高考数学重点难点复习(31):数学归纳法解题
- 格式:doc
- 大小:120.00 KB
- 文档页数:8
高考数学中的数学归纳法及应用在高考数学中,数学归纳法是一个重要的概念,它被广泛应用于各种数学问题的解决和证明,特别是那些与自然数和整数相关的问题。
在本文中,我们将主要讨论高考数学中的数学归纳法及其应用。
1. 数学归纳法的基本原理数学归纳法是一种数学推理方法,通过一个已知的命题的真实性,证明其对于所有的自然数都成立。
数学归纳法的基本步骤包括以下三个部分:第一步,证明基本情况,即证明所要证明的命题在某个整数上成立。
这个整数一般是0或1,有时也可以是其他的整数。
第二步,证明归纳步骤,即证明如果命题在某个整数上成立,那么它在下一个整数上也会成立。
第三步,结论,即由前两步推出所要证明的命题对所有的自然数都成立。
2. 数学归纳法的应用数学归纳法在高考数学中的应用非常广泛,以下是一些常见的应用:2.1. 计算等差数列的和等差数列的和问题,就可以用数学归纳法来推导出通用公式。
具体步骤如下:首先,我们用初中阶段所学的方法,求出等差数列前n项和的通式Sn。
S1 = a1 (n=1时,Sn=a1)S2 = a1 + a2 (n=2时,Sn=a1+a2)S3 = a1 + a2 + a3 (n=3时,Sn=a1+a2+a3)……Sn = a1 + a2 + …… + an我们通过数学归纳法来推导出通用公式:证明基本情况,当n=1 时,Sn=a1 成立。
证明归纳步骤:假设当n = k(k≥1)时,Sn = a1 + a2 + …… + ak 成立。
即证明当n=k+1 时,Sn=a1+a2+……+ak+ak+1 成立。
即结论:对于所有的自然数n,等差数列的前n项和为Sn = n[a1 + an] / 2。
2.2. 证明不等式数学归纳法也可以用于证明不等式的真实性。
如果某个命题的成立可以从另一个命题的成立推导出来,而这两个命题都可以用数学归纳法进行证明,那么我们可以通过这两个命题的联合证明,来证明原来的不等式。
例如,我们可以用数学归纳法证明n ≥ 3 时,2^n > n^2。
高中数学一轮复习方法之数学归纳法2021高考数学的复习一定要有好的方法,以下是高中数学一轮复习方法,请考生学习。
数学归纳是一种有专门事例导出一样原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只依照一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不承诺的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础,第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判定命题的正确性能否由专门推广到一样,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤紧密相关,缺一不可,完成了这两步,就能够确信对任何自然数(或nn且nN)结论都正确。
由这两步能够看出,数学归纳法是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,能够证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
常见数学归纳法及其证明方法(一)第一数学归纳法一样地,证明一个与正整数n有关的命题,有如下步骤(1)证明当n取第一个值时命题成立,关于一样数列取值为1,但也有专门情形,(2)假设当n=k(k[n的第一个值],k为自然数)时命题成立,证明当n=k +1时命题也成立。
(二)第二数学归纳法关于某个与自然数有关的命题,(1)验证n=n0时P(n)成立,(2)假设no综合(1)(2)对一切自然数n(n0),命题P(n)都成立,(三)螺旋式数学归纳法P(n),Q(n)为两个与自然数有关的命题,假如(1)P(n0)成立,(2)假设P(k)(kn0)成立,能推出Q(k)成立,假设Q(k)成立,能推出P(k +1)成立,综合(1)(2),关于一切自然数n(n0),P(n),Q(n)都成立,(四)倒推数学归纳法(又名反向数学归纳法)(1)关于无穷多个自然数命题P(n)成立,(2)假设P(k+1)成立,并在此基础上推出P(k)成立,综合(1)(2),对一切自然数n(n0),命题P(n)都成立,总而言之:归纳法是由一系列有限的专门事例得出一样结论的推理方法。
数学归纳法在解题中的技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体内容转变方法存有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段探讨法:适用于于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于于存有显著几何意义的情况。
2、因式分解根据项数挑选方法和按照通常步骤就是顺利进行因式分解的关键技巧。
因式分解的通常步骤就是:提取公因式;选择用公式;十字相乘法;分组分解法;拆项添项法;3、分体式方法。
利用全然平方公式把一个式子或部分化成全然平方式就是分体式方法,它就是数学中的关键方法和技巧。
分体式方法的主要根据存有:4、换元法。
解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、未定系数法。
未定系数法就是在未知对象形式的条件下求对象的一种方法。
适用于于求点的座标、函数解析式、曲线方程等关键问题的化解。
其解题步骤就是:①设立②列于③求解④写下6、复杂代数等式。
复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最了不起的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)谋值域范围的思路列于欲求范围字母的不等式或不等式组8、化简二次根式。
基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法存有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)特别注意:当表达式的代数式就是字母的“等距式”时,通常可以化成字母“和与内积”的形式,从而用“和内积代入法”表达式。
11、解含参方程。
方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型解(2)根据需要讨论(3)分类写下结论12、恒相等成立的有用条件(1)ax+b=0对于任一x都设立关于x的方程ax+b=0存有无数个求解a=0且b=0。
高考数学之数学归纳法运用数学归纳法证明问题时,关键是n =k +1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n 有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
Ⅰ、再现性题组:1. 用数学归纳法证明(n +1)(n +2)…(n +n)=2n·1·2…(2n -1) (n ∈N ),从“k 到k +1”,左端需乘的代数式为_____。
A. 2k +1 B. 2(2k +1) C. 211k k ++ D. 231k k ++ 2. 用数学归纳法证明1+12+13+…+121n -<n (n>1)时,由n =k (k>1)不等式成立,推证n =k +1时,左边应增加的代数式的个数是_____。
A. 2k -1B. 2k -1C. 2kD. 2k+1 3. 某个命题与自然数n 有关,若n =k (k ∈N)时该命题成立,那么可推得n =k +1时该命题也成立。
现已知当n =5时该命题不成立,那么可推得______。
(94年上海高考)A.当n =6时该命题不成立B.当n =6时该命题成立C.当n =4时该命题不成立D.当n =4时该命题成立4. 数列{a n }中,已知a 1=1,当n ≥2时a n =a n -1+2n -1,依次计算a 2、a 3、a 4后,猜想a n 的表达式是_____。
A. 3n -2B. n 2C. 3n -1 D. 4n -3 5. 用数学归纳法证明342n ++521n + (n ∈N)能被14整除,当n =k +1时对于式子3412()k +++5211()k ++应变形为_______________________。
6. 设k 棱柱有f(k)个对角面,则k +1棱柱对角面的个数为f(k+1)=f(k)+_________。
数学归纳法典型例题一. 教学内容:高三复习专题:数学归纳法二. 教学目的掌握数学归纳法的原理及应用三. 教学重点、难点数学归纳法的原理及应用四. 知识分析【知识梳理】数学归纳法是证明关于正整数 n的命题的一种方法,在高等数学中有着重要的用途,因而成为高考的热点之一。
近几年的高考试题,不但要求能用数学归纳法去证明现代的结论,而且加强了对于不完全归纳法应用的考查,既要求归纳发现结论,又要求能证明结论的正确性,因此,初步形成“观察―-归纳―-猜想 ―-证明”的思维模式,就显得特别重要。
一般地,证明一个与正整数 n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当 n 取第一个值 n = n 0 时命题成立;(2)(归纳递推)假设 n = k(时命题也成立。
只要完成这两个步骤,就可以断定命题对从上述证明方法叫做数学归纳法。
)时命题成立,证明当开始的所有正整数 n 都成立。
数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,即只要命题对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。
【要点解析】 1、用数学归纳法证明有关问题的关键在第二步,即 n=k+1时为什么成立,n =k+1 时成立是利用假设 n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出 n=k+1时成立,而不是直接代入,否则 n=k+1 时也成假设了,命题并没有得到证明。
用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。
2、运用数学归纳法时易犯的错误(1)对项数估算的错误,特别是寻找 n=k 与n=k+1 的关系时,项数发生什么变化被弄错。
第3讲数学归纳法一、选择题1. 利用数学归纳法证明“1+a+a2+…+a n+1=1-a n+21-a(a≠1,n∈N*)”时,在验证n=1成立时,左边应该是( )A 1B 1+aC 1+a+a2D 1+a+a2+a3解析当n=1时,左边=1+a+a2,故选C.答案 C2.用数学归纳法证明命题“当n是正奇数时,x n+y n能被x+y整除”,在第二步时,正确的证法是().A.假设n=k(k∈N+),证明n=k+1命题成立B.假设n=k(k是正奇数),证明n=k+1命题成立C.假设n=2k+1(k∈N+),证明n=k+1命题成立D.假设n=k(k是正奇数),证明n=k+2命题成立解析A、B、C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数.答案 D3.用数学归纳法证明1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n,则当n=k+1时,左端应在n=k的基础上加上().A.12k+2B.-12k+2C.12k+1-12k+2D.12k+1+12k+2解析∵当n=k时,左侧=1-12+13-14+…+12k-1-12k,当n=k+1时,左侧=1-12+13-14+…+12k-1-12k+12k+1-12k+2.答案 C4.对于不等式n2+n<n+1(n∈N*),某同学用数学归纳法的证明过程如下:(1)当n=1时,12+1<1+1,不等式成立.(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即k2+k<k+1,则当n=k+1时,(k+1)2+(k+1)=k2+3k+2<(k2+3k+2)+(k+2)=(k+2)2=(k+1)+1,所以当n=k+1时,不等式成立,则上述证法().A.过程全部正确B.n=1验得不正确C.归纳假设不正确D.从n=k到n=k+1的推理不正确解析在n=k+1时,没有应用n=k时的假设,故推理错误.答案 D5.下列代数式(其中k∈N*)能被9整除的是( )A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析 (1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任何k∈N*都成立.答案 D6.已知1+2×3+3×32+4+33+…+n×3n-1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为().A.a=12,b=c=14B.a=b=c=14C.a=0,b=c=14D.不存在这样的a、b、c解析∵等式对一切n∈N*均成立,∴n=1,2,3时等式成立,即⎩⎨⎧1=3(a -b )+c ,1+2×3=32(2a -b )+c ,1+2×3+3×32=33(3a -b )+c ,整理得⎩⎨⎧3a -3b +c =1,18a -9b +c =7,81a -27b +c =34,解得a =12,b =c =14. 答案 A 二、填空题7.用数学归纳法证明不等式1n +1+1n +2+…+1n +n>1324的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是________. 解析 不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2),故填1(2k +1)(2k +2).答案 1(2k +1)(2k +2)8. 用数学归纳法证明:121×3+223×5+…+n 2(2n -1)(2n +1)=n(n +1)2(2n +1);当推证当n =k +1等式也成立时,用上归纳假设后需要证明的等式是 . 解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3) =k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)故只需证明k(k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可.答案k(k+1)2(2k+1)+(k+1)2(2k+1)(2k+3)=(k+1)(k+2)2(2k+3)9.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是________.解析本题规律:2=1+1;3=1+2=2+1;4=1+3=2+2=3+1;5=1+4=2+3=3+2=4+1;…;一个整数n所拥有数对为(n-1)对.设1+2+3+…+(n-1)=60,∴(n-1)n2=60,∴n=11时还多5对数,且这5对数和都为12,12=1+11=2+10=3+9=4+8=5+7,∴第60个数对为(5,7).答案(5,7)10.在数列{a n}中,a1=13且S n=n(2n-1)a n,通过计算a2,a3,a4,猜想a n的表达式是________.解析当n=2时,a1+a2=6a2,即a2=15a1=115;当n=3时,a1+a2+a3=15a3,即a3=114(a1+a2)=135;当n=4时,a1+a2+a3+a4=28a4,即a4=127(a1+a2+a3)=163.∴a1=13=11×3,a2=115=13×5,a3=135=15×7,a4=17×9,故猜想a n=1n-n+.答案a n=1n-n+三、解答题11.已知S n =1+12+13+…+1n (n >1,n ∈N *),求证:S 2n >1+n2(n ≥2,n ∈N *). 证明 (1)当n =2时,S 2n =S 4=1+12+13+14=2512>1+22,即n =2时命题成立; (2)假设当n =k (k ≥2,k ∈N *)时命题成立,即S 2k =1+12+13+…+12k >1+k 2, 则当n =k +1时,S 2k +1=1+12+13+…+12k +12k +1+…+12k +1>1+k 2+12k +1+12k +2+…+12k +1>1+k 2+2k 2k +2k =1+k 2+12=1+k +12, 故当n =k +1时,命题成立.由(1)和(2)可知,对n ≥2,n ∈N *.不等式S 2n >1+n2都成立.12.已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n +3=a n +2(n ∈N *),与数列{b n }:b 1=1,b 2=0,b 3=-1,b 4=0,b n +4=b n (n ∈N *).记T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n .(1)若a 1+a 2+a 3+…+a 12=64,求r 的值; (2)求证:T 12n =-4n (n ∈N *).(1)解 a 1+a 2+a 3+…+a 12=1+2+r +3+4+(r +2)+5+6+(r +4)+7+8+(r +6)=48+4r . ∵48+4r =64,∴r =4.(2)证明 用数学归纳法证明:当n ∈N *时,T 12n =-4n .①当n =1时,T 12=a 1-a 3+a 5-a 7+a 9-a 11=-4,故等式成立. ②假设n =k 时等式成立,即T 12k =-4k ,那么当n =k +1时,T 12(k +1)=T 12k +a 12k +1-a 12k +3+a 12k +5-a 12k +7+a 12k +9-a 12k +11=-4k +(8k +1)-(8k +r )+(8k +4)-(8k +5)+(8k +r +4)-(8k +8)=-4k -4=-4(k +1),等式也成立.根据①和②可以断定:当n ∈N *时,T 12n =-4n .13.设数列{a n }满足a 1=3,a n +1=a 2n -2na n +2,n =1,2,3,…(1)求a 2,a 3,a 4的值,并猜想数列{a n }的通项公式(不需证明);(2)记S n 为数列{a n }的前n 项和,试求使得S n <2n 成立的最小正整数n ,并给出证明.解(1)a2=5,a3=7,a4=9,猜想a n=2n+1.(2)S n=n(3+2n+1)2=n2+2n,使得Sn<2n成立的最小正整数n=6.下证:n≥6(n∈N*)时都有2n>n2+2n.①n=6时,26>62+2×6,即64>48成立;②假设n=k(k≥6,k∈N*)时,2k>k2+2k成立,那么2k+1=2·2k>2(k2+2k)=k2+2k+k2+2k>k2+2k+3+2k=(k+1)2+2(k+1),即n=k+1时,不等式成立;由①、②可得,对于所有的n≥6(n∈N*)都有2n>n2+2n成立.14.数列{x n}满足x1=0,x n+1=-x2n+x n+c(n∈N*).(1)证明:{x n}是递减数列的充分必要条件是c<0;(2)求c的取值范围,使{x n}是递增数列.(1)证明先证充分性,若c<0,由于x n+1=-x2n+x n+c≤x n+c<x n,故{x n}是递减数列;再证必要性,若{x n}是递减数列,则由x2<x1可得c<0.(2)解①假设{x n}是递增数列.由x1=0,得x2=c,x3=-c2+2c.由x1<x2<x3,得0<c<1.由x n<x n+1=-x2n+x n+c知,对任意n≥1都有x n<c,①注意到c-x n+1=x2n-x n-c+c=(1-c-x n)(c-x n),②由①式和②式可得1-c-x n>0,即x n<1-c.由②式和x n≥0还可得,对任意n≥1都有c-x n+1≤(1-c)(c-x n).③反复运用③式,得c-x n≤(1-c)n-1(c-x1)<(1-c)n-1,x n<1-c和c-x n<(1-c)n-1两式相加,知2c-1<(1-c)n-1对任意n≥1成立.根据指数函数y=(1-c)n的性质,得2c-1≤0,c≤14,故0<c≤14.②若0<c ≤14,要证数列{x n }为递增数列,即x n +1-x n =-x 2n +c >0,即证x n <c 对任意n ≥1成立.下面用数学归纳法证明当0<c ≤14时,x n <c 对任意n ≥1成立. (i)当n =1时,x 1=0<c ≤12,结论成立. (ii)假设当n =k (k ∈N *)时,结论成立,即x n <c .因为函数f (x )=-x 2+x +c 在区间⎝ ⎛⎦⎥⎤-∞,12内单调递增,所以x k +1=f (x k )<f (c )=c ,这就是说当n =k +1时,结论也成立. 故x n <c 对任意n ≥1成立.因此,x n +1=x n -x 2n +c >x n ,即{x n }是递增数列.由①②知,使得数列{x n }单调递增的c 的范围是⎝ ⎛⎦⎥⎤0,14.。
【数学】2013届高考复习专题数学归纳法解题举例归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有)时着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可且n∈N)结论都正确”。
由这两步可以看出,数学归纳法以断定“对任何自然数(或n≥n是由递推实现归纳的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
一、运用数学归纳法证明整除性问题例1.当n∈N,求证:11n+1+122n-1能被133整除。
证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。
命题成立。
(2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,根据归纳假设,11k+1+122k-1能被133整除。
又能被133整除。
所以,11(k+1)+122(k+1)-1能被133整除,即n=k+1时,命题成立。
由(1),(2)命题时n∈N都成立。
点评:同数学归纳法证明有关数或式的整除问题时,要充分利用整除的性质,若干个数(或整式)都能被某一个数(或整式)整除,则其和、差、积也能被这个数(或整式)整除。
高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。
数学归纳法解题 数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法. ●难点磁场
(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=12)1(nn(an2+bn+c). ●案例探究 [例1]试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn. 命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目. 知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤. 错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak·c+ck·a.
证明:(1)设a、b、c为等比数列,a=qb,c=bq(q>0且q≠1) ∴an+cn=nnqb+bnqn=bn(nq1+qn)>2bn (2)设a、b、c为等差数列,则2b=a+c猜想2nnca>(2ca)n(n≥2且n∈N*) 下面用数学归纳法证明:
①当n=2时,由2(a2+c2)>(a+c)2,∴222)2(2caca ②设n=k时成立,即,)2(2kkkcaca 则当n=k+1时,41211kkca (ak+1+ck+1+ak+1+ck+1) >41(ak+1+ck+1+ak·c+ck·a)=41(ak+ck)(a+c) >(2ca)k·(2ca)=(2ca)k+1 [例2]在数列{an}中,a1=1,当n≥2时,an,Sn,Sn-21成等比数列. (1)求a2,a3,a4,并推出an的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{an}所有项的和. 命题意图:本题考查了数列、数学归纳法、数列极限等基础知识. 知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.
错解分析:(2)中,Sk=-321k应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{nS1}是以{11S}为首项,21为公差的等差数列,进而求得通项公式.
解:∵an,Sn,Sn-21成等比数列,∴Sn2=an·(Sn-21)(n≥2) (*) (1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-32 由a1=1,a2=-32,S3=31+a3代入(*)式得:a3=-152
同理可得:a4=-352,由此可推出:an=)1( )12)(32(2)1( 1nnnn (2)①当n=1,2,3,4时,由(*)知猜想成立.
②假设n=k(k≥2)时,ak=-)12)(32(2kk成立 故Sk2=-)12)(32(2kk·(Sk-21) ∴(2k-3)(2k-1)Sk2+2Sk-1=0
∴Sk=321,121kSkk (舍) 由Sk+12=ak+1·(Sk+1-21),得(Sk+ak+1)2=ak+1(ak+1+Sk-21)
.1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即knkkaakaakaak
kkkkkk 由①②知,an=)2()12)(32(2)1(1nnnn对一切n∈N成立. (3)由(2)得数列前n项和Sn=121n,∴S=limnSn=0. ●锦囊妙记 (1)数学归纳法的基本形式 设P(n)是关于自然数n的命题,若 1°P(n0)成立(奠基) 2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立. (2)数学归纳法的应用 具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等. ●歼灭难点训练 一、选择题 1.(★★★★★)已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为( ) A.30 B.26 C.36 D.6 2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证( ) A.n=1 B.n=2 C.n=3 D.n=4 二、填空题
3.(★★★★★)观察下列式子:474131211,3531211,2321122222…则可归纳出_________.
4.(★★★★)已知a1=21,an+1=33nnaa,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________. 三、解答题
5.(★★★★)用数学归纳法证明412n+3n+2能被13整除,其中n∈N*.
6.(★★★★)若n为大于1的自然数,求证:2413212111nnn. 7.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145. (1)求数列{bn}的通项公式bn;
(2)设数列{an}的通项an=loga(1+nb1)(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与31logabn+1的大小,并证明你的结论. 8.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an·an+1=-qn,求an表达式,
又如果limnS2n<3,求q的取值范围. 参考答案 难点磁场
解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有10113 3970)24(2122)(614cbacbacbacba 于是,对n=1,2,3下面等式成立
1·22+2·32+…+n(n+1)2=)10113(12)1(2nnnn 记Sn=1·22+2·32+…+n(n+1)2
设n=k时上式成立,即Sk=12)1(kk (3k2+11k+10) 那么Sk+1=Sk+(k+1)(k+2)2=2)1(kk(k+2)(3k+5)+(k+1)(k+2)2 =12)2)(1(kk (3k2+5k+12k+24) =12)2)(1(kk[3(k+1)2+11(k+1)+10] 也就是说,等式对n=k+1也成立. 综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立. 歼灭难点训练 一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36 ∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除. 证明:n=1,2时,由上得证,设n=k(k≥2)时, f(k)=(2k+7)·3k+9能被36整除,则n=k+1时, f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k =(6k+27)·3k-(2k+7)·3k =(4k+20)·3k=36(k+5)·3k-2(k≥2) f(k+1)能被36整除
∵f(1)不能被大于36的数整除,∴所求最大的m值等于36. 答案:C 2.解析:由题意知n≥3,∴应验证n=3. 答案:C
二、3.解析:11112)11(112321122即 12122)12(1)11(11,35312112222即
112)1(131211222nnn归纳为
(n∈N*)
112)1(131211:222nnn答案
(n∈N*)
53,553103,54393,5338333,5237332121333:.454223112naaaaaaaaan猜想
同理解析
73:答案、83、93、103 53n 三、5.证明:(1)当n=1时,42×1+1+31+2=91能被13整除 (2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时, 42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3 =42k+1·13+3·(42k+1+3k+2) ∵42k+1·13能被13整除,42k+1+3k+2能被13整除 ∴当n=k+1时也成立. 由①②知,当n∈N*时,42n+1+3n+2能被13整除.
6.证明:(1)当n=2时,2413127221121 (2)假设当n=k时成立,即2413212111kkk
2413)1)(12(21241322112124131122112124131111221121213121,1kkkkkkkkkkkkkkkn时则当
7.(1)解:设数列{bn}的公差为d,由题意得311452)110(10101111dbdbb,∴bn=3n-2 (2)证明:由bn=3n-2知
Sn=loga(1+1)+loga(1+41)+…+loga(1+231n)