整式的除法
- 格式:ppt
- 大小:1.31 MB
- 文档页数:26
整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
《整式的除法》习题一、选择题1.下列计算正确的是( )A.a 6÷a 2=a 3B.a +a 4=a 5C.(ab 3)2=a 2b 6D.a -(3b -a )=-3b2.计算:(-3b 3)2÷b 2的结果是( )A.-9b 4B.6b 4C.9b 3D.9b 43.“小马虎”在下面的计算中只做对一道题,你认为他做对的题目是( )A.(ab )2=ab 2B.(a 3)2=a 6C.a 6÷a 3=a 2D.a 3•a 4=a 124.下列计算结果为x 3y 4的式子是( )A.(x 3y 4)÷(xy )B.(x 2y 3)•(xy )C.(x 3y 2)•(xy 2)D.(-x 3y 3)÷(x 3y 2)5.已知(a 3b 6)÷(a 2b 2)=3,则a 2b 8的值等于( )A.6B.9C.12D.816.下列等式成立的是( )A.(3a 2+a )÷a =3aB.(2ax 2+a 2x )÷4ax =2x +4aC.(15a 2-10a )÷(-5)=3a +2D.(a 3+a 2)÷a =a 2+a7.下列各式是完全平方式的是() A 、412+-x x B 、241x + C 、22b ab a ++ D 、122-+x x 8.下列计算正确的是( ) A 、222)2)(2(y x y x y x -=+- B 、229)3)(3(y x y x y x -=+-C 、1625)54)(54(2+=---n n nD 、22))((m n n m n m -=+--- 二、填空题9.计算:(a 2b 3-a 2b 2)÷(ab )2=_____.10.七年级二班教室后墙上的“学习园地”是一个长方形,它的面积为6a 2-9ab +3a ,其中一边长为3a ,则这个“学习园地”的另一边长为_____.11.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是_____.12.计算:(6x 5y -3x 2)÷(-3x 2)=_____.13.若35,185==yx , 则y x 25-= 14.()()()()32223282y x x y x -⋅-⋅--= ; 15.若1004x y +=,2x y -=,则代数式22x y -的值是 。
整式的除法教案教案:教学目标:1. 理解整式的概念和性质。
2. 学会用多项式的除法求解问题。
3. 能够将整式除法的步骤清晰地表达出来。
教学准备:1. 教材:包含整式除法知识点的教科书。
2. 教具:黑板、白板、彩色粉笔/白板笔。
教学过程:引入新知识:1. 引导学生回顾一元多项式的定义,并让他们思考为什么要学习整式的除法。
2. 解释整式除法的意义:整式除法是将一个多项式作为被除数除以另一个多项式作为除数,得到商和余数的过程。
它有助于我们化简复杂的多项式,解决方程以及找到多项式的因式。
整式除法步骤的讲解:1. 将被除数与除数按次数高低排列,并对齐相同次数的项。
2. 判断最高次项的系数是否可以整除最高次项的系数。
a. 如果可以整除,将最高次项的系数相除,得到商的最高次项。
b. 如果不能整除,说明该项无法整除,商的最高次项为0。
3. 用商的最高次项乘以除数,并与被除数的最高次项相减,得到一个新的多项式。
4. 重复步骤2和步骤3,直到被除数的次数小于除数的次数为止。
5. 将每一步得到的商分别与前面的商相加得到最终商,将最后得到的多项式作为余数。
例题演练:1. 教师出示一个例子,对学生进行详细的分析解答。
2. 让学生在纸上尝试解答其他几个例题。
3. 随机选取几名学生上台演示解题过程,其他同学进行讨论和纠错。
巩固练习:让学生独立完成一些整式除法的练习题,然后互相交换答案进行互评。
拓展延伸:如果学生已经掌握了整式的除法,可以引导他们进行一些应用题,如解方程、找因式等。
同时,可以引入多项式的最大公因式和最小公倍式的概念和求解方法。
课堂总结:1. 复习整式的定义和性质。
2. 归纳整式除法的步骤。
3. 总结整式除法的应用。
作业布置:1. 让学生完成课后习题中与整式除法相关的题目。
2. 鼓励学生找到其他应用整式除法的例子,并进行解答。
教学反思:整式除法是一个相对复杂的概念,需要学生对多项式的基本操作有一定的掌握。
在教学过程中,要结合具体例子进行讲解,并给予足够的练习机会,帮助学生理解和掌握整式除法的步骤和方法。
七年级下册整式除法知识点整式除法是七年级下册数学中重要的知识点之一,它在数学中具有极其重要的位置。
整式除法是指将一个整式(多项式)除以另一个整式的运算,下面就来详细了解一下整式除法的知识点。
1. 什么是整式?整式是一类特殊的多项式,多项式是由常数和变量的积以及常数相加减的代数式组成的。
一个多项式中,如果每一项的次数都是一样的,那么这个多项式就是整式。
例如,2x^3-5x^2+3x-7就是一个整式,而3x+2xy-4不是整式。
整式有常数项、一次项、二次项等。
2. 整式的除法整式的除法就是将一个多项式除以另外一个多项式的运算。
除数和被除数一般都是整式,这是整式除法的基础。
整式除法的答案也是一个整式,即商式。
3. 整式的性质(1)整式除法满足唯一性,即对于任意的多项式f和g,存在唯一的商式q和余式r,使得f=gq+r,并且r的次数小于g的次数。
(2)整式除法满足可减性,即如果f=q1g+r1,g=q2h+r2,则f=(q1q2)h+(q2r1+r2)。
在整式的计算过程中,可用可减性使整个过程更加简单。
(3)整式的系数也可以是复数,例如,x^2+(2+3i)x-1除以x+1就是(x+1)+(2+2i)。
4. 整式的除法步骤(1)先将除数与被除数按照次数从高到低排列,确保计算的准确性。
(2)将被除数的最高次项除以除数的最高次项,得到商。
(3)将商乘以除数,然后减去被除数,得到余数。
(4)将余数再次除以除数,得到新的商。
(5)重复上述步骤,直到余数的次数小于等于除数的次数。
(6)最后的商即为整式的商式,而最后的余数即为整式的余式。
5. 一个简单的例子例如,将多项式f(x)=x^3+2x^2+3x+1除以g(x)=x+1。
(1)首先将f(x)和g(x)按照次数排列,得到f(x)=x^3+2x^2+3x+1,g(x)=x+1。
(2)将f(x)的最高次项x^3除以g(x)的最高次项x,得到商x^2。
(3)将x^2乘以g(x)得到x^3+x^2,然后减去f(x)得到x^2+x+1。
第8讲 整式的除法 在大多数科学中,后一代人往往撕毁了前一代人所建立的成就,但在数学中,每一代人都是在老的结构上建立新的成果。
——赫尔曼·汉克而 知识方法扫描整式的除法,包括单项式除以单项式,多项式除以单项式以及多项式除以多项式.像整数除法一样,一元多项式的除法,也有整除、商式、余式的概念.一般地,一个一元多项式f(x)除以另一个一元多项式g(x)时,总存在一个商式q(x)与一个余式r(x),使得f(x)=g(x)q(x)+r(x)成立,其中r(x)的次数小于g(x)的次数.特别地,当r(x)=0时,称f(x)能被g(x)整除或g(x)整除f(x).当除式是一次式时,有如下的结论:余数定理:多项式f(x)除以x-a 所得的余数等于f(a),因式定理:若多项式f(x)除以x-a 所得的余数f(a)=0, 则f(x)含有因式x-a. 经典例题解析例1.已知,63,43==y x 求y x y x --+2792的值解 y x y x --+2792=)(3)2(233y x y x --+=y x y x 33243333÷+÷=3324)3()3()3()(3y x y x ÷+÷=44÷62+43÷33=27200。
例2.已知,2)(,523)(223+=+-=x x g x x x f 求)(x f 除以)(x g 的商式)(x Q 和余式).(x R解 用竖式除法,有:所以有:.23)(-=x x Q .96)(+-=x x R例3.已知,0132=+-a a 求1825222345+-+-a a a a a 的值. 解法1 先做多项式除法)13()8252(22345+-÷-+-a a a a a a :a a a a a a a a a a 3)32)(13(82522322345-+++-=-+-∴.31,01322a a a a =+∴=+-原式=13)32)(13(2232+-+++-a a a a a a a a a 33-=.1-= 解法2 因,0132=+-a a 所以a a a a a a a a a a a a a a 3)393()3()262(8252232343452345-+-++-++-=-+- =a a a a a a a a a a 3)13(3)13()13(222223-+-++-++-=a 3-又 a a 312=+,于是原式=-1。
整式的除法教案教案主题:整式的除法教学目标:1. 理解整式的概念及特点;2. 掌握整式的除法方法;3. 能够用整式的除法解决实际问题。
教学重点:1. 整式的除法方法;2. 整式除法运算的实际应用。
教学难点:整式除法运算的实际应用。
教学准备:1. 整式除法运算的示例题目和解答;2. 合适的教学素材和多媒体设备。
教学过程:Step 1:导入新知识引导学生回顾代数式的概念和运算法则,并向学生引入整式的概念。
解释整式是由单项式相加或相减构成的代数式,并且每一项的指数和系数都可以是整数。
Step 2:整式的除法方法1. 回顾多项式的除法方法,强调重要概念:被除式、除式、商和余数。
2. 分步讲解整式的除法方法:a. 将除式和被除式按照降幂排列。
b. 用除数的最高次项除以被除式的最高次项,得到商式的最高次项。
c. 用得到的商式最高次项乘以除式,得到一个临时的结果。
d. 将临时结果与被除式相减,得到新的被除式。
e. 重复上述步骤,得到整个商式和余式。
Step 3:例题讲解在黑板上给出几个整式的除法示例题目,并一步一步解答。
Step 4:学生练习让学生在课堂上完成几个整式的除法练习题,以加深对整式的除法方法的理解。
Step 5:拓展应用引导学生通过实例,将整式的除法方法应用到实际问题中,如代数方程的解法等。
Step 6:课堂小结回顾整节课的内容,简要总结整式的概念和除法方法,强调实际应用。
Step 7:作业布置布置相关的作业,提醒学生巩固和加深对整式的除法方法的理解。
教学反思:本节课通过讲解整式的概念和除法方法,以及结合示例和实际问题的应用,帮助学生理解和掌握整式的除法运算。
在教学中要注重学生的参与和思考,通过互动和练习巩固知识的掌握,使学生能够运用所学知识解决实际问题。
同时,还可以通过多媒体设备和教学素材的使用,提高学生的学习兴趣和理解效果。
《【2 】整式的除法》习题一.选择题1.下列盘算准确的是()A.a6÷a2=a3B.a+a4=a5C.(ab3)2=a2b6D.a-(3b-a)=-3b2.盘算:(-3b3)2÷b2的成果是()A.-9b4B.6b4C.9b3D.9b43.“小纰漏”鄙人面的盘算中只做对一道题,你以为他做对的标题是() A.(ab)2=ab2B.(a3)2=a6C.a6÷a3=a2D.a3•a4=a124.下列盘算成果为x3y4的式子是()A.(x3y4)÷(xy)B.(x2y3)•(xy)C.(x3y2)•(xy2)D.(-x3y3)÷(x3y2)5.已知(a3b6)÷(a2b2)=3,则a2b8的值等于()A.6B.9C.12D.816.下列等式成立的是()A.(3a2+a)÷a=3aB.(2ax2+a2x)÷4ax=2x+4aC.(15a2-10a)÷(-5)=3a+2D.(a3+a2)÷a=a2+a二.填空题7.盘算:(a2b3-a2b2)÷(ab)2=_____.8.七年级二班教室后墙上的“进修场地”是一个长方形,它的面积为6a2-9ab+3a,个中一边长为3a,则这个“进修场地”的另一边长为_____.9.已知被除式为x3+3x2-1,商式是x,余式是-1,则除式是_____.10.盘算:(6x5y-3x2)÷(-3x2)=_____.三.解答题11.三峡一期工程停止后的当年发电量为5.5×109度,某市有10万户居平易近,若平均每户用电2.75×103度.那么三峡工程该年所发的电能供该市居平易近应用若干年?(成果用科学记数法表示)12.盘算.(1)(30x4-20x3+10x)÷10x(2)(32x3y3z+16x2y3z-8xyz)÷8xyz(3)(6a n+1-9a n+1+3a n-1)÷3a n-1.13.若(x m÷x2n)3÷x2m-n与2x3是同类项,且m+5n=13,求m2-25n的值.14.若n为正整数,且a2n=3,盘算(3a3n)2÷(27a4n)的值.15.一颗人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的几倍?参考答案一.选择题1.答案:C解析:【解答】 A.a6÷a2=a4,故本选项错误;B.a+a4=a5,不是同类项不能归并,故本选项错误;C.(ab3)2=a2b6,故本选项准确;D.a-(3b-a)=a-3b+a=2a-3b,故本选项错误.故选C.【剖析】依据同底数幂的除法,底数不变指数相减;归并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分离乘方,再把所得的幂相乘,对各选项盘算后应用消除法求解.2.答案:D解析:【解答】(-3b3)2÷b2=9b6÷b2=9b4.故选D.【剖析】依据积的乘方,等于把积中的每一个因式分离乘方,再把所得的幂相乘;单项式相除,把系数与同底数幂分离相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,盘算即可.3.答案:B解析:【解答】A.应为(ab)2=a2b2,故本选项错误;B.(a3)2=a6,准确;C.应为a6÷a3=a3,故本选项错误;D.应为a3•a4=a7,故本选项错误.故选B.【剖析】依据积的乘方,等于把积的每一个因式分离乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;对各选项剖析断定后应用消除法求解.4.答案:B解析:【解答】A.(x3y4)÷(xy)=x2y3,本选项不合题意;B.(x2y3)•(xy)=x3y4,本选项相符题意;C.(x3y2)•(xy2)=x4y4,本选项不合题意;D.(-x3y3)÷(x3y2)=-y,本选项不合题意, 故选B【剖析】应用单项式除单项式轨则,以及单项式乘单项式轨则盘算得到成果,即可做出断定.5.答案:B解析:【解答】∵(a3b6)÷(a2b2)=3, 即ab4=3, ∴a2b8=ab4•ab4=32=9.故选B.【剖析】单项式相除,把系数和同底数幂分离相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一路作为商的一个因式,应用这个轨则先算出ab4的值,再平方.6.答案:D解析:【解答】 A.(3a2+a)÷a=3a+1,本选项错误;B.(2ax2+a2x)÷4ax=x+a,本选项错误;C.(15a2-10a)÷(-5)=-3a2+2a,本选项错误;D.(a3+a2)÷a=a2+a,本选项准确, 故选D【剖析】A.应用多项式除以单项式轨则盘算得到成果,即可做出断定;B.应用多项式除以单项式轨则盘算得到成果,即可做出断定;C.应用多项式除以单项式轨则盘算得到成果,即可做出断定;D.应用多项式除以单项式轨则盘算得到成果,即可做出断定.二.填空题7.答案:b-1解析:【解答】(a2b3-a2b2)÷(ab)2=a2b3÷a2b2-a2b2÷a2b2=b-1.【剖析】本题是整式的除法,相除时可以依据系数与系数相除,雷同的字母相除的原则进行,对于多项式除以单项式可所以将多项式中的每一个项分离除以单项式.8.答案:2a-3b+1解析:【解答】∵长方形面积是6a2-9ab+3a,一边长为3a, ∴它的另一边长是:(6a2-9ab+3a)÷3a=2a-3b+1.故答案为:2a-3b+1.【剖析】由长方形的面积求法可知由一边乘以另一边而得,则本题由面积除以边长可求得另一边.9.答案:x2+3x解析:【解答】[x3+3x2-1-(-1)]÷x=(x3+3x2)÷x=x2+3x.【剖析】有被除式,商及余数,被除式减去余数再除以商即可得到除式.10.答案:-2x3y+1解析:【解答】(6x5y-3x2)÷(-3x2)=6x5y÷(-3x2)+(-3x2)÷(-3x2)=-2x3y+1.【剖析】应用多项式除以单项式的轨则,先用多项式的每一项除以单项式,再把所得的商相加盘算即可.三.解答题11.答案:2×10年解析:【解答】该市用电量为2.75×103×105=2.75×108(5.5×109)÷(2.75×108)=(5.5÷2.75)×109-8=2×10年.答:三峡工程该年所发的电能供该市居平易近应用2×10年.【剖析】先求出该市总用电量,再用当年总发电量除以用电量;然后依据同底数幂相乘,底数不变指数相加和同底数幂相除,底数不变指数相减盘算.12.答案:(1)3x3-2x2+1;(2)4x2y2+16xy2-1;(3)(-3a n+1+3a n-1)÷3a n-1=-3a2+1.解析:【解答】(1)(30x4-20x3+10x)÷10x=3x3-2x2+1; (2)(32x3y3z+16x2y3z-8xyz)÷8xyz=4x2y2+16xy2-1; (3)(6a n+1-9a n+1+3a n-1)÷3a n-1=(-3a n+1+3a n-1)÷3a n-1=-3a2+1.【剖析】(1)依据多项式除以单项式的轨则盘算即可; (2)依据多项式除以单项式的轨则盘算即可; (3)先归并括号内的同类项,再依据多项式除以单项式的轨则盘算即可.13.答案:39.解析:【解答】(x m÷x2n)3÷x2m-n=(x m-2n)3÷x2m-n=x3m-6n÷x2m-n=x m-5n 因它与2x3为同类项, 所以m-5n=3,又m+5n=13, ∴m=8,n=1, 所以m2-25n=82-25×12=39.【剖析】依据同底数幂相除,底数不变指数相减,对(x m÷x2n)3÷x2m-n化简,由同类项的界说可得m-5n=2,联合m+5n=13,可得答案.14.答案:1解析:【解答】原式=9a6n÷(27a4n)=a2n, ∵a2n=3,∴原式=×3=1.【剖析】先辈行幂的乘方运算,然落后行单项式的除法,最后将a2n=3整体代入即可得出答案.15.答案:20.解析:【解答】依据题意得:( 2.6×107)÷( 1.3×106)=2×10=20,则人造地球卫星的速度飞机速度的20倍.【剖析】依据题意列出算式,盘算即可得到成果.。
整式的除法练习题(含答案)B、a+a4=a5,故本选项错误;C、(ab3)2=a2b6,正确;D、a-(3b-a)=-2b,故本选项错误。
选C。
2.答案:D解析:【解答】(-3b3)2=9b6,9b6÷b2=9b4,选D。
3.答案:A解析:【解答】(ab)2=a2b2,选A。
4.答案:C解析:【解答】(x3y2)•(xy2)=x4y4,选C。
5.答案:B解析:【解答】(a3b6)÷(a2b2)=ab4,ab4=3,a2b8=a2b2•ab6=ab7=9,选B。
6.答案:A解析:【解答】(3a2+a)÷a=3a,选A。
二、填空题7.答案:b.解析:【解答】(a2b3-a2b2)÷(ab)2=ab-a,选b。
8.答案:2b-a.解析:【解答】设该长方形的另一边长为b,则ab=6a2-9ab+3a,化简得ab=3a-3ab,即ab=3a-3(2b-a),解得b=2b-a,选2b-a。
9.答案:x2+x-1.解析:【解答】x3+3x2-1=(x2+x-1)•x+(-1),除式为x2+x-1,选x2+x-1.10.答案:-2y.解析:【解答】(6x5y-3x2)÷(-3x2)=-2y,选-2y。
三、解答题11.答案:200年.解析:【解答】三峡工程当年发电量为5.5×109度,该市居民平均每户用电2.75×103度,因此该市居民当年用电量为2.75×103×10万=2.75×108度。
三峡工程该年所发的电能供该市居民使用的年数为5.5×109÷2.75×108=20年,即三峡工程该年所发的电能供该市居民使用20年。
12.答案:1) 答案:3x3-2x2+1.解析:【解答】(30x4-20x3+10x)÷10x=3x3-2x2+1,选3x3-2x2+1.2) 答案:4yz+2y-1/2.解析:【解答】(32x3y3z+)÷=4yz+2y-1/2,选4yz+2y-1/2.3) 答案:-1/3.解析:【解答】(6an+1-9an+1+3an-1)÷3an-1=-1/3,选-1/3.13.答案:-16.解析:【解答】(xm÷x2n)3÷x2m-n=(x-m+2n)3÷x2m-n=x3-3(m-2n)x+m-6n,与2x3是同类项,即m-6n=3,又m+5n=13,解得m=2,n=1,代入m2-25n得-16,选-16.14.答案:1/4.解析:【解答】(3a3n)2÷(27a4n)=(a3n)2÷(9a4n)=a6n÷9a4n=1/9a2n,又a2n=3,代入得1/4,选1/4.15.答案:20.解析:【解答】人造地球卫星的速度是2.6×107m/h,一架飞机的速度是1.3×106m/h,人造地球卫星的速度飞机速度的倍数为2.6×107÷1.3×106=20,选20.2.解析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方,把每一个因式分别乘方,再把所得的幂相乘,对于各选项进行计算后,利用排除法得出答案为D。
初中数学什么是整式的除法整式的除法是指对两个整式进行除法运算,其中被除数除以除数得到商式和余式的过程。
首先,我们来了解一些整式的基本概念。
整式是由常数项、变量项和它们之间的运算符(加法和减法)组成的代数表达式。
常数项是只包含常数的项,变量项是包含变量和常数的项。
例如,3x² + 2xy - 5 是一个整式,其中3x²是变量项,2xy 是变量项,-5 是常数项。
在整式的除法中,被除数通常是一个多项式,除数通常是一个一元多项式(只有一个变量的多项式)。
我们的目标是找到一个商式和余式,使得被除数等于除数乘以商式加上余式。
让我们通过一个例子来说明整式的除法过程:假设我们要计算(2x³ + 5x² - 3x + 1) ÷ (x - 1)。
首先,我们将被除数和除数按照降幂排列,即按照变量的指数从高到低排列。
在这个例子中,被除数已经按照降幂排列,除数为x - 1。
接下来,我们将除数的第一项x 与被除数的第一项2x³进行除法运算。
x 除以2x³等于(1/2)x²。
我们将这个结果乘以除数,得到(1/2)x³ - (1/2)x²。
然后,我们将这个结果与被除数进行减法运算,得到(2x³ + 5x² - 3x + 1) - ((1/2)x³ - (1/2)x²) = (3/2)x³ + (5/2)x² - 3x + 1。
接下来,我们重复上述步骤。
将除数的第一项x 与新的被除数的第一项(3/2)x³进行除法运算,得到(3/2)x²。
我们将这个结果乘以除数,得到(3/2)x³ - (3/2)x²。
然后,我们将这个结果与新的被除数进行减法运算,得到(3/2)x³+ (5/2)x²- ((3/2)x³ - (3/2)x²) = 8x² - 3x + 1。
初二数学整式的除法运算数学中,整式的除法运算是我们学习的一个重要内容。
本文将详细介绍初二数学整式的除法运算,包括概念、步骤和注意事项等。
整式是指由常数、未知数及其系数经过加、减、乘运算组成的代数式。
我们将讨论的整式除法是指对两个整式进行相除运算,得到商式和余式。
一、整式除法的概念整式除法是指对一个整式f(x)除以另一个整式g(x),得到唯一的商式q(x)和余式r(x)的运算。
其中,被除式f(x)除以除式g(x)的结果是商式q(x),余项为r(x),满足等式f(x) = g(x)·q(x) + r(x)。
二、整式除法的步骤整式除法的运算步骤如下:1. 将被除式和除式按照指数降序排列,确保各项系数对应。
2. 令被除式的首项与除式的首项相除,得到商数的首项。
3. 用商数的首项乘以除式的每一项,并与相应的被除式的项相减,得到一个新的多项式。
4. 重复步骤3,直到无法进行减法运算为止,最后所得的多项式为余项。
5. 将商数和余项以及除数等整齐地写在一起,形成整式的除法运算式。
三、整式除法的注意事项在进行整式的除法运算时,需要注意以下几点:1. 每一步的计算都要注意保持各项对齐,以确保正确的运算。
2. 注意将每一步的结果写明,避免出错或遗漏。
3. 在计算过程中,要仔细检查每一步的运算,以确保准确性。
4. 若被除式中某些项的指数小于除式中对应项的指数,可以在被除式前面添加0。
5. 在进行多次步骤3时,可以化简相同指数的项。
示例:现假设有被除式f(x)=3x^3-5x^2+2x-4和除式g(x)=x-2,我们来进行整式的除法运算。
按照上述步骤,我们可以依次进行计算,最终得到商式q(x)=3x^2+1、余式r(x)=0。
四、总结通过以上的介绍,我们了解了初二数学整式的除法运算。
整式除法是一个基础概念,掌握它对于后续的多项式运算和方程的解法有着重要意义。
在进行整式除法时,要注意步骤的执行和运算的准确性,以确保得到正确的结果。
初中数学整式的除法规则是什么整式的除法规则是指在代数中,将一个整式除以另一个整式的运算规则。
下面是对整式的除法规则的详细解释:1. 除法的定义:对于两个整式f(x) 和g(x),其中g(x) ≠ 0,我们可以定义它们的除法为q(x) 与r(x) 的形式,满足f(x) = g(x) * q(x) + r(x),其中q(x) 是商式,r(x) 是余式,且r(x) 的次数小于g(x) 的次数。
2. 短除法:短除法是一种用来简化整式除法的方法。
它适用于除式为一元一次式的情况。
具体步骤如下:a) 将除式和被除式按照次数从高到低排列。
b) 将被除式的最高次项除以除式的最高次项,得到商式的最高次项。
c) 用商式的最高次项乘以除式,然后将结果减去被除式。
d) 重复步骤b) 和c),直到无法继续进行短除。
3. 长除法:长除法是一种适用于任意次数的整式除法的方法。
具体步骤如下:a) 将除式和被除式按照次数从高到低排列。
b) 从被除式的最高次项开始,将除式的最高次项乘以一个适当的多项式,使得乘积的次数与被除式的最高次项一致或稍低。
c) 用乘积减去被除式,得到一个新的多项式。
d) 重复步骤b) 和c),直到无法继续进行长除。
4. 带余除法:带余除法是整式除法中的一种特殊情况,其中被除式的次数小于等于除式的次数。
具体步骤如下:a) 将除式和被除式按照次数从高到低排列。
b) 将除式的最高次项乘以一个适当的多项式,使得乘积的次数与被除式的最高次项一致或稍低。
c) 用乘积减去被除式,得到一个新的多项式。
d) 当新的多项式的次数小于除式的次数时,此时的新多项式为余式。
以上是整式除法的基本规则和方法。
通过短除法、长除法和带余除法,我们可以将整式除法问题简化,从而更方便地进行计算和求解。
在实际应用中,整式的除法规则经常被用于解决方程、简化表达式等问题。
希望以上内容能够对你的学习有所帮助。
1.3 整式的除法◆赛点归纳整式的除法包括单项式除以单项式,多项式除以单项式,多项式除以多项式.多项式恒等定理:(1)多项式f(x)=g(x),•需且只需这两个多项式的同类项的系数相等;(2)若f(x)=g(x),则对于任意一个值a,都有f(a)=g(a).余数定理:多项式f(x)除以x-a所得的余数等于f(a).特别地,当f(x)•能被x-a整除时,有f(a)=0.◆解题指导例1设a、b为整数,观察下列命题:①若3a+5b为偶数,则7a-9b也为偶数;②若a2+b2能被3整除,则a和b也能被3整除;③若a+b是质数,则a-b不是质数;④若a3-b3是4的倍数,则a-b也是4的倍数.其中正确的命题有().A.0个B.1个C.2个D.3个以上【思路探究】对于①看7a-9b与3a+5b的和或差是不是偶数.对于②根据整数n的平方数的特征去判断.对于③、④若不能直接推导是否成立,也可举出反例证明不成立.例2 若2x3-kx2+3被2x+1除后余2,则k的值为().A.k=5 B.k=-5 C.k=3 D.k=-3【思路探究】要求k的值,须找到关于k的方程.由2x3-kx2+3被2x+1除后余2,可知2x3-kx2+1能被2x+1整除,由此就可得关于k的一次方程.例3计算:(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5).【思路探究】被除式是一个6次六项式,除式是一个4次四项式,直接计算比较复杂,应列竖式计算.例4若多项式x4-x3+ax2+bx+c能被(x-1)3整除,求a、b、c的值.【思路探究】由条件知x4-x3+ax2+bx+c能被x3-3x2+3x-1整除,列竖式可知x4-x3+ax2+bx+c的商式和余式.根据一个多项式被另一个多项式整除,余式恒为零可求a、•b、c的值.【拓展题】设x1,x2,…,x7都是整数,并且x1+4x2+9x3+16x4+25x5+36x6+49x7=1,①4x1+9x2+16x3+25x4+35x5+49x6+64x7=12,②9x1+16x2+25x3+36x4+49x5+64x6+81x7=123,③求16x1+25x2+36x3+49x4+64x5+81x6+100x7的值.◆探索研讨整式除法的综合运用大多与多项式除以多项式相关.多项式除法运算实际上是它们的系数运算.在进行多项式乘除法恒等变形时,它们对应项系数是相等的,由此列方程可求解待定系数.请结合本节的例题,总结自己的发现.◆能力训练1.下列四个数中,对于任一个正整数k,哪个数一定不是完全平方数().A.16k B.16k+8 C.4k+1 D.32k+42.要使3x3+mx2+nx+42能被x2-5x+6整除,则m、n应取的值是().A.m=8,n=17 B.m=-8,n=17C.m=8,n=-17 D.m=-8,n=-173.(2001,武汉市竞赛)如果x3+ax2+bx+8有两个因式x+1和x+2,则a+b=().A.7 B.8 C.15 D.214.对任意有理数x,若x3+ax2+bx+c都能被x2-bx+x整除,则a-b+c的值是().A.1 B.0 C.-1 D.-25.满足方程x3+6x2+5x=27y3+9y2+9y+1的正整数对(x,y)有().A.0对B.1对C.3对D.无穷多对6.(2003,四川省竞赛)若(3x+1)4=ax4+bx3+cx2+dx+e,则a-b+c-d+e=________.7.(2004,北京市竞赛)用正整数a去除63,91,129所得的3个余数的和是25,则a 的值为________.8.已知多项式3x3+ax2+bx+1能被x2+1整除,且商式是3x+1,那么(-a)b的值是_____.9.若多项式x4+mx3+nx-16含有因式(x-1)和(x-2),则mn=________.10.多项式x135+x125-x115+x5+1除以多项式x3-x所得的余式是_______.11.计算:(1)(6x5-7x4y+x3y2+20x2y3-22xy4+8y5)÷(2x2-3xy+y2);(2)(41m-m3+15m4-70-m2)÷(3m2-2m+7).12.已知a、b、c为有理数,且多项式x3+ax2+bx+c能够被x2+3x-4整除.(1)求4a+c的值;(2)求2a-2b-c的值;(3)若a、b、c为整数,且c≥a>1,试确定a、b、c的大小.13.(2000,“五羊杯”,初二)已知x6+4x5+2x4-6x3-3x2+2x+1=[f(x)] 2,其中f(x)是x的多项式,求这个多项式.14.已知一个矩形的长、宽分别为正整数a、b,其面积的数值等于它的周长数值的2倍,求a+b的值.15.(2004,北京市竞赛)能将任意8个连续的正整数分为两组,使得每组4•个数的平方和相等吗?如果能,请给出一种分组法,并加以验证;如果不能,请说明理由.答案:解题指导例1 C [提示:命题①成立.因为(7a-9b)-(3a+5b)=2(2a-7b)是偶数;命题②也成立.因为整数n的平方被3除余数只能为0或1,3整除a2+b2,表明a2、b2被3除的余数都是0,所以a和b都能被3整除;命题③不成立.如5+2=7和5-2=3都是质数;命题④也不成立.例如a=2,b=0.]例2 C [提示:∵2x3-kx2+3被2x+1除后余2,∴2x3-kx2+1能被2x+1整除.令2x+1=0,得x=-12.代入2x3-kx2+1=0,得2×(-12)3-k(-12)2+1=0,即-14-14k+1=0,解得k=3.]例3(3x6-2x5-5x4+7x3-19x2+12x)÷(x4-2x2+x-5)=3x2-2x+1……x+5.例4 x4-x3+ax2+bx+c=(x3-3x2+3x-1)(x+2)+(a+3)x2+(b-5)x+(c+2).由余式恒等于0,得a+3=0,b-5=0,c+2=0.∴a=-3,b=5,c=-2.【拓展题】设四个连续自然数的平方为:n2、(n+1)2、(n+2)2、(n+3)2,则(n+3)2=a(n+2)2+b(n+1)2+cn2.整理得n2+6n+9=(a+b+c)n2+(4a+2b)n+4a+b.∴a+b+c=1,4a+2b=6,4a+b=9.解得a=3,b=-3,c=1,∴16x1+25x2+36x3+49x4+64x5+81x6+100x7=③×3-②×3+①=123×3-12×3+1=334.能力训练1.B [提示:16k+8=8(2k+1).因2k+1是奇数,8•乘以一个奇数一定不是完全平方数.] 2.D [提示:∵3x3+mx2+nx+42=(x2-5x+6)(3x+7)+(m+8)x2+(n+17)x.∴80,8,170,17.m mn n+==-⎧⎧⎨⎨+==-⎩⎩解得.]3.D [提示:∵(x+1)(x+2)=x2+3x+2,∴x3+ax2+bx+8=(x2+3x+2)(x+4)+(a-7)x2+(b-14)x.∴70,7,140,14.a ab b-==⎧⎧∴⎨⎨-==⎩⎩∴a+b=21.]4.A [提示:∵x3+ax2+bx+c=(x2-bx+c)(x+1)+(a+b-1)x2+(2b-c)x,∴10,(1)20.(2)a bb c+-=⎧⎨-=⎩(1)-(2),得a-b+c=1.]5.A [提示:原方程可变形为x(x+1)(x+5)=3(9y3+3y2+3y)+1.①如果有正整数x、y使①成立,那么由于x,x+1,x+5=(x+2)+3这3个数除以3所得余数互不相同,所以其中必有一个被3整除,即①的左边被3整除,而①的右边不被3整除,这就产生矛盾.所以原方程没有正整数解.]6.16 [提示:令x=-1,得a-b+c-d+e=16.]7.43 [提示:由题意,有63=a×k1+r1,91=a×k2+r2,129=a×k3+r3.(0≤r1、r2、r3<a)相加得63+91+129=a(k1+k2+k3)+(r1+r2+r3)=a(k1+k2+k3)+25.故258被a整除.由于258=2×3×43,a大于余数,且3个余数的得25,所以a>8.•又a不超过63、91、129中的最小者63,故258的因数中符合要求的只有a=43.]8.-1 [提示:∵(x2+1)(3x+1)=3x3+x2+3x+1,∴3x3+ax2+bx+1=3x3+x2+3x+1.∴a=1,b=3,即(-a)b=(-1)3=-1.]9.-100 [提示:∵(x-1)(x-2)=x2-3x+2,x4+mx3+nx-16=(x2-3x+2)[x2+(m+3)x-8]+(3m+15)x2+(n-2m-30)x,∴3150,5,2300,20.m mn m n+==-⎧⎧⎨⎨--==⎩⎩解得∴mn=-100.]10.2x+1 [提示:设x135+x125-x115+x5+1=(x3-x)f(x)+ax2+bx+c,其中f(x)为商式.取x=0,得c=1;取x=1,得a+b+c=3.取x=-1,得a-b+c=-1.解得a=0,b=2,c=1.故所求余式为2x+1.]11.(1)商式为3x3+x2y+12xy2+34133,44y余式为xy4-94y5.(2)商式为5m2+3m-10,余式为0.12.(1)∵(x-1)(x+4)=x2+3x-4,令x-1=0,得x=1;令x+4=0,得x=-4.当x=1时,得1+a+b+c=0;①当x=-4时,得-64+16a-4b+c=0.②②-①,得15a-5b=65,即3a-b=13.③①+③,得4a+c=12.(2)③-①,得2a-2b-c=14.(3)∵c≥a>1,4a+c=12,a、b、c为整数,∴a≥2,c≥2,则a=2,c=4,又a+b+c=-1,∴b=-7.13.设f(x)=±(x3+Ax2+Bx+1)或±(x3+Ax2+Bx-1).先设f(x)=x3+Ax2+Bx+1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB+2)x3+(2A+B2)x2+2Bx+1,故2A=4,A2+2B=2,2AB+2=-6,2A+B2=-3,2B=2,无解.再设f(x)=x3+Ax2+Bx-1,则[f(x)] 2=x6+2Ax5+(A2+2B)x4+(2AB-2)x3+(B2-2A)x2-2Bx+1,故2A=4,A2+2B=2,2AB-2=-6,B2-2A=-3,-2B=2.解得A=2,B=-1.故所求的多项式为±(x3+2x2-x-1).14.由题意得ab=2(2a+2b).∴ab-4a=4b,∴a=416444bb b=+--.∵a、b均为正整数,且a>b.∴(b-4)一定是16的正约数.当(b-4)分别取1、2、4、8、16时,代入上式,得b-4=1时,b=5,a=20;b-4=2时,b=6,a=12;b-4=4时,b=8,a=8(舍去);b-4=8时,b=12,a=6(舍去);b-4=16时,b=20,a=5(舍去).∴只有a=20,b=5或a=12,b=6符合题意,把a+b=25或18.15.能设任意8个连续的正整数为a,a+1,a+2,a+3,a+4,a+5,a+6,a+7.将其分为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}即满足要求.验证如下:先将任意8个连续的正整数按如下分为等和的两组,满足a+(a+1)+(a+6)+(a+7)=(a+2)+(a+3)+(a+4)+(a+5)则[(a)+(a+1)]·[(a+6)+(a+7)]·1=[(a+2)+(a+3)]·1+[(a+4)+(a+5)]·1 即[(a)+(a+1)][(a+1)-(a)]+[(a+6)+(a+7)][(a+7)-(a+6)]=[(a+2)+(a+3)][(a+3)-(a+2)]+[(a+4)+(a+5)]·[(a+5)-(a+4)].故(a+1)2-a2+(a+7)2-(a+6)2=(a+3)2-(a+2)2+(a+5)2-(a+4)2.也就是(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.于是,分任意8个连续的正整数为如下两组:{a+1,a+2,a+4,a+7},{a,a+3,a+5,a+6}.则满足(a+1)2+(a+2)2+(a+4)2+(a+7)2=a2+(a+3)2+(a+5)2+(a+6)2.。
整式的除法技巧总结整式的除法技巧是数学中非常基本的技巧,也是应用广泛的技巧。
在中学数学中,我们学习了分类的整式、多项式和代数式,以及如何对它们进行加、减、乘、除、化简等基本运算。
其中,整式的除法有很多技巧,这些技巧对于我们解题非常有帮助。
下面就对整式的除法技巧进行总结。
1、长除法求商式长除法是比较基本的一种整式除法方法,它可以用来求出一个多项式除以另一个多项式的商和余数。
具体步骤如下:例如:求 (2x3 +3x2 -18)/ (x-3)首先将除式进行因式分解:(x-3) = (x-3)。
将被除式的各项系数写在除号左侧,用长横线将它们与商式的系数隔开。
然后将除数的首项(即x)乘以商式的最高项(即2x2),将积写在横线上。
将横线上的积减去被除式的下一项(-18和(x)*(-18),其差为18x),然后将末项系数(即0)依然写在横线上。
最后,商式为2x2+9x+27,余数为18x。
将被除式中相邻两项的系数相加得到一组新数列,然后将新数列写在长方形的上端,如下图所示。
将除数(x-1)的系数写在左边,与新数列的首项相乘得到一组小的积,将积写在长方形内部距上边一行下移一格的位置。
此时,将积分别加到相邻的上方新数列中,如图所示。
依次重复上述步骤,直到最后一项算完为止。
最终,长方形最右边的一列即为商式,余数为算完的最后一项。
3、二项式整除的性质如果被除式的各项系数都是常数倍的等差数列,那么它们可以因式分解成二项式的形式,如下所示:ax^n+bx^(n-1)+cx^(n-2)+...+mx=p(x)q(x)其中,p(x)q(x)为两个整数的乘积,即p,q为被除式的某一项系数的因式。
此时,商式的系数也是等差数列,例如:则商式的系数为{(d-a)x^(n-2)+e-b}/(d-a),其中d-a为等差数列的公差。
4、辗转相除法辗转相除法是求两个整数的最大公约数的基本方法,但也可以用来求多项式的最大公约数。
它的具体步骤如下:对于两个多项式f(x)和g(x),设f(x)=q1(x)g(x)+r1(x),其中q1(x)和r1(x)为商式和余式。
整式的除法练习题1. 4x^3 - 2x^2 + 3x - 6 除以 2x + 12. 3x^4 + 5x^3 - 2x^2 + 6x + 3 除以 x + 23. 6x^3 + 9x^2 - 12x - 18 除以 3x - 24. 2x^4 + 4x^3 - 6x^2 + 8x - 12 除以 2x - 3在解答以上整式除法练习题之前,我们先来了解一下整式的除法原理和步骤。
整式的除法主要是通过长除法的方法进行计算。
具体步骤如下:步骤一:将被除式和除数按照次数从高到低排列。
步骤二:将被除式的首项与除数的首项相除,将得到的商写在新的一行上。
步骤三:用得到的商乘以除数,得到一个中间结果,然后将中间结果放在被除式上方,与原来的被除式相减。
步骤四:将新得到的差作为新的被除式。
步骤五:重复步骤二、三和四,直到无法再进行整除为止,此时的余数就是最终结果。
现在,我们来解答上面的练习题:1. 4x^3 - 2x^2 + 3x - 6 除以 2x + 1首先,将被除式和除数按照次数从高到低排列,得到:4x^3 - 2x^2 + 3x - 6÷ 2x + 1然后,将被除式的首项与除数的首项相除,得到:2x^2将得到的商写在新的一行上,并乘以除数,得到一个中间结果:2x^2(2x + 1) = 4x^3 + 2x^2将中间结果放在被除式上方,与原来的被除式相减:4x^3 + 2x^2-(4x^3 + 2x^2 - 3x + 6)------------------------3x - 6将新得到的差作为新的被除式,并继续进行整除:3x - 6 除以 2x + 1首项相除得到:1.5将得到的商写在新的一行上,并乘以除数,得到一个中间结果:1.5(2x + 1) = 3x + 1.5将中间结果放在被除式上方,与原来的被除式相减:3x - 6-(3x + 1.5)---------------7.5此时无法再进行整除,所以最终结果是 -7.5。
整式的除法教案一、教学目标1. 理解整式的定义及其特点。
2. 掌握整式的除法运算法则。
3. 能够正确应用整式的除法求解实际问题。
二、教学重点1. 整式的定义及其特点。
2. 整式的除法运算法则。
三、教学难点整式的除法运算法则的掌握及应用。
四、教学准备课件、黑板、粉笔、教学实例。
五、教学过程Step 1 引入1. 教师呈现两个多项式:A = 3x^2 + 5x + 2,B = x + 1,并对学生进行提问:- 你知道如何对多项式进行除法运算吗?- 如果你要求解 A ÷ B,你会怎么做?2. 让学生思考并回答问题,引出整式的除法教学主题。
Step 2 教学内容1. 整式的定义及其特点教师简要介绍整式的定义及其特点,强调整式由常数项、单项式和多项式组成,且指数为非负整数。
2. 整式的除法运算法则- 教师讲解整式的除法运算法则,并结合具体的例子进行说明。
- 强调被除式和除式的次数要一致,然后按照多项式除法的步骤进行计算。
3. 解析式的化简- 教师讲解如何化简解析式,即将除法运算结果化简为整式,规范化表示。
- 通过多个实例进行演练和学生互动,确保学生掌握此步骤。
4. 实际问题的应用- 教师给出一些与实际生活相关的问题,并引导学生使用整式的除法进行求解。
- 学生进行个别或小组讨论,提出解题思路和步骤。
Step 3 拓展与巩固1. 独立练习- 让学生独立完成一些整式的除法计算题目,检查他们对所学知识的掌握情况。
2. 小结- 教师对整个教学内容进行回顾总结,概括整式除法的关键要点。
Step 4 实践应用1. 立体形状体积计算- 教师引导学生通过整式除法计算立体形状的体积。
- 学生根据所给的立体形状进行计算,并给出结果。
2. 实际问题解答- 教师提供一些实际问题,学生利用所学的整式除法解答并给出详细步骤。
Step 5 课堂讨论与总结1. 学生分享解题思路和答案。
2. 教师针对学生的思路和答案进行点评和总结。