件,∴B A ,∴a ≤0.答案:(-∞,0]10.已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出否命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解:(1)否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b ).该命题是真命题,证明如下:∵a +b <0,∴a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数.∴f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),∴否命题为真命题.(2)逆否命题:已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,若f (a )+f (b )<f (-a )+f (-b ),则a +b <0.真命题,可证明原命题为真来证明它.∵a +b ≥0,∴a ≥-b ,b ≥-a ,∵f (x )在(-∞,+∞)上是增函数,∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ),故原命题为真命题,所以逆否命题为真命题.11.已知集合A =Error!,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-x +1=2+,∵x ∈,∴≤y ≤2,∴A =Error!.32(x -34)716[34,2]716由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤,解得m ≥或m ≤-,7163434故实数m 的取值范围是∪.(-∞,-34][34,+∞)12.已知两个关于x 的一元二次方程mx 2-4x +4=0和x 2-4mx +4m 2-4m -5=0,求两方程的根都是整数的充要条件.解:∵mx 2-4x +4=0是一元二次方程,∴m ≠0.又另一方程为x 2-4mx +4m 2-4m -5=0,且两方程都要有实根,∴Error!解得m ∈.[-54,1]∵两方程的根都是整数,故其根的和与积也为整数,∴Error!∴m 为4的约数.又∵m ∈,∴m =-1或1.[-54,1]当m =-1时,第一个方程x 2+4x -4=0的根为非整数;而当m =1时,两方程的根均为整数,∴两方程的根均为整数的充要条件是m =1.[冲击名校]1.对于函数y =f (x ),x ∈R ,“y =|f (x )|的图象关于y 轴对称”是“y =f (x )是奇函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B y =|f (x )|的图象关于y 轴对称,但是y =f (x )不一定为奇函数,如取函数f (x )=x 2,则函数y =|x 2|的图象关于y 轴对称,但函数f (x )=x 2是偶函数不是奇函数,即“y =|f (x )|的图象关于y 轴对称”⇒/ “y =f (x )是奇函数”;若y =f (x )是奇函数,图象关于原点对称,所以y =|f (x )|的图象关于y 轴对称,即“y =f (x )是奇函数”⇒“y =|f (x )|的图象关于y 轴对称”,故应选B.2.已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :=1;q :y =f (x )是偶函数f (-x )f (x )C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A解析:选D 对于A ,由y =x 2+mx +m +3有两个不同的零点,可得Δ=m 2-4(m +3)>0,从而可得m <-2或m >6.所以p 是q 的必要不充分条件;对于B ,由=1⇒f (-x )=f (x )⇒y =f (x )是偶函数,但由y =f (x )是偶函数不能推出f (-x )f (x )=1,例如函数f (x )=0,所以p 是q 的充分不必要条件;f (-x )f (x )对于C ,当cos α=cos β=0时,不存在tan α=tan β,反之也不成立,所以p 是q 的既不充分也不必要条件;对于D ,由A ∩B =A ,知A ⊆B ,所以∁U B ⊆∁U A ;反之,由∁U B ⊆∁U A ,知A ⊆B ,即A ∩B =A .所以p ⇔q .综上所述,p 是q 的充分必要条件的是D.[高频滚动]1.已知全集U =R ,集合A ={x |x 2-3x -4>0},B ={x |2x >8},那么集合(∁U A )∩B =( )A .{x |3<x <4}B .{x |x >4}C .{x |3<x ≤4}D .{x |3≤x ≤4}解析:选C A ={x |x 2-3x -4>0}={x |x <-1或x >4},所以∁U A ={x |-1≤x ≤4},又B ={x |2x >8}={x |x >3},所以(∁U A )∩B ={x |3<x ≤4}.2.对于任意的两个正数m ,n ,定义运算⊙:当m ,n 都为偶数或都为奇数时,m ⊙n =;当m ,n 为一奇一偶时,m ⊙n =.设集合A ={(a ,b )|a ⊙b =6,a ,b ∈N *},m +n2mn 则集合A 中的元素个数为________.解析:(1)当a ,b 都为偶数或都为奇数时,=6⇒a +b =12,即a +b22+10=4+8=6+6=1+11=3+9=5+7=12,故符合题意的点(a,b)有2×5+1=11个.ab(2)当a,b为一奇一偶时,=6⇒ab=36,即1×36=3×12=4×9=36,故符合题意的点(a,b)有2×3=6个.综上可知,集合A中的元素共有17个.答案:17。
第2讲命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念导师提醒1.区别两个说法(1)A是B的充分不必要条件是指:A⇒B且B⇒/A.(2)A的充分不必要条件是B是指:B⇒A且A⇒/B,在解题中要弄清它们的区别,以免出现错误.2.掌握充要条件的两个特征(1)对称性:若p是q的充分条件,则q是p的必要条件.(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件.判断正误(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( )(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( ) (5)q 不是p 的必要条件时,“p ⇒/q ”成立.( ) 答案:(1)× (2)× (3)√ (4)√ (5)√ 下列命题为真命题的是( )A .若1x =1y ,则x =yB .若x 2=1,则x =1C .若x =y ,则x =yD .若x <y ,则x 2<y 2答案:A(教材习题改编)命题“若a >b ,则a -1>b -1”的否命题是 ( )A .若a >b ,则a -1≤b -1B .若a >b ,则a -1<b -1C .若a ≤b ,则a -1≤b -1D .若a <b ,则a -1<b -1解析:选C.根据否命题的定义可知,命题“若a >b ,则a -1>b -1”的否命题应为“若a ≤b ,则a -1≤b -1”,故选C.设x ∈R ,则“2-x ≥0”是“(x -1)2≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.2-x ≥0,则x ≤2,(x -1)2≤1,则-1≤x -1≤1,即0≤x ≤2,据此可知:“2-x ≥0”是“(x -1)2≤1”的必要不充分条件.原命题“设a ,b ,c ∈R ,若a >b ,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C.当c =0时,ac 2=bc 2,所以原命题是假命题;由于原命题与逆否命题的真假一致,所以逆否命题也是假命题;逆命题为“设a,b,c∈R,若ac2>bc2,则a>b”,它是真命题;由于否命题与逆命题的真假一致,所以逆命题也是真命题.综上所述,真命题有2个.四种命题的相互关系及真假判断(自主练透)1.命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析:选D.“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.2.下列命题:①“若a≤b,则a<b”的否命题;②“若a=1,则ax2-x+3≥0的解集为R”的逆否命题;③“周长相同的圆面积相等”的逆命题;④“若2x为有理数,则x为无理数”的逆否命题.其中真命题的序号为()A.②④B.①②③C.②③④D.①③④解析:选B.对于①,逆命题为真,故否命题为真;对于②,原命题为真,故逆否命题为真;对于③,“面积相等的圆周长相同”为真;对于④,“若2x为有理数,则x为0或无理数”,故原命题为假,逆否命题为假.故选B.3.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题; ③命题β是命题α的否命题,且命题γ是命题α的逆否命题. A .①③ B .② C .②③D .①②③解析:选A.本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.4.已知集合P =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z ,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数是( )A .0B .1C .2D .4解析:选C.因为P =⎩⎨⎧⎭⎬⎫x |x =k +12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =2k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x |x =k 2,k ∈Z , 所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题, 则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题, 则原命题的否命题为假命题,所以真命题的个数为2.(1)写一个命题的其他三种命题时需关注2点 ①对于不是“若p ,则q ”形式的命题,需先改写; ②若命题有大前提,写其他三种命题时需保留大前提.[提醒] 四种命题的关系具有相对性,一旦一个命题定为原命题,相应的也就有了它的“逆命题”“否命题”“逆否命题”.(2)判断命题真假的2种方法①直接判断:判断一个命题为真命题,要给出严格的推理证明;说明一个命题是假命题,只需举出一个反例即可;②间接判断:当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.充分条件、必要条件的判断(师生共研)(1)(2018·高考北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d成等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2018·高考天津卷)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(3)设a ,b 是实数,则“a >b ”是“a 2>b 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】 (1)a ,b ,c ,d 是非零实数,若ad =bc ,则b a =dc ,此时a ,b ,c ,d 不一定成等比数列;反之,若a ,b ,c ,d 成等比数列,则a b =cd ,所以ad =bc ,所以“ad =bc ”是“a ,b ,c ,d 成等比数列”的必要而不充分条件,故选B.(2)由⎪⎪⎪⎪x -12<12,得0<x <1,所以0<x 3<1;由x 3<1,得x <1,不能推出0<x <1.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.故选A. (3)a >b 不能推出a 2>b 2,例如a =-1,b =-2;a 2>b 2也不能推出a >b ,例如a =-2,b =1.故“a >b ”是“a 2>b 2”的既不充分也不必要条件.【答案】 (1)B (2)A (3)D判断充要条件的3种常用方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与﹁B ⇒﹁A ,B ⇒A 与﹁A ⇒﹁B ,A ⇔B 与﹁B ⇔﹁A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.[提醒] 判断充要条件需注意3点 (1)要分清条件与结论分别是什么. (2)要从充分性、必要性两个方面进行判断. (3)直接判断比较困难时,可举出反例说明.1.(2019·成都第一次诊断性检测)已知锐角△ABC 的三个内角分别为A ,B ,C ,则“sin A >sin B ”是“tan A >tan B ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.在锐角△ABC 中,根据正弦定理a sin A =b sin B,知sin A >sin B ⇔a >b ⇔A >B ,而正切函数y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以A >B ⇔tan A >tan B .故选C.2.(2018·高考北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选C.因为|a -3b |=|3a +b |,所以(a -3b )2=(3a +b )2,所以a 2-6a ·b +9b 2=9a 2+6a ·b +b 2,又因为|a |=|b |=1,所以a ·b =0,所以a ⊥b ;反之也成立.故选C.3.(2019·咸阳模拟)已知p :m =-1,q :直线x -y =0与直线x +m 2y =0互相垂直,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.由题意得直线x +m 2y =0的斜率是-1,所以-1m 2=-1,m =±1.所以p 是q的充分不必要条件.故选A.充分条件、必要条件的探求及应用(典例迁移)(1)(2019·湖南湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若“x ∈P ”是“x ∈S ”的必要条件,求m 的取值范围.【解】 (1)选C.若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.(2)由x 2-8x -20≤0,得-2≤x ≤10, 所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3. 所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件, 即所求m 的取值范围是[0,3].[迁移探究1] (变问法)若本例(2)条件不变,问是否存在实数m ,使“x ∈P ”是“x ∈S ”的充要条件.若存在,求出m 的取值范围;若不存在,说明理由.解:若“x ∈P ”是“x ∈S ”的充要条件,则P =S ,所以⎩⎪⎨⎪⎧1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9,即不存在实数m ,使“x ∈P ”是“x ∈S ”的充要条件.[迁移探究2] (变问法)本例(2)条件不变,若“x ∈綈P ”是“x ∈綈S ”的必要不充分条件,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10},因为“x ∈綈P ”是“x ∈綈S ”的必要不充分条件, 所以P ⇒S 且S ⇒/P .所以[-2,10][1-m ,1+m ].所以⎩⎪⎨⎪⎧1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10.所以m ≥9,即m 的取值范围是[9,+∞).根据充要条件求解参数范围的方法及注意事项(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.1.命题“∀x ∈[1,3],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥9 B .a ≤9 C .a ≥10D .a ≤10解析:选C.命题“∀x ∈[1,3],x 2-a ≤0”⇔“∀x ∈[1,3],x 2≤a ”⇔9≤a .则a ≥10是命题“∀x ∈[1,3],x 2-a ≤0”为真命题的一个充分不必要条件.故选C.2.若“x 2-x -6>0”是“x >a ”的必要不充分条件,则a 的最小值为________. 解析:由x 2-x -6>0,解得x <-2或x >3. 因为“x 2-x -6>0”是“x >a ”的必要不充分条件,所以{x |x >a }是{x |x <-2或x >3}的真子集,即a ≥3,故a 的最小值为3. 答案:3充分、必要条件中的核心素养设p :|2x +1|<m (m >0);q :x -12x -1>0.若p 是q 的充分不必要条件,则实数m的取值范围为________.【解析】 由|2x +1|<m (m >0),得-m <2x +1<m , 所以-m +12<x <m -12.由x -12x -1>0, 得x <12或x >1.因为p 是q 的充分不必要条件,又m >0, 所以m -12≤12,所以0<m ≤2.【答案】 (0,2]充要条件问题中常涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决,充分体现“逻辑推理”的核心素养.若“x >2m 2-3”是“-1<x <4”的必要不充分条件,则实数m 的取值范围是( ) A .[-3,3] B .(-∞,-3]∪[3,+∞) C .(-∞,-1]∪[1,+∞)D .[-1,1]解析:选D.因为“x >2m 2-3”是“-1<x <4”的必要不充分条件,所以(-1,4)(2m 2-3,+∞),因此2m 2-3≤-1,解得-1≤m ≤1.[基础题组练]1.已知命题p :若x ≥a 2+b 2,则x ≥2ab ,则下列说法正确的是 ( ) A .命题p 的逆命题是“若x <a 2+b 2,则x <2ab ” B .命题p 的逆命题是“若x <2ab ,则x <a 2+b 2” C .命题p 的否命题是“若x <a 2+b 2,则x <2ab ” D .命题p 的否命题是“若x ≥a 2+b 2,则x <2ab ”解析:选C.命题p 的逆命题是“若x ≥2ab ,则x ≥a 2+b 2”,故A ,B 都错误;命题p 的否命题是“若x <a 2+b 2,则x <2ab ”,故C 正确,D 错误.2.“若x ,y ∈R ,x 2+y 2=0,则x ,y 全为0”的逆否命题是( )A .若x ,y ∈R ,x ,y 全不为0,则x 2+y 2≠0B .若x ,y ∈R ,x ,y 不全为0,则x 2+y 2=0C .若x ,y ∈R ,x ,y 不全为0,则x 2+y 2≠0D .若x ,y ∈R ,x ,y 全为0,则x 2+y 2≠0解析:选C.依题意得,原命题的题设为若x 2+y 2=0,结论为x ,y 全为零.逆否命题:若x ,y 不全为零,则x 2+y 2≠0,故选C.3.有下列几个命题:①“若a >b ,则1a >1b”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题; ③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是( ) A .① B .①② C .②③D .①②③解析:选C.①原命题的否命题为“若a ≤b ,则1a ≤1b ”,假命题;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,真命题;③原命题为真命题,故逆否命题为真命题.所以真命题的序号是②③.4.设A ,B 是两个集合,则“A ∩B =A ”是“A ⊆B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C.由A ∩B =A 可得A ⊆B ,由A ⊆B 可得A ∩B =A .所以“A ∩B =A ”是“A ⊆B ”的充要条件.故选C.5.“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.因为cos 2α=cos 2α-sin 2α=0,所以sin α=±cos α,所以“sin α=cos α”是“cos 2α=0”的充分不必要条件.故选A.6.(2019·郑州模拟)设平面向量a ,b ,c 均为非零向量,则“a ·(b -c )=0”是“b =c ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选B.由b =c ,得b -c =0,得a ·(b -c )=0;反之不成立.故“a ·(b -c )=0”是“b =c ”的必要不充分条件.7.(2019·西安八校联考)在△ABC 中,“AB →·BC →>0”是“△ABC 是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.法一:设AB →与BC →的夹角为θ,因为AB →·BC →>0,即|AB →|·|BC →|cos θ>0,所以cos θ>0,θ<90°,又θ为△ABC 内角B 的补角,所以∠B >90°,△ABC 是钝角三角形;当△ABC 为钝角三角形时,∠B 不一定是钝角.所以“AB →·BC →>0”是“△ABC 是钝角三角形”的充分不必要条件,故选A.法二:由AB →·BC →>0,得BA →·BC →<0,即cos B <0,所以∠B >90°,△ABC 是钝角三角形;当△ABC 为钝角三角形时,∠B 不一定是钝角.所以“AB →·BC →>0”是“△ABC 是钝角三角形”的充分不必要条件,故选A.8.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C.法一:设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A ,于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.法二(等价转化法):因为x =y ⇒cos x =cos y ,而cos x =cos y ⇒/ x =y ,所以“cos x =cos y ”是“x =y ”的必要不充分条件,即“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.9.“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C.f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x ,f (-x )=sin(-x )-1-x=-sin x +1x =-⎝⎛⎭⎫sin x -1x =-f (x ),故f (x )为奇函数;反之,当f (x )=sin x -1x +a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =2a ,故a =0,所以“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的充要条件,故选C.10.(2019·南昌模拟)“a 2+b 2=1”是“a sin θ+b cos θ≤1恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A.因为a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2,所以由a 2+b 2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a =2,b =0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a 2+b 2=1,即由a sin θ+b cos θ≤1推不出a 2+b 2=1,故“a 2+b 2=1”是“a sin θ+b cos θ≤1恒成立”的充分不必要条件.故选A.11.使a >0,b >0成立的一个必要不充分条件是( ) A .a +b >0 B .a -b >0 C .ab >1D. ab>1 解析:选A.因为a >0,b >0⇒a +b >0,反之不成立,而由a >0,b >0不能推出a -b >0,ab >1,ab>1,故选A.12.圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是( ) A .k ≤-22或k ≥2 2 B .k ≤-2 2 C .k ≥2D .k ≤-22或k >2解析:选B.若直线与圆有公共点,则圆心(0,0)到直线kx -y -3=0的距离d =|-3|k 2+1≤1,即k 2+1≥3,所以k 2+1≥9,即k 2≥8,所以k ≥22或k ≤-22,所以圆x 2+y 2=1与直线y =kx -3有公共点的充分不必要条件是k ≤-22,故选B.[综合题组练]1.(创新型)(2019·抚州七校联考)A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.则下列四个命题中为p 的逆否命题的是( )A .若及格分不低于70分,则A ,B ,C 都及格B .若A ,B ,C 都及格,则及格分不低于70分 C .若A ,B ,C 至少有一人及格,则及格分不低于70分D .若A ,B ,C 至少有一人及格,则及格分高于70分解析:选C.根据原命题与它的逆否命题之间的关系知,命题p 的逆否命题是若A ,B ,C 至少有一人及格,则及格分不低于70分.故选C.2.(2019·广东江门模拟)若a ,b 都是正整数,则a +b >ab 成立的充要条件是( ) A .a =b =1 B .a ,b 至少有一个为1 C .a =b =2D .a >1且b >1解析:选B.因为a +b >ab ,所以(a -1)(b -1)<1.因为a ,b ∈N *,所以(a -1)(b -1)∈N ,所以(a -1)(b -1)=0,所以a =1或b =1.故选B.3.(2019·四川达州一诊)方程x 2-2x +a +1=0有一正一负两实根的充要条件是( ) A .a <0 B .a <-1 C .-1<a <0D .a >-1解析:选B.因为方程x 2-2x +a +1=0有一正一负两实根,所以⎩⎪⎨⎪⎧Δ=4-4(a +1)>0,a +1<0,解得a <-1.故选B.4.(应用型)若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:由题意知ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0,解得-3≤a <0,故实数a 的取值范围是-3≤a ≤0. 答案:[-3,0]5.(应用型)已知命题p :x 2+2x -3>0;命题q :x >a ,且﹁q 的一个充分不必要条件是﹁p ,则a 的取值范围是________.解析:由x 2+2x -3>0,得x <-3或x >1,由綈q 的一个充分不必要条件是﹁p ,可知﹁p 是﹁q 的充分不必要条件,等价于q 是p 的充分不必要条件,故a ≥1.答案:[1,+∞)。
专题训练(二) 命题及其关系、充分条件与必要条件基础过关一、选择题1.命题“若a >b ,则a +c >b +c ”的否命题是( )A .若a ≤b ,则a +c ≤b +cB .若a +c ≤b +c ,则a ≤bC .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c2.设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A .ac 2>bc 2B .a b >1C .a -c >b -cD .a 2>b 24.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 5.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020·皖南八校联考)“1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >18.在等比数列{a n }中,“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]10.(2020·南昌市第一次模拟)已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,255 B .(0,1] C .⎣⎢⎡⎭⎪⎫255,+∞ D .[2,+∞)二、填空题11.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为________。
命题及其关系、充分条件与必要条件1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫作命题,其中判断为真的语句叫作真命题,判断为假的语句叫作假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念概念方法微思考若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.提示若A B,则p是q的充分不必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要不充分条件;若A=B,则p是q的充要条件;若A⊈B且A⊉B,则p是q的既不充分又不必要条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“对顶角相等”是命题.(√)(2)命题“若p,则q”的否命题是“若p,则綈q”.(×)(3)当q是p的必要条件时,p是q的充分条件.(√)(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)题组二教材改编2.下列命题是真命题的是()A.矩形的对角线相等B.若a>b,c>d,则ac>bdC.若整数a是素数,则a是奇数D.命题“若x2>0,则x>1”的逆否命题答案 A3.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等4.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充分不必要题组三易错自纠5.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件答案 C解析x>y⇏x>|y|(如x=1,y=-2),但当x>|y|时,能有x>y.∴“x>y”是“x>|y|”的必要不充分条件.6.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.答案(-∞,2]解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.题型一命题及其关系1.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18; ②若两组数据的平均数相等,则它们的方差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号是________.答案 ①③2.某食品的广告词为“幸福的人们都拥有”,这句话的等价命题是( )A.不拥有的人们会幸福B.幸福的人们不都拥有C.拥有的人们不幸福D.不拥有的人们不幸福答案 D3.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题;②“面积相等的三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题;④“若A ∩B =B ,则A ⊆B ”的逆否命题.其中真命题为________.(填写所有真命题的序号)答案 ①②③解析 ①“若xy =1,则x ,y 互为倒数”的逆命题是“若x ,y 互为倒数,则xy =1”,显然是真命题,故①正确;②“面积相等的三角形全等”的否命题是“面积不相等的三角形不全等”,显然是真命题,故②正确;③若x 2-2x +m =0有实数解,则Δ=4-4m ≥0,解得m ≤1,所以“若m ≤1,则x 2-2x +m =0有实数解”是真命题,故其逆否命题是真命题,故③正确;④若A ∩B =B ,则B ⊆A ,故原命题错误,所以其逆否命题错误,故④错误.4.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是________________. 答案 若方程x 2+x -m =0没有实根,则m ≤0思维升华 (1)写一个命题的其他三种命题时,需注意:①对于不是“若p ,则q ”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例即可.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分、必要条件的判定 例1 (1)已知α,β均为第一象限角,那么“α>β”是“sin α>sin β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 D 解析 取α=7π3,β=π3,α>β成立,而sin α=sin β,sin α>sin β不成立. ∴充分性不成立;取α=π3,β=13π6,sin α>sin β,但α<β,必要性不成立. 故“α>β”是“sin α>sin β”的既不充分也不必要条件.(2)已知条件p :x >1或x <-3,条件q :5x -6>x 2,则綈p 是綈q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析 由5x -6>x 2,得2<x <3,即q :2<x <3.所以q ⇒p ,p ⇏q ,所以綈p ⇒綈q ,綈q ⇏綈p ,所以綈p 是綈q 的充分不必要条件,故选A.思维升华 充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性,进行判断,适用于条件和结论带有否定性词语的命题.跟踪训练1 (1)王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的( )A.充要条件B.既不充分又不必要条件C.充分不必要条件D.必要不充分条件 答案 D解析 非有志者不能至,是必要条件;但“有志”也不一定“能至”,不是充分条件.(2)设p :⎝⎛⎭⎫12x <1,q :log 2x <0,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 答案 B解析 由⎝⎛⎭⎫12x <1知x >0,所以p 对应的集合为(0,+∞),由log 2x <0知0<x <1,所以q 对应的集合为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.题型三 充分、必要条件的应用例2 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求m 的取值范围.解 由x 2-8x -20≤0,得-2≤x ≤10,∴P ={x |-2≤x ≤10}.由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2, ∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].引申探究若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解 若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,方程组无解, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.思维升华 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练2 (1)设p :|2x +1|<m (m >0);q :x -12x -1>0.若p 是q 的充分不必要条件,则实数m 的取值范围为__________.答案 (0,2]解析 由|2x +1|<m (m >0),得-m <2x +1<m ,∴-m +12<x <m -12. 由x -12x -1>0,得x <12或x >1. ∵p 是q 的充分不必要条件,又m >0,∴m -12≤12,∴0<m ≤2.(2)设n ∈N +,则一元二次方程x 2-4x +n =0有整数根的充要条件是n =________. 答案 3或4解析 由Δ=16-4n ≥0,得n ≤4,又n ∈N +,则n =1,2,3,4.当n =1,2时,方程没有整数根;当n =3时,方程有整数根1,3,当n =4时,方程有整数根2.综上可知,n =3或4.利用充要条件求参数范围逻辑推理是从事实和命题出发,依据规则推出其他命题的素养.逻辑推理的主要形式是演绎推理,它是得到数学结论、证明数学命题的主要方式,也是数学交流、表达的基本思维品质. 例 已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.答案 ⎣⎡⎦⎤0,12 解析 方法一 命题p 为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }.∵綈p 是綈q 的必要不充分条件,∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧ a +1≥1,a <12, ∴0≤a ≤12. 方法二 命题p 为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤1, 命题q 为B ={x |a ≤x ≤a +1}.∵綈p 是綈q 的必要不充分条件,∴p 是q 的充分不必要条件,即A B .∴⎩⎪⎨⎪⎧ a +1≥1,a <12或⎩⎪⎨⎪⎧a +1>1,a ≤12,∴0≤a ≤12. 素养提升 例题中得到实数a 的范围的过程就是利用已知条件进行推理论证的过程,数学表达严谨清晰.1.已知命题p :若a <1,则a 2<1,则下列说法正确的是( )A.命题p 是真命题B.命题p 的逆命题是真命题C.命题p 的否命题是“若a <1,则a 2≥1”D.命题p 的逆否命题是“若a 2≥1,则a <1”答案 B解析 若a =-2,则(-2)2>1,∴命题p 为假命题,∴A 不正确;命题p 的逆命题是“若a 2<1,则a <1”,为真命题,∴B 正确;命题p 的否命题是“若a ≥1,则a 2≥1”,∴C 不正确;命题p 的逆否命题是“若a 2≥1,则a ≥1”,∴D 不正确.故选B.2.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A.逆命题B.否命题C.逆否命题D.否定答案 B解析 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.3.(2018·天津)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件 答案 A解析 由⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”⇏“⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分不必要条件. 故选A.4.(2018·西安模拟)设a ,b ∈R ,则“(a -b )a 2<0”是“a <b ”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分又不必要条件 答案 A解析 由(a -b )a 2<0可知a 2≠0,则一定有a -b <0,即a <b ;但a <b 即a -b <0时,有可能a =0,所以(a -b )a 2<0不一定成立,故“(a -b )a 2<0”是“a <b ”的充分不必要条件,故选A.5.有下列命题:①“若x +y >0,则x >0且y >0”的否命题;②“矩形的对角线相等”的否命题;③“若m >1,则mx 2-2(m +1)x +m +3>0的解集是R ”的逆命题;④“若a +7是无理数,则a 是无理数”的逆否命题.其中正确的是( )A.①②③B.②③④C.①③④D.①④ 答案 C解析 ①的逆命题“若x >0且y >0,则x +y >0”为真,故否命题为真;②的否命题为“不是矩形的图形对角线不相等”,为假命题;③的逆命题为“若mx 2-2(m +1)x +m +3>0的解集为R ,则m >1”.因为当m =0时,解集不是R ,所以应有⎩⎪⎨⎪⎧m >0,Δ<0,即m >1.所以③是真命题; ④原命题为真,逆否命题也为真.6.若实数a ,b 满足a >0,b >0,则“a >b ”是“a +ln a >b +ln b ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 C解析设f(x)=x+ln x,显然f(x)在(0,+∞)上是增加的,∵a>b,∴f(a)>f(b),∴a+ln a>b+ln b,故充分性成立;∵a+ln a>b+ln b,∴f(a)>f(b),∴a>b,故必要性成立,故“a>b”是“a+ln a>b+ln b”的充要条件,故选C.7.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件答案 C解析方法一∵数列{a n}是公差为d的等差数列,∴S4=4a1+6d,S5=5a1+10d,S6=6a1+15d,∴S4+S6=10a1+21d,2S5=10a1+20d.若d>0,则21d>20d,10a1+21d>10a1+20d,即S4+S6>2S5.若S4+S6>2S5,则10a1+21d>10a1+20d,即21d>20d,∴d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.方法二∵S4+S6>2S5⇔S4+S4+a5+a6>2(S4+a5)⇔a6>a5⇔a5+d>a5⇔d>0.∴“d>0”是“S4+S6>2S5”的充分必要条件.故选C.8.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则实数k的取值范围是()A.[2,+∞)B.(2,+∞)C.[1,+∞)D.(-∞,-1]答案 B解析由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞),故选B.9.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确;③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确.10.已知f (x )是R 上的奇函数,则“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充分不必要解析 ∵函数f (x )是奇函数,∴若x 1+x 2=0,则x 1=-x 2,则f (x 1)=f (-x 2)=-f (x 2),即f (x 1)+f (x 2)=0成立,即充分性成立;若f (x )=0,满足f (x )是奇函数,当x 1=x 2=2时,满足f (x 1)=f (x 2)=0,此时满足f (x 1)+f (x 2)=0,但x 1+x 2=4≠0,即必要性不成立.故“x 1+x 2=0”是“f (x 1)+f (x 2)=0”的充分不必要条件.11.在△ABC 中,角A ,B 均为锐角,则“cos A >sin B ”是“△ABC 为钝角三角形”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充要解析 因为cos A >sin B ,所以cos A >cos ⎝⎛⎭⎫π2-B ,因为角A ,B 均为锐角,所以π2-B 为锐角, 又因为余弦函数y =cos x 在(0,π)上是减少的,所以A <π2-B ,所以A +B <π2, 在△ABC 中,A +B +C =π,所以C >π2, 所以△ABC 为钝角三角形;若△ABC 为钝角三角形,角A ,B 均为锐角,则C >π2,所以A +B <π2, 所以A <π2-B ,所以cos A >cos ⎝⎛⎭⎫π2-B , 即cos A >sin B .故“cos A >sin B ”是“△ABC 为钝角三角形”的充要条件.12.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ,B ={x |-1<x <m +1,m ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是____________.答案 (2,+∞)解析 因为A =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <8,x ∈R ={x |-1<x <3},x ∈B 成立的一个充分不必要条件是x ∈A ,所以A B ,所以m +1>3,即m >2.13.已知α,β∈(0,π),则“sin α+sin β<13”是“sin(α+β)<13”的______________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充分不必要解析 因为sin(α+β)=sin αcos β+cos αsin β<sin α+sin β,所以若sin α+sin β<13,则有sin(α+β)<13,故充分性成立;当α=β=π2时,有sin(α+β)=sin π=0<13,而sin α+sin β=1+1=2,不满足sin α+sin β<13,故必要性不成立.所以“sin α+sin β<13”是“sin(α+β)<13”的充分不必要条件.14.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是____________. 答案 ⎣⎡⎦⎤-12,43 解析 解不等式|x -m |<1,得m -1<x <m +1.由题意可得⎝⎛⎭⎫13,12(m -1,m +1),故⎩⎨⎧ m -1≤13,m +1≥12且等号不同时成立,解得-12≤m ≤43.15.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________.答案 ⎣⎡⎦⎤13,38解析 由2-m >m -1>0,解得1<m <32, 即q :1<m <32. 因为p 是q 的充分条件,所以⎩⎪⎨⎪⎧3a ≥1,4a ≤32, 解得13≤a ≤38,所以实数a 的取值范围是⎣⎡⎦⎤13,38.16.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,0≤x ≤2,B ={x |x +m 2≥2},p :x ∈A ,q :x ∈B ,p 是q 的充分条件,则实数m 的取值范围是________________.答案 ⎝⎛⎦⎤-∞,-54∪⎣⎡⎭⎫54,+∞ 解析 由y =x 2-32x +1=⎝⎛⎭⎫x -342+716,0≤x ≤2, 得716≤y ≤2,∴A =⎣⎡⎦⎤716,2. 又由题意知A ⊆B ,∴2-m 2≤716,∴m 2≥2516. ∴m ≥54或m ≤-54.。
第二节命题及其关系、充足条件与必需条件【考纲下载】1.理解命题的观点.2.认识“若p,则 q”形式的命题及其抗命题、否命题与逆否命题,会剖析四种命题的相互关系.3.理解必需条件、充足条件与充要条件的含义.1.命题的观点用语言、符号或式子表达的,能够判断真假的陈说句叫做命题.此中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有同样的真假性;②两个命题互为抗命题或互为否命题,它们的真假性没相关系.3.充足条件与必需条件(1)若 p? q,则 p 是 q 的充足条件,q 是 p 的必需条件.(2)若 p? q,则 p 与 q 互为充要条件.(3)若 p? / q,且 q? / p,则 p 是 q 的既不充足也不用要条件.1.一个命题的否命题与这个命题的否认是同一个命题吗?提示:不是,一个命题的否命题是既否认该命题的条件,又否认该命题的结论,而这个命题的否认仅能否认它的结论.2.“ p 是 q 的充足不用要条件”与“p 的一个充足不用要条件是q”二者的说法同样吗?提示:二者说法不同样.“ p的一个充足不用要条件是q”等价于“ q 是 p 的充足不用要条件”,明显这与“ p 是 q 的充足不用要条件”是截然相反的.1.(2013 ·建高考福 )已知会合 A={1 ,a} ,B= {1,2,3} ,则“ a= 3”是“ A? B”的 ()A .充足而不用要条件B .必需而不充足条件C.充足必需条件 D .既不充足也不用要条件分析:选A当 a= 3 时, A= {1,3} ,A? B;反之,当 A? B 时, a= 2 或 3,所以“ a=3”是“ A? B”的充足而不用要条件.2.命题“若 x2> y2,则 x> y”的逆否命题是 ()A .“若 x< y,则 x2< y2”B .“若 x> y,则 x2> y2”C.“若 x≤ y,则 x2≤ y2” D .“若 x≥ y,则 x2≥ y2”分析:选 C依据原命题和逆否命题的条件和结论的关系得命题“若 x2> y2,则 x> y”的逆否命题是“若 x≤y,则 x2≤ y2”.3. (教材习题改编 )命题“假如b2- 4ac> 0,则方程 ax2+ bx+ c=0(a≠ 0)有两个不相等的实根”的否命题、抗命题和逆否命题中,真命题的个数为()A . 0B .1C. 2D. 3分析:选 D原命题为真,则它的逆否命题为真,抗命题为“若方程 ax2+bx+ c= 0(a≠0)有两个不相等的实根,则b2- 4ac> 0”,为真命题,则它的否命题也为真.4.命题“若 f(x) 是奇函数,则 f(- x)是奇函数”的否命题是()A .若 f( x)是偶函数,则f(- x)是偶函数B.若 f( x)不是奇函数,则f( -x) 不是奇函数C.若 f( -x)是奇函数,则 f( x)是奇函数D.若 f( -x) 不是奇函数,则 f(x) 不是奇函数分析:选 B原命题的否命题是既否认题设又否认结论,故“若 f(x)是奇函数,则 f(-x)是奇函数”的否命题是 B 选项.5.下边四个条件中,使a> b 建立的充足而不用要的条件是()A . a> b+ 1B. a> b- 1 C. a2>b2 D .a3> b3分析:选A由 a> b+1,且 b+ 1> b,得 a> b;反之不建立 .考点一四种命题的关系[例 1] (1)命题“若x> 1,则 x> 0”的否命题是()A .若 x> 1,则 x≤ 0B.若 x≤ 1,则 x> 0C.若 x≤ 1,则 x≤ 0D.若 x< 1,则 x< 0(2)命题“若x, y 都是偶数,则x+y 也是偶数”的逆否命题是()A .若 x+ y 是偶数,则x 与 y 不都是偶数B.若 x+ y 是偶数,则x 与 y 都不是偶数C.若 x+ y 不是偶数,则x 与 y 不都是偶数D.若 x+ y 不是偶数,则x 与 y 都不是偶数[自主解答 ](1) 因为“ x> 1”的否认为“ x≤ 1”,“ x>0”的否认为“ x≤ 0”,所以命题“ 若 x> 1,则 x> 0”的否命题为:“ 若x≤ 1,则x≤ 0”.(2)因为“ x,y 都是偶数”的否认表达是“ x, y 不都是偶数”,“ x+y 是偶数”的否认表达是“ x+ y 不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x 与 y 不都是偶数”.[答案 ] (1)C(2)C【互动研究】试写出本例 (2) 中命题的抗命题和否命题,并判断其真假性.解:抗命题:若x+ y 是偶数,则x, y 都是偶数.是假命题.否命题:若x, y 不都是偶数,则x+ y 不是偶数.是假命题.【方法例律】判断四种命题间关系的方法(1)由原命题写出其余三种命题,重点要分清原命题的条件和结论,将条件与结论交换即得抗命题,将条件与结论同时否认即得否命题,将条件与结论交换的同时进行否认即得逆否命题.(2)原命题和逆否命题、抗命题和否命题有同样的真假性,解题时注意灵巧应用.1.命题 p:“若 a≥ b,则 a+ b> 2 012 且 a>- b”的逆否命题是()A .若 a+ b≤2 012 且 a≤- b,则 a< bC.若 a+ b≤2 012 或 a≤- b,则 a< bD.若 a+ b≤2 012 或 a≤- b,则 a≤ b分析:选 C“且” 的否认是“ 或” ,依据逆否命题的定义知,逆否命题为“ 若a+b≤ 2 012 或 a≤- b,则 a< b”.2.以下命题中为真命题的是()A .命题“若x> y,则 x> |y|”的抗命题B.命题“若x> 1,则 x2>1”的否命题C.命题“若x= 1,则 x2+x- 2= 0”的否命题D.命题“若x2> 0,则 x>1”的逆否命题分析:选 A A 中抗命题为“若 x> |y|,则 x> y”是真命题;B中否命题为“若 x≤ 1,则 x2≤ 1”是假命题;C中否命题为“若 x≠ 1,则 x2+ x- 2≠0”是假命题;D中原命题是假命题,进而其逆否命题也为假命题.考点二命题的真假判断[例 2] (1)以下命题是真命题的是()11A .若=,则x=yB.若 x2= 1,则 x= 1C.若 x= y,则x=yD.若 x< y,则 x2< y2(2)(2014 济·南模拟 )在空间中,给出以下四个命题:①过一点有且只有一个平面与已知直线垂直;②若平面外两点到平面的距离相等,则过这两点的直线必平行于该平面;③两条订交直线在同一平面内的射影必为订交直线;④两个相互垂直的平面,一个平面内的随意向来线必垂直于另一平面内的无数条直线.此中正确的选项是()A .①②B .②③C.③④D.①④[自主解答 ] (1) 取 x=- 1 清除 B ;取 x=y=- 1 清除 C;取 x=- 2,y=- 1 清除 D,应选 A.(2)对于①,由线面垂直的判断可知①正确;对于②,若点在平面的双侧,则过这两点的直线可能与该平面订交, 故②错误; 对于③, 两条订交直线在同一平面内的射影能够为一条直线,故③错误; 对于④,两个相互垂直的平面,一个平面内的随意一条直线必垂直于另一个平面内的无数条与交线垂直的直线,故④正确.综上可知,选D.[答案 ] (1)A (2)D【方法例律】命题的真假判断方法(1)给出一个命题, 要判断它是真命题, 需经过严格的推理证明; 而要说明它是假命题,只要举一反例即可.(2) 因为原命题与其逆否命题为等价命题,有时能够利用这类等价性间接地证明命题的真假.给出以下命题:①函数 y = sin(x +k π)(k ∈ R)不行能是偶函数;②已知数列 { a n } 的前 n 项和 S n = a n - 1(a ∈ R , a ≠ 0),则数列 { a n } 必定是等比数列; ③若函数 f(x)的定义域是 R ,且知足 f(x)+ f(x +2) = 3,则 f(x) 是以 4 为周期的周期函数; ④过两条异面直线外一点能作且只好作出一条直线和这两条异面直线同时订交. 此中全部正确的命题有 ________(填正确命题的序号 ).分析: ①当 k =1nn 时, y = sin(x + k π)就是偶函数,故①错;②当a = 1 时, S =0,则a2的各项都为零,不是等比数列,故②错;③由f(x)+f(x + 2)= 3,则 f(x +2)+ f(x +4) =3,相减得 f(x)- f(x + 4)= 0,即 f(x)= f( x +4) ,所以 f(x) 是以 4 为周期的周期函数,③正确;④过两条异面直线外一点,有时没有一条直线能与两条异面直线都订交,故④错.综上所述,正确的命题只有③ .答案: ③高频考点考点三充要条件1.充足条件、必需条件是每年高考的必考内容,多以选择题的形式出现,难度不大,属于简单题.2.高考对充要条件的考察主要有以下三个命题角度:(1)判断指定条件与结论之间的关系;(2)研究某结论建立的充要条件、充足不用要条件或必需不充足条件;(3)与命题的真假性订交汇命题.[例 3] (1)(2013 北·京高考 )“ φ=π”是“曲线y= sin(2x+φ)过坐标原点”的()A .充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件a =b建立的充足条件(2)(2012 四·川高考 )设 a、 b 都是非零向量,以下四个条件中,使|a| |b|是()A . a=- b B. a∥bC.a= 2b D. a∥b 且 |a|= |b|(3)给出以下命题:①“数列 { a n} 为等比数列”是“数列{ a n a n+1} 为等比数列”的充足不用要条件;②“ a= 2”是“函数f(x) =|x- a|在区间 [2,+∞ )上为增函数”的充要条件;③“ m= 3”是“直线 (m+ 3)x+ my- 2= 0 与直线 mx- 6y+ 5= 0 相互垂直”的充要条件;④设 a, b, c 分别是△ ABC 三个内角A, B,C 所对的边,若a= 1,b=3,则“ A=30°”是“ B=60°”的必需不充足条件.此中真命题的序号是________..[自主解答 ](1) 当φ=π时, y= sin(2 x+π)=- sin 2x,则曲线 y=- sin 2x 过坐标原点,所以“ φ=π” ? “曲线 y= sin(2x+φ)过坐标原点”;当φ= 2π时, y= sin(2x+ 2π)= sin 2x,则曲线 y= sin 2x 过坐标原点,所以“ φ=π”?/“ 曲线y=sin(2x+φ)过坐标原点” ,所以“ φ=π” 是“曲线 y= sin(2x+φ)过坐标原点”的充足而不用要条件.a b a b(2)|a|,|b|分别是与 a, b 同方向的单位向量,由|a|=|b|,得 a 与 b 的方向同样.而 a∥b时, a 与 b 的方向还可能相反.应选 C.(3) 对于①,当数列 { a n} 为等比数列时,易知数列{ a n a n+1} 是等比数列,但当数列 { a n a n+1} 为等比数列时,数列 { a n} 未必是等比数列,如数列1,3,2,6,4,12,8 明显不是等比数列,而相应的数列 3,6,12,24,48,96 是等比数列,所以①正确;对于②,当a≤ 2 时,函数 f(x) =|x- a|在区间[2 ,+∞ )上是增函数,所以②不正确;对于③,当m= 3 时,相应的两条直线相互垂直,反之,这两条直线垂直时,不必定有m= 3,也可能m= 0.所以③不正确;对于④,由题意得b= sin B=3,若 B= 60°,则 sin A=1,注意到 b> a,故 A=30°,反之,当A= 30°时,a sin A2有 sin B=3,因为 b>a,所以 B= 60°或 B= 120°,所以④正确.综上所述,真命题的序号2是①④ .[答案 ](1)A (2)C (3) ①④充要条件问题的常有种类及解题策略(1)判断指定条件与结论之间的关系.解决此类问题应分三步:①确立条件是什么,结论是什么;②试试从条件推结论,从结论推条件;③确立条件和结论是什么关系.(2)研究某结论建立的充要、充足、必需条件.解答此类题目,可先从结论出发,求出使结论建立的必需条件,而后再考证获得的必需条件能否知足充足性.(3)充要条件与命题真假性的交汇问题.依照命题所述的充足必需性,判断能否建立刻可.1.(2014 西·安模拟 )假如对于随意实数x,[x]表示不超出 x 的最大整数,那么“ [x] = [y] ”是“ |x- y|< 1 建立”的 ()A .充足不用要条件B .必需不充足条件C.充要条件 D .既不充足也不用要条件分析:选 A若 [x]= [ y] ,则 |x-y|< 1;反之,若 |x- y|< 1,如取 x= 1.1,y= 0.9,则[x]≠ [y] ,即“ [x] = [y]”是“ |x- y|< 1 建立”的充足不用要条件.2.已知 p:1a 的<1, q:x2+(a- 1)x- a>0 ,若 p 是 q 的充足不用要条件,则实数x-1取值范围是 ()A.(-2,- 1]B. [ -2,- 1]C. [- 3,1]D. [- 2,+∞ )分析:选 A不等式1<1 等价于1-1<0,即x- 2>0,解得 x>2 或 x<1,所以 p 为 (-x- 1x- 1x- 1∞, 1)∪(2,+∞ ).不等式x2+(a- 1)x- a>0 能够化为 (x-1)(x+ a)>0 ,当- a≤ 1 时,解得x>1 或 x<- a,即 q 为 (-∞,- a)∪(1,+∞ ),此时a=- 1;当- a>1 时,不等式 (x-1)(x +a)>0 的解集是 (-∞, 1)∪(- a,+∞ ),此时- a<2,即- 2<a<- 1.综上可知 a 的取值范围为( -2,- 1].3.设 n∈ N *,一元二次方程 x2- 4x+ n= 0 有整数根的充要条件是n= ________.4± 16- 4n4- n,因为 x 是整数,分析:一元二次方程x2- 4x+n= 0 的根为 x== 2±2即 2±4-n为整数,所以4- n为整数,且 n≤ 4,又因为 n∈N*,取 n= 1,2,3,4,考证可知n= 3,4切合题意,所以 n= 3,4 时能够推出一元二次方程x2- 4x+n= 0 有整数根.答案:3或4—————————— [ 讲堂概括——通法意会 ] ———————————1 个差别——“ A 是 B 的充足不用要条件”与“A 的充足不必需条件是 B”的差别“ A 是 B 的充足不用要条件”中,A是条件,B是结论;“ A的充足不用要条件是B”中, B 是条件, A 是结论.在进行充足、必需条件的判断中,要注意这两种说法的差别.2 条规律——四种命题间关系的两条规律(1)抗命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转变为判断它的逆否命题的真假.同时要关注“ 特例法” 的应用.3 种方法——判断充足条件和必需条件的方法(1)定义法; (2) 会合法; (3)等价转变法.方法博览 (一 )三法破解充要条件问题1.定义法定义法就是将充要条件的判断转变为两个命题——“若 p,则 q”与“若q,则 p”的判断,依据两个命题能否正确,来确立p 与 q 之间的充要关系.π[典例 1] 设 0< x<,则“ xsin2x< 1”是“ xsin x< 1”的 ()2A .充要条件B .充足不用要条件C.必需不充足条件 D .既不充足也不用要条件π[解题指导 ] 由 0< x<2可知 0< sin x< 1,分别判断命题“若 xsin2x< 1,则 xsin x< 1”与“ 若 xsin x< 1,则 xsin 2x<1”的真假即可.π[分析 ]因为0< x<2,所以0<sin x<1,不等式xsin x<1两边同乘sin x,可得 xsin 2x<sin x,所以有 xsin2x<sin x<1.即 xsin x<1? xsin2 x<1;11不等式 xsin2x<1两边同除以sin x,可得 xsin x<sin x,而由 0<sin x<1,知sin x>1,故 xsin x<1 不必定建立,即xsin2x<1 ?/ xsin x<1.综上,可知“xsin2x<1”是“xsin x<1”的必需不充足条件.[答案] C[评论 ]判断p、q之间的关系,只要判断两个命题A:“ 若 p,则 q”和 B:“若 q,则 p”的真假.(1)若 p? q,则 p 是 q 的充足条件;(2)若 q? p,则 p 是 q 的必需条件;(3)若 p? q 且 q? p,则 p 是 q 的充要条件;(4)若 p? q 且 q? / p,则 p 是 q 的充足不用要条件;(5)若 p? / q 且 q? p,则 p 是 q 的必需不充足条件;(6)若 p? / q 且 q? / p,则 p 是 q 的既不充足也不用要条件.2.会合法会合法就是利用知足两个条件的参数取值所组成的会合之间的关系来判断充要关系的方法.主要解决两个相像的条件难以进行划分或判断的问题.[典例 2]若 A: log2a<1, B: x 的二次方程 x2+ (a+1)x+ a- 2= 0 的一个根大于零,另一根小于零,则A是B的()A .充要条件B.充足不用要条件C.必需不充足条件D.既不充足也不用要条件[解题指导 ] 分别求出使 A、B 建立的参数 a 的取值所组成的会合M 和 N,而后经过集合 M 与 N 之间的关系来判断.[分析 ]由 log a<1,解得 0<a<2,所以知足条件 A 的参数 a 的取值会合为 M= { a|0<a<2} ;2而方程 x2+ (a+ 1)x+ a- 2= 0 的一根大于零,另一根小于零的充要条件是f(0)<0 ,即 a-2<0 ,解得 a<2 ,即知足条件 B 的参数 a 的取值会合为 N= { a|a<2} ,明显 M N,所以 A是 B的充分不用要条件.[答案 ]B[评论 ]利用会合间的关系判断充要条件的方法记法条件 p、 q 对应的会合分别为A、 BA? B B? A AB B A A B 且关系A= BB Ap 是 q 的充p 是 q 的必p 是 q 的既p 是 q 的充p 是 q 的必p 是 q 的充结论分不用要条要不充足条不充足也不分条件要条件要条件件件必需条件3.等价转变法等价转变法就是在判断含有逻辑联络词“否”的相关条件之间的充要关系时,依据原命题与其逆否命题的等价性转变为形式较为简单的两个条件之间的关系进行判断.4≤- 1,条件 q: x2- x<a2- a,且q 的一个充足不用要条[典例 3] 已知条件 p:x-1件是p,则 a 的取值范围是 ________.[解题指导 ] “ q 的一个充足不用要条件是p”等价于“ p 是 q 的一个必需不充足条件”.[分析 ]由4≤ -1,得-3≤x<1.由x2-x<a2-a,得(x-a)[x+(a-1)]<0,x- 1当 a>1 - a,即 a>12时,不等式的解为1-a<x<a;当 a= 1- a,即 a=12时,不等式的解为?;1当 a<1 - a,即 a<2时,不等式的解为a<x<1- a.由q 的一个充足不用要条件是p,可知p 是q 的充足不用要条件,即p 为 q 的一个必需不充足条件,即条件q 对应的 x 取值会合是条件p 对应的 x 取值会合的真子集.1- 3≤ 1- a,1当 a>2时,由 { x|1- a<x<a}{ x|- 3≤ x<1} ,得解得2<a≤ 1;1≥a,1当 a=2时,因为空集是随意一个非空会合的真子集,所以知足条件;1- 3≤ a,1当 a<2时,由 { x|a<x<1 - a}{ x|- 3≤ x<1} ,得解得0≤ a<2.1≥1- a,综上, a 的取值范围是[0,1] .[答案 ][0,1][评论 ]条件和结论带有否认性词语的命题,常转变为其逆否命题来判断真假.p、 q 之间的关系p 和q 之间的关系p 是 q 的充足不用要条件p 是q 的必需不充足条件p 是 q 的必需不充足条件p 是q 的充足不用要条件p 是 q 的充要条件p 是q 的充要条件p 是 q 的既不充足也不用要条件p 是q 的既不充足也不用要条件[ 通盘稳固 ]1.“若 b2- 4ac< 0,则 ax2+ bx+c= 0 没有实根”,其否命题是()A .若 b2- 4ac> 0,则 ax2+ bx+c= 0 没有实根B.若 b2- 4ac>0,则 ax2+ bx+c= 0 有实根C.若 b2- 4ac≥0,则 ax2+ bx+c= 0 有实根D.若 b2- 4ac≥ 0,则 ax2+ bx+c= 0 没有实根分析:选 C由原命题与否命题的关系可知,“ 若b2-4ac<0,则ax2+bx+c=0没有实根”的否命题是“若 b2- 4ac≥ 0,则 ax2+ bx+ c= 0 有实根”.2.f(x),g(x)是定义在R 上的函数, h(x)= f(x)+g(x),则“ f(x),g(x)均为偶函数”是“h(x)为偶函数”的 ()A .充要条件B .充足不用要条件C.必需不充足条件 D .既不充足也不用要条件分析:选 B因为f(x),g( x)均为偶函数,可推出h(x)为偶函数,反之,则不建立.3. (2014 黄·冈模拟 )与命题“若a,b, c 成等比数列,则b2= ac”等价的命题是 ()A .若 a, b,c 成等比数列,则b2≠ acB.若 a, b,c 不行等比数列,则b2≠ acC.若 b2= ac,则 a, b, c 成等比数列D.若 b2≠ ac,则 a, b,c 不行等比数列分析:选 D因为原命题与其逆否命题是等价的,所以与命题“ 若a,b,c成等比数列,则 b2= ac”等价的命题是“若 b2≠ ac,则 a, b, c 不行等比数列”.4.设 a>0 且 a≠1,则“函数 f(x)= a x在 R 上是减函数”是“函数g(x)=(2-a)x3在 R上是增函数”的 ()A .充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件分析:选 A“ 函数f(x)=a x在R上是减函数” 的充要条件是p: 0< a< 1.因为 g′ (x)=3(2- a)x2,而 x2≥ 0,所以“函数 g(x)= (2-a)x3在 R 上是增函数”的充要条件是2- a> 0,即 a< 2.又因为 a> 0 且 a≠ 1,所以“函数 g(x)= (2- a)x3在 R 上是增函数”的充要条件是q:0< a< 2 且 a≠ 1.明显 p? q,但 q? / p,所以 p 是 q 的充足不用要条件,即“ 函数f(x)=a x在 R 上是减函数”是“函数 g(x)= (2- a)x3在 R 上是增函数”的充足不用要条件.5. (2014 ·昌模拟南 )以下选项中正确的选项是()1A .若 x> 0 且 x≠ 1,则 ln x+≥ 2B.在数列 { a n} 中,“ |a n+1|> a n”是“数列 { a n} 为递加数列”的必需不充足条件C.命题“全部素数都是奇数”的否认为“全部素数都是偶数”D.若命题p 为真命题,则其否命题为假命题1分析:选 B当0<x<1时,ln x<0,此时ln x+ln x≤ -2,A错;当|a n+1|>a n时,{ a n}不必定是递加数列,但若 { a n n<a n +1≤ |an+ 1} 是递加数列,则必有a|,B 对;全称命题的否认为特称命题, C 错;若命题 p 为真命题,其否命题可能为真命题,也可能为假命题, D 错.6.已知 p:2x- 1≤ 1,q:(x- a)(x- a- 1)≤ 0.若 p 是 q 的充足不用要条件,则实数a的取值范围是 ()A. 0,1B. 0,1C. (-∞, 0)∪1,+∞D. (-∞, 0)∪1,+∞2222分析:选 A 令 A= { x| 2x- 1≤ 1} ,得 A= x 1≤ x≤ 1,令 B= { x|(x- a)(x- a- 1)≤ 0} ,21a≤2,1得 B= { x|a≤ x≤ a+1} ,若 p 是 q 的充足不用要条件,则A B,需? 0≤ a≤2.a+ 1≥ 1 7.在命题 p 的四种形式 (原命题、抗命题、否命题、逆否命题)中,真命题的个数记为f(p),已知命题 p:“若两条直线 l1: a1x+ b1y+ c1= 0, l2: a2x+ b2y+ c2= 0平行,则 a1b2-a b = 0”.那么 f(p)= ________.21分析:原命题 p 明显是真命题,故其逆否命题也是真命题,而其抗命题是:若 a1 b2-a2b1=0,则两条直线l 1:a1 x+ b1y+ c1= 0 与 l 2:a2 x+ b2y+c2= 0 平行,这是假命题,因为当 a1b2-a2 1=0时,还有可能12重合,抗命题是假命题,进而否命题也为假命题,故f(p)=b l与 l2.答案: 28.以下四个命题:①“若 x+ y= 0,则 x, y 互为相反数”的抗命题;②“若 x2+x- 6≥ 0,则 x> 2”的否命题;③在△ ABC 中,“ A> 30°”是“ sin A>12”的充足不用要条件;④“函数 f(x)= tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈Z )”.此中真命题的序号是________(把真命题的序号都填上).分析:①原命题的抗命题为:“若x,y互为相反数,则x+ y= 0”,①是真命题;“若x2+ x-6≥ 0,则 x> 2”的否命题是“若 x2+ x- 6<0,则 x≤2”,②也是真命题;在△ ABC中,“ A> 30°”是“ sin A>1”的必需不充足条件,③是假命题;“函数 f(x)= tan(x+φ)为2kπ奇函数”的充要条件是“φ=2 (k∈Z)”,④是假命题.答案:①②9.已知α:x≥a,β:|x- 1|< 1.若α是β的必需不充足条件,则实数 a 的取值范围为________.分析:α: x≥ a,可看作会合 A= { x|x≥ a} ,由 |x- 1|< 1,得 0<x< 2,∴β可看作会合B={ x|0< x<2} .又∵α是β的必需不充足条件,∴B A,∴a≤ 0.答案: (-∞, 0]10.已知函数f( x)是 (-∞,+∞ )上的增函数, a, b∈ R,对命题“若a+ b≥0,则 f(a)+f(b)≥ f(- a)+ f(-b)”.(1)写出否命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解: (1) 否命题:已知函数 f(x)在 (- ∞,+ ∞ )上是增函数, a ,b ∈R ,若 a +b < 0,则 f(a)+ f (b)< f(- a)+ f(-b).该命题是真命题,证明以下:∵a + b <0,∴a <- b ,b <- a.又∵f(x)在 (-∞ ,+ ∞ )上是增函数.∴ f( a) < f(- b), f( b)<f(- a),∴f(a)+ f(b)< f(- a)+ f(-b),∴否命题为真命题.(2)逆否命题:已知函数f(x)在 (- ∞,+ ∞ )上是增函数, a , b ∈R ,若 f(a)+ f(b)< f( -a)+ f (- b),则 a + b < 0.真命题,可证明原命题为真来证明它.∵a + b ≥0,∴a ≥- b , b ≥- a ,∵f(x)在 (- ∞ ,+ ∞ )上是增函数,∴f(a) ≥f(- b), f(b)≥ f(- a),∴f(a)+ f(b)≥ f(- a)+ f(- b),故原命题为真命题,所以逆否命题为真命题.11.已知会合 A = y y =x 2 33-2x +1, x ∈4, 2,B = { x|x + m 2≥ 1} .若“ x ∈ A ”是“ x∈B ”的充足条件,务实数 m 的取值范围.解: y = x 2- 332+7 ,∵x ∈3, 2 ,∴7≤ y ≤ 2,∴A = 7 ≤ y ≤2 .2x + 1= x -416416y16由 x + m 2≥ 1,得 x ≥ 1- m 2,∴B ={ x|x ≥ 1- m 2} .∵“ x ∈A ” 是 “x ∈B ”的充足条件, ∴A? B ,∴1- m2≤167,解得 m ≥ 34或 m ≤- 34,故实数 m 的取值范围是-∞,-33,+ ∞.4 ∪ 412.已知两个对于 x 的一元二次方程 mx 2-4x + 4= 0 和 x 2- 4mx + 4m 2- 4m - 5=0,求双方程的根都是整数的充要条件.解: ∵mx 2- 4x + 4= 0 是一元二次方程,∴ m ≠ 0.又另一方程为 x 2- 4mx + 4m 2- 4m - 5=0,且双方程都要有实根,1= 16 1- m ≥ 0,解得 m ∈ -5, 1 .∴22- 4 4m 2- 4m - 5 ≥0, 4= 16m∵双方程的根都是整数,故其根的和与积也为整数,4m∈Z,5∴4m∈Z ,∴m 为 4 的约数.又∵ m∈ -4,1 ,∴m=- 1 或 1.4m2-4m- 5∈Z .当 m=- 1 时,第一个方程 x2+ 4x- 4= 0 的根为非整数;而当 m= 1 时,双方程的根均为整数,∴双方程的根均为整数的充要条件是m= 1.[ 冲击名校 ]1.对于函数 y=f(x),x∈ R,“ y= |f( x)|的图象对于 y 轴对称”是“ y=f(x)是奇函数”的 ()A .充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件分析:选 B y= |f(x)|的图象对于 y 轴对称,可是 y= f(x)不必定为奇函数,如取函数f( x)=x2,则函数 y= |x2|的图象对于y 轴对称,但函数 f(x)=x2是偶函数不是奇函数,即“ y=|f(x)|的图象对于y 轴对称” ? / “ y= f(x)是奇函数”;若 y=f(x)是奇函数,图象对于原点对称,所以 y= |f(x)|的图象对于y 轴对称,即“ y= f(x)是奇函数” ? “ y=|f(x)|的图象对于y 轴对称”,故应选 B.2.已知以下各组命题,此中 p 是 q 的充足必需条件的是 ( ) A . p:m≤- 2 或 m≥ 6; q: y= x2+mx+m+ 3 有两个不一样的零点f - xB.p:f x=1;q:y=f(x)是偶函数C.p: cos α= cos β;q: tan α=tan βD. p: A∩B= A; q: A? U, B? U , ?U B?? U A分析:选 D对于A,由y=x2+mx+m+3有两个不一样的零点,可得=m2-4(m+3)>0,进而可得m<- 2 或 m>6.所以 p 是 q 的必需不充足条件;f- x对于 B ,由f x=1? f(-x)=f(x)? y=f(x)是偶函数,但由y= f(x)是偶函数不可以推出f- x= 1,比如函数f(x)= 0,所以 p 是 q 的充足不用要条件;f x对于 C,当 cos α=cos β= 0 时,不存在tan α= tan β,反之也不建立,所以p 是 q 的既不充足也不用要条件;对于 D ,由 A∩ B= A,知 A? B,所以 ?U B?? U A;反之,由 ?U B?? U A,知 A? B,即 A∩ B= A.所以 p? q.综上所述, p 是 q 的充足必需条件的是 D.[ 高频转动 ]1.已知全集 U =R,会合 A= { x|x2- 3x-4> 0} ,B= { x|2x> 8} ,那么会合 (?U A) ∩B= ()A . { x|3< x<4}B. { x|x> 4}C.{ x|3< x≤ 4}D. { x|3≤ x≤ 4}分析:选 C A= { x|x2- 3x-4> 0} = { x|x<- 1 或 x>4} ,所以 ?U A= { x|-1≤ x≤ 4} ,又B= { x|2x> 8} = { x|x> 3} ,所以 ( ?U A)∩ B= { x|3<x≤ 4} .2.对于随意的两个正数m, n,定义运算⊙:当m, n 都为偶数或都为奇数时,m⊙ n=m+n;当 m, n 为一奇一偶时, m⊙ n= mn.设会合 A= {( a, b)|a⊙b= 6, a,b∈ N* } ,则2会合 A 中的元素个数为 ________.分析: (1)当 a,b 都为偶数或都为奇数时,a+ b= 6? a+ b= 12,即 2+10= 4+ 8= 6+ 6 2=1+ 11= 3+ 9= 5+ 7=12,故切合题意的点(a, b)有 2×5+ 1= 11 个.(2)当 a, b 为一奇一偶时,ab= 6? ab= 36,即 1×36= 3× 12= 4× 9= 36,故切合题意的点 (a, b)有 2× 3= 6 个.综上可知,会合 A 中的元素共有17 个.答案: 17。
第二节命题及其关系、充分条件与必要条件【最新考纲】 1.理解命题的概念,了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解充分条件、必要条件与充要条件的含义.1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇔q,那么p与q互为充要条件.(3)如果p⇒/ q,且q ⇒/ p,则p是q的既不充分也不必要条件.4.集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件;(4)若A B,且B A,则p是q的既不充分也不必要条件.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)语句x2-3x+2=0是命题.()(2)命题“若p,则q”的否命题是“若p,则綈q”.()(3)命题“如果p不成立,则q不成立”等价于“如果q成立,则p成立”.()(4)“p是q的充分不必要条件”与“p的充分不必要条件是q”表达的意义相同.()解析:(1)变量x没有赋值,无法判断语句的真假,故不是命题.(2)若“p,则q”的否命题是“若綈p,则綈q”.(3)一个命题与其逆否命题同真假.(4)p是q的充分不必要条件是指p⇒q且q⇒/ p;p的充分不必要条件是q ,是指q ⇒p 且p ⇒/ q ,因此它们表达的意义不同.答案:(1)× (2)× (3)√ (4)×2.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4解析:命题的条件是p :α=π4,结论是q :tan α=1.由命题的四种形式,可知命题“若p ,则q ”的逆否命题是“若綈q ,则綈p ”,显然綈q :tan α≠1,綈p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”. 答案:C3.(2015·重庆卷)“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:求出方程x 2-2x +1=0的实数根后再作判断.因为x 2-2x +1=0有两个相等的实数根,为x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.答案:A4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中假命题的个数为()A.1B.2 C.3D.4解析:原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a>-3”是假命题,从而其否命题也是假命题.所以假命题的个数为2个.答案:B5.(2014·广东卷)在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件解析:由正弦定理asin A=bsin B=2R(R为三角形外接圆半径)得,a=2R sin A,b=2R sin B,故a≤b⇔2R sin A≤2R sin B⇔sin A≤sin B.答案:A一个区别“A是B的充分不必要条件”中,A是条件,B是结论;“A的充分不必要条件是B”中,B是条件,A是结论.在进行充分、必要条件的判断中,要注意这两种说法的区别.两条规律1.逆命题与否命题互为逆否命题;2.互为逆否命题的两个命题同真假.三种方法充分条件、必要条件的判断方法1.定义法:直接判断“若p,则q”、“若q,则p”的真假.并注意和图示相结合,例如“p⇒q”为真,则p是q的充分条件.2.等价法:利用p⇒q与綈q⇒綈p,q⇒p与綈p⇒綈q,p⇔q与綈q⇔綈p的等价关系.对于条件或结论是否定式的命题,一般运用等价法.3.集合法:设集合A={x|x满足p},B={x|x满足q},若A⊆B,则p是q的充分条件或q是p的必要条件;若A=B,则p是q的充要条件.一、选择题1.(2015·安徽卷)设p:x<3,q:-1<x<3,则p是q成立的() A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:将p,q对应的集合在数轴上表示出来如图所示,易知,当p成立时,q不一定成立;当q成立时,p一定成立,故p是q成立的必要不充分条件.答案:C2.(2015·山东卷)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:根据逆否命题的定义,命题“若m>0,则方程x2+x-m =0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案:D3.已知条件p:x≤1,条件q:x2-x>0,则p是綈q成立的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2-x>0得x<0或x>1,所以綈q:0≤x≤1,由{x|0≤x≤1}{x|x≤1}知,p是綈q的必要不充分条件.答案:B4.已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:A∩B={4}⇒m2+1=4⇒m=±3,故“m=3”是“A∩B={4}”的充分不必要条件.答案:A5.已知p:x≥k,q:(x+1)(2-x)<0,如果p是q的充分不必要条件,则k的取值范围是()A.[2,+∞) B.(2,+∞)C.[1,+∞) D.(-∞,-1]解析:由q:(x+1)(2-x)<0,得x<-1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2,+∞).答案:B6.(2015·陕西卷)“sinα=cosα”是“cos 2α=0”的() A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:先将cos2α=0等价转化,再利用充分条件、必要条件的定义进行判断.cos 2α=0等价于cos2α-sin2α=0,即cosα=±sinα.由cos α=sinα可得到cos 2α=0,反之不成立.答案:A二、填空题7.已知a,b,c都是实数,则在命题“若a>b,则ac2>bc2”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是________.解析:由a>b⇒/ ac2>bc2,但ac2>bc2⇒a>b,故原命题是假命题,逆命题是真命题,从而逆否命题是假命题,否命题是真命题.答案:28.“m<14”是“一元二次方程x2+x+m=0有实数解”的________条件.解析:x2+x+m=0有实数解等价于Δ=1-4m≥0,即m≤14,因为m<14⇒m≤14,反之不成立.故“m<14”是“一元二次方程x2+x+m=0有实数解”的充分不必要条件.答案:充分不必要9.已知集合A={x|y=lg(4-x),集合B={x|x<a},若“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是________.解析:A={x|x<4},由题意知A B,所以a>4.答案:(4,+∞)三、解答题10.已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.写出否命题,判断其真假,并证明你的结论.解:否命题:已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).该命题是真命题,证明如下:∵a +b <0,∴a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数.∴f (a )<f (-b ),f (b )<f (-a ),因此f (a )+f (b )<f (-a )+f (-b ),∴否命题为真命题.11.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,求实数m 的取值范围.解:由已知易得{x|x 2-2x -3>0} {x|x <m -1或x >m +1},又{x|x 2-2x -3>0}={x|x <-1或x >3},∴⎩⎪⎨⎪⎧-1≤m -1m +1<3或⎩⎪⎨⎪⎧-1<m -1m +1≤3,∴0≤m ≤2. 故实数m 的取值范围是[0,2]. 古今中外有学问的人,有成就的人,总是十分注意积累的。
命题及其关系1.命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.注:判断一个语句是不是命题的三个关键点(1)一般来说,陈述句才是命题,祈使句、疑问句、感叹句等都不是命题.(2)语句表述的结构可以判断真假,含义模糊不清,无法判断真假的语句不是命题.(3)对于含有变量的语句,要注意根据变量的取值范围,看能否判断真假,若能,就是命题;否则就不是命题.2、命题分类:真命题:可以判断为真的语句;假命题:可以判断为假的语句。
注:命题真假的判断(1)判定一个命题是真命题,要经过证明.(2)判定一个命题是假命题,只需举一个反例.3、命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.4、命题的形式:“若p,则q”或者“如果p,那么q”注:“若p则q”形式的命题的书写(1)了解命题表示的判断,明确与判断有关的条件与结论。
(2)对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句, 确定条件与结论。
如命题:“垂直于同一条直线的两个平面平行”。
写成“若p则q”的形式为:若两个平面垂直于同一条直线,则这两个平面平行。
5、四种命题(1)互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.(2)互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题.(3)互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题.(4)四种命题的形式原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.(5)一些常见的结论的否定形式原词语否定词原词语否定词等于不等于任意的某个是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有n个至多有(n-1)个小于大于或等于至多有n个至少有(n+1)个对所有x,成立存在某x,不成立对任何x,不成立存在某x,成立所有的某些6、四种命题间的相互关系7、四种命题之间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真真假假假假四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.注:⑴互为逆否的一对命题,同真或同假。
命题及其关系知识点:1. 命题:1.1 概念:用语言、符号或式子表达的,可以判断真假的陈述句 1.2 分类:真命题 假命题 1.3 关系: 原命题逆命题:对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题。
若原命题为“若p,则q”,它的逆命题为“若q ,则p”否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题 若原命题为“若p ,则q”,则它的否命题为“若 p ,则 q” 逆否命题:对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题若原命题为“若 ,则 ”,则它的逆否命题为“若 ,则 ” 1,4 四种命题的真假性:(有且仅有一下四种情况)原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 假 假假假假规律:1)两个命题互为逆否命题,它们有相同的真假性2)两个命题为互逆命题或互否命题,它们的真假性没有关系2. 充分必要条件: 2。
1 概念:若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).全称量词:“∀” 短语“对所有的"、“对任意一个”在逻辑中通常称为全称量词 存在量词:“∃" 短语“存在一个”、“至少有一个"在逻辑中通常称为存在量词 全称命题:含有全称量词的命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ” 特称命题:含有特称量词的命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.2。
2 命题之间关系: 1)“且” p q ∧ 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 2)“或" p q ∨当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题; 当p 、q 两个命题都是假命题时,p q ∨是假命题 3)“非” p ⌝若p 是真命题,则p ⌝必是假命题若p 是假命题,则p ⌝必是真命题2。