迈克尔逊干涉仪调整和使用
- 格式:pdf
- 大小:221.74 KB
- 文档页数:3
实验三十八 迈克尔逊干涉仪的调节和使用【实验目的】1. 了解迈克尔逊干涉仪的工作原理,掌握其调节和使用方法。
2. 应用迈克尔逊干涉仪,测量He-Ne 激光的波长。
【实验仪器】迈克尔逊干涉仪、He-Ne 激光器、扩束镜。
【实验原理】干涉仪是凭借光的干涉原理来测量长度或长度变化的精密仪器。
实验室中最常用的迈克尔逊干涉仪,其原理图和实物图如图3-38-1所示。
1M 和2M 是在相互垂直的两臂上放置的两个平面反射镜,其背面各有三个调节螺钉,用来调节镜面的方位;2M 是固定的;1M 由精密丝杆控制可沿臂轴前后移动,移动的距离有转盘读出。
确定1M 的位置有三个读数装置:(1)主尺:在导轨侧面,最小刻度为毫米;(2)读数窗:可读到0.01mm ;(3)带刻度盘的微调手轮:可读到0.0001mm ,估读到5-10mm 。
在两臂轴相交处有一与两臂轴各成45°的平行平面玻璃板1P ,且在1P 的第二平面上镀以半透(半反射)膜以便使入射光分成振幅近乎相等的反射光(1)和透射光(2),故1P 板又称为分光板。
2P 也是一平行平面玻璃板,与1P 平行放置,其厚度和折射率均相同,用来补偿(1)和(2)之间附加的光程差,故称为补偿板。
从扩展光源S 射来的光在1P 处分成两部分,反射光(1)经1P 反射后向着1M 前进,透射光(2)透过向着2M 前进,这两束光分别在1M 、2M 上反射后逆着各自的入射方向返回,最后都达到E 处。
由于两列波来自同一波源上同一点,故是相干光,在E 处可观察到干涉图样。
由于光在分光板1P 的第二面反射,2M 在1M 附近形成一平行于1M 的虚像2'M ,因而自2M 和1M 的反射,相当于自是1M 和2'M 的反射。
由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。
一、扩展光源照明产生的干涉图1. 当1M 和'2M 严格平行时,所得的干涉为等倾干涉。
迈克尔逊干涉仪的调整和使用一、教学目的(1) 了解迈克尔逊干涉仪的原理结构,学习调节和使用方法。
(2) 观察等倾,等厚干涉现象。
(3) 测量He-Ne 激光波长。
二、教学重点(1) 迈克尔逊干涉仪的原理和结构 (2) 迈克尔逊干涉仪的调节和使用方法 (3) 迈克尔逊干涉仪的应用三、课堂提问(1) 什么是非定域干涉?(2) 迈克尔逊干涉仪是怎样实现非定域干涉的? (3) 非定域干涉条纹和牛顿环的相同和不同之处是什么?四、实验仪器补偿板微调手轮 He -Ne 激光器迈克尔逊干涉仪分光板固定反射镜移动反射镜粗调手轮光阑孔观察屏读数窗五、实验原理图1是迈克尔逊干涉仪的光路原理图。
光源上一点发出的光线射到半透明层K 上被分为两部分光线“1”和“2”。
光线“2”射到M 2上被反射回来后,透过G 1到达E 处;光线“1”透过G 2射到M 1,被M 1反射回来后再透过G 2射到K 上,反射到达E 处。
这两条光线是由一条光线分出来的,故它们是相干光。
光线“1”也可看作是从M 1在半透明层中的虚像M 1ˊ反射来的。
在研究干涉时,M 1ˊ与M 1是等效的。
调整迈克尔逊干涉仪,使之产生的干涉现象可以等效为M 1ˊ与M 2之间的空气薄膜产生的薄膜干涉。
用凸透镜会聚的激光束是一个很好的点光源,它向空间发射球面波,从反射后可看成由两个光源发出的(见图2),至屏的距离分别为点光源S从反射至屏的光程,21 M M 和21S S 和′)(21S S 或)(1211G M M G 和或和21S S 和′的距离为M 1ˊ和M 2之间距离的二倍,d 图2 非定域干涉M 1图1 迈克尔逊干涉仪即2d 。
虚光源发出的球面波在它们相遇的空间处处相干,这种干涉是非定域干涉。
如果把屏垂直于21S S 和′21S S 和′的连线放置,则我们可以看到一组同心圆,圆心就是连线与屏的交点。
如图2,由到屏上的任一点A,两光线的程差21S S 和′21S S ′L 可得:δcos 2d L = (1) 由式(1)可知:(1)当0=δ 时程差最大,即圆心E 点所对应的干涉级别最高。
迈克耳孙干涉仪的调整与使用技巧迈克耳孙干涉仪(Michelson interferometer)是一种常用的光学仪器,广泛应用于光学测量、干涉实验等领域。
正确的调整和使用迈克耳孙干涉仪对于获得准确的实验结果至关重要。
本文将介绍迈克耳孙干涉仪的调整方法以及使用技巧,帮助读者更好地理解和应用这一仪器。
1. 干涉仪的基本原理迈克耳孙干涉仪是利用光的干涉原理进行测量的仪器。
它由两束光线沿不同路径传播后再次叠加产生干涉,通过观察干涉图案的变化可以获得有关样品或光源的信息。
2. 调整干涉仪的步骤(1)准备工作在调整迈克耳孙干涉仪之前,首先要确保仪器和光源的完好和稳定。
检查干涉仪的光学元件是否清洁,光源是否稳定,确保能够获得高质量的干涉图案。
(2)调整光路通过调整迈克耳孙干涉仪的光路,使得两束光相干,达到干涉的条件。
具体步骤如下:- a. 调整分束镜迈克耳孙干涉仪的分束镜是将光分成两束的关键元件。
调整分束镜的位置和角度,使得两束光线的光程差尽量为零。
- b. 调整反射镜调整迈克耳孙干涉仪的反射镜位置和角度,使得两束光线重新叠加时能够产生明亮的干涉条纹。
通过微调反射镜的位置和角度,使得干涉图案更加清晰和明亮。
(3)干涉图案的观察与调整在调整好光路之后,需要观察干涉图案,并进行调整以获得最佳的观察效果。
根据实验需求,通过微调分束镜和反射镜的位置和角度,调整干涉图案的大小、亮度和清晰度。
3. 干涉仪的使用技巧(1)保持稳定在使用迈克耳孙干涉仪进行实验时,保持仪器和光源的稳定非常关键。
避免干涉仪受到外界震动或温度变化的干扰,以确保实验的准确性和可重复性。
(2)校正光程差干涉仪的光程差是影响干涉图案的重要因素。
在实验中,根据需要可以通过微调分束镜或者引入补偿片等方法,校正光程差以获得所需的干涉效果。
(3)避免散射和干涉损失在进行干涉实验时,需要注意避免光线的散射和干涉损失。
合理调整干涉仪的参数,选择合适的光源和滤波器,减少或者消除散射光和多次反射干涉,确保实验结果的准确性。
迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。
因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。
一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。
2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。
(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。
(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。
(4)重复以上步骤,直到干涉条纹完全对称、清晰。
二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。
2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。
3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。
4、在记录实验数据时,要保证记录的准确性和完整性。
5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。
正确地调节和使用迈克尔逊干涉仪需要耐心和细心。
只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。
迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。
本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。
一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。
迈克尔逊干涉仪法利用干涉现象来测量折射率。
当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。
通过测量光程差,我们可以计算出介质的折射率。
二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。
2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。
迈克尔逊干涉仪的调节和使用实验报告一、仪器调节1.调整镜面平行度:首先放置迈克尔逊干涉仪的光源,然后用手将光源移动,调整反射平面镜的角度,使光线在迈克尔逊干涉仪的整个光路中都能自由传播。
2.调整分束镜:使用一张透明的玻璃片将光线分束,再观察平行光束通过分束镜后是否能刚好落在平面镜的表面上,如果不能,则需要调整分束镜的位置,直到两束光线都能够平行而且刚好敲在平面镜上。
3.调整反射镜:迈克尔逊干涉仪中的反射镜有一个活动镜面,需要调整其位置,使两束光线在平面镜上反射时能够准确地再次合成一束光线,从而形成干涉现象。
4.调整干涉条纹:最后,可以在观察屏幕上是否能够清晰地看到干涉条纹,在实验过程中可以适当调整光源的位置或者调整反射镜的倾斜角度,以获得更好的干涉效果。
二、实验使用1.实验准备:首先设置好迈克尔逊干涉仪,并确保调节好仪器,使光线能够正常穿过仪器。
2.实验操作:将待测光源置于迈克尔逊干涉仪的一个光路中,调整干涉仪中的反射镜位置,使干涉条纹清晰。
然后,改变待测光源的位置,测量干涉条纹的移动量,利用已知的反射器间距和探测器移动的距离,可以计算得到光的速度。
3.数据处理:使用测得的数据和已知的仪器参数,进行计算和分析。
根据测得的干涉条纹移动量和已知的反射器间距,利用干涉仪的原理和公式,计算得到光的速度。
5.讨论和结论:根据实验结果,对实验中的不确定因素进行讨论,并得出结论。
如果实验结果与理论值一致,说明测量方法正确并且仪器使用正常;如果存在差异,可以分析差异的原因,并进一步完善实验方法或改善仪器使用的条件。
总之,迈克尔逊干涉仪是一种常见的用于测量干涉现象的仪器,通过调节和使用可以进行光速测量、薄膜厚度测量等实验。
在进行实验操作时,需要注意仪器的准确调节和数据的准确处理,以确保实验结果的可靠性。
大学物理实验04-迈克尔逊干涉仪的调整和使用
迈克尔逊干涉仪是一种常用的光学实验仪器,其通过干涉现象来测量光的波长、折射率等物理量。
本实验主要教授迈克尔逊干涉仪的调整和使用方法。
实验材料与仪器:
1.迈克尔逊干涉仪:由两个半反射镜构成,向一个光源射出的光束在第一个半反射镜处被分裂后,在第二个半反射镜处又会重合,形成干涉图案。
干涉图案中的光条纹可用于测量光的波长、折射率等物理量。
2.光源:为确保光源的稳定性,可使用汞灯等。
3.防抖动支架:避免由于振动等原因造成干涉图案的变化。
4.百分表等调整仪器:用于调整半反射镜的位置。
实验步骤:
1.调整光路
将光源放置在迈克尔逊干涉仪的一端,射出光线。
光线在第一个半反射镜处被分裂成两条光路,其中一条光路正常通过去往另一端的镜子,另一条光线被反射并射向另一面镜子。
调整半反射镜的位置,让通过反射光路的光束与通过传递光路的光束在第二个半反射镜处恰好重合,此时可以看到干涉环图案。
若干涉环未能清晰地出现,可能需要使用防抖动支架保持器仪器稳定。
2.调整反射镜的位置
3.测量光的波长
在已调整完毕的迈克尔逊干涉仪仪器中,测量干涉环的距离,并计算出光的波长。
当光线传递质量发生变化的介质时,由于介质中的折射率不同,光线传播的速度也会发生变化。
通过测量干涉频率偏移量来确定折射率,可以得出介质的物理性质。
迈克尔逊干涉仪的使用开拓了光学实验的广阔领域,通过合理科学地调整光路等参数来实现干涉现象的测定,不仅可以增加其实验结果的精度,还有助于我们更好地了解光的本质和物理规律,为光学研究提供了重要的实验手段。
迈克尔逊干涉仪的调节和使用一.实验原理迈克尔逊干涉仪是一个分振幅法的双光束干涉仪,其光路如右图所示,它由反光镜M1,M2、分束镜P1和补偿板P2组成。
其中M1是一个固定反射镜,反射镜M2可以沿光轴前后移动,他们分别放置在两个相互垂直臂中,分束镜和补偿板与两个反射镜均成45°且相互平行,分束镜P1的一个面镀有半透半反膜,它能将入射光等强度的分为两束;补偿板是一个与分束镜厚度和折射率完全相同的玻璃板。
迈克尔逊干涉仪结构如下图所示,镜M1、M2的背面各有三个螺丝,调节M1、M2镜面的倾斜度,M1的下端还附有两个互相垂直的微动拉簧螺丝,用以精确的调整M1的倾斜度。
M2镜所在的导轨拖板由精密丝杠带动,可沿着导轨前后移动。
M2镜的位置由三个读数尺所读出的数值的和来确定,主尺、粗调手轮和微调手轮。
如图所示,躲光束激光器提供的每条光纤的输出端是一个短焦距凸透镜,经其汇聚后的激光束,可以认为是一个很好的点光源S发出的球面光波。
S1’为S经M1以及G1反射后所成的像,S2’为S经G1以及M2反射后所成的像。
S2’和S1’为两相干光源。
发出的球面波在其相遇的空间处处相干。
为非定域干涉,在相遇处都能产生干涉条纹。
空间任一点P的干涉明暗由S2’和S1’到该点的光程差Δ=r2-r1决定,其中r2和r1分别为S2’和S1’到P点的光程。
P点的光强分布的极大和极小的条件是:Δ=kλ(k=0,1,2…)为亮条纹Δ=(2k+1)λ(k=0,1,2…)为暗条纹2.He-Ne激光波长的测定当M1’与M2平行时,将观察屏放在与S2’,S1’连线相垂直的位置上,可看到一组同心干涉圆条纹,如图所示。
设M1’与M2之间的距离为d,S2‘和S1‘之间的距离为2d,S2’和S1‘在屏上任一点P的光程差为Δ=2dcosφφ为S2’到P点的光线与M2法线的夹角。
当改变d,光程差也相应发生改变,这时在干涉条纹中心会出现“冒进”和“缩进”的现象,当d增加λ/2,相应的光程差增加λ,这样就会“冒出”一个条纹;当d减少λ/2,相应的光程差减少λ,这样就会“缩进”一个条纹;因此,根据“冒出”和“缩进”条纹的个数可以确定d的该变量,它可以用来进行长度测量,其精度是波长量级,当“冒出”或“缩进”了N个条纹,d的改变两δd为:Δd=Nλ/2二.实验内容1.调节干涉仪,观察非定域干涉(1)水平调节,调节干涉仪底角螺丝,使仪器导轨水平,然后用锁圈锁住。
实验六 迈克尔逊干涉仪的调整和使用实验性质:综合性实验 教学目的和要求:1. 了解迈克尔逊干涉仪的原理并掌握调节方法;2. 观察等倾干涉条纹的特点;3. 测定He-Ne 激光的波长。
教学重点与难点:对迈克尔逊干涉仪的工作原理与等倾干涉概念的理解;本实验仪器的正确调节与使用以及正确记录有效数字。
一.检查学生的预习情况检查学生预习报告:内容是否完整,表格是否正确。
二.实验仪器和用具:迈克尔逊干涉仪,氦氖激光器、毛玻璃屏 三.讲解实验原理:(一)实验仪器介绍1. 迈克尔逊干涉仪的构造迈克尔逊干涉仪的构造如图33-1。
其主要由精密的机械传动系统和四片精细磨制的光学镜片组成。
1G 和2G 是两块几何形状、物理性能相同的平行平面玻璃。
其中1G 的第二面镀有半透明铬膜,称其为分光板,它可使入射光分成振幅(即光强)近似相等的一束透射光和一束反射光。
2G 起补偿光程作用,称其为补偿板。
1M 和2M 是两块表面镀铬加氧化硅保护膜的反射镜。
2M 是固定在仪器上的,称其为固定反射镜,1M 装在可由导轨前后移动的拖板上,称其为移动反射镜。
迈克尔逊干涉仪装置的特点是光源、反射镜、接收器(观察者)各处一方,分得很开,可以根据需要在光路中很方便的插入其它器件。
1M 和2M 镜架背后各有三个调节螺丝,可用来调节21M M 和的倾斜方位。
这三个调节螺丝在调整干涉仪前均应先均匀地拧几圈(因每次实验后为保证其不受应力影响而损坏反射镜都将调节螺丝拧松了),但不能过紧,以免减小调整范围。
同时也可通过调节水平拉簧螺丝与垂直拉簧螺丝使干涉图像作上下和左右移动。
而仪器水平还可通过调整底座上三个水平调节螺丝来达到。
图11 ——主尺2 ——反射镜调节螺丝3 ——移动反射镜1M4 ——分光板1G5 ——补偿板2G6 ——固定反射镜2M7 ——读数窗 8 ——水平拉簧螺钉 9 ——粗调手轮10——屏11——底座水平调节螺丝确定移动反射镜1M 的位置有三个读数装置:①主尺——在导轨的侧面,最小刻度为毫米,如图:②读数窗——可读到0.01mm,如图:③带刻度盘的微调手轮,可读到0.0001mm,估读到105 mm,如图:2.迈克尔逊干涉仪的光路迈克尔逊干涉仪的光路如图2。
2 迈克尔逊干涉仪的调整和使用仪器简介迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷发明的分振幅法双光束干涉仪,其主要特点是两相干光束分得很开,且它们的光程差可通过移动一个反射镜(本实验采用此方法)或在一光路中加入一种介质来方便地改变,利用它可以测量微小长度及其变化,随着应用的需要,迈克尔逊干涉仪有多种多样的形式。
迈克尔逊干涉仪的结构如图,一个机械台面5固定在较重的铸铁底座2上,底座上有三个调节螺丝钉1,用来调节台面的水平。
在台面上装有螺距为1毫米的精密丝杆6,丝杆的一端与齿轮系统12相连接,转动手轮13或微调鼓轮15,都可使丝杆转动,从而使卡在丝杠上的平面镜M 2沿着导轨7移动。
M 2镜的位置及移动的距离可从装在台面左侧的毫米标尺(未画出)、读数窗11及微调鼓轮15上读出。
手轮和微调鼓轮圆周均被分成100小格,微调鼓轮每转一周,手轮就转过1格;手轮每转过一周(由读数窗读出),M 2镜就平移1毫米。
由此可见,三个位置读数时,最小刻度有如下关系:毫米标尺(直线)∶手轮(读数窗)∶微调鼓轮(刻度圆周)=104∶102∶1根据有效数字的特点,在微调鼓轮圆周上还可估读一位,即以毫米为单位记录M 2镜的位置时,应保留到10-5。
M 1镜是固定在镜台上的,M 1 、M 2两镜的后面各有三个螺丝钉4,可改变镜面倾斜度(实验中只调节M 1镜后的螺丝),M 1镜台下面还有一个水平微调螺丝和一个垂直微调螺丝,其松紧使镜台产生一极小的形变,从而可以对M 1镜的倾斜度作更精细的调节,G 1和G 2分别为分光板和补偿板。
M 1 、M 2和G 1的内表面都镀了银(便于反射光线,其中G 1的内表面为半反射面)。
在操作及测量读数时要注意:(1)分光板G 1、补偿板G 2和平面镜M 1(M 2)均成45°角,且已固定在基座上,调节时动作要轻,不得强扳。
(2)分光板G 1、补偿板G 2、平面镜M 1和平面镜M 2均为精密光学元件,必须保持清洁,切忌6精密丝杆(附标尺)11 读数窗 12 13 15 14 16触摸或拆卸,也不要擦拭光学表面。
图23-2 等倾干涉光路图实验二十三 迈克尔逊干涉仪的调整与使用光的干涉现象是光的波动性的一种表现。
当一束光被分成两束,经过不同路径再相遇时,如果光程差小于该束光的相干长度,将会出现干涉现象。
迈克尔逊干涉仪是一种利用分割光波振幅的方法实现干涉的精密光学仪器。
自1881年问世以来,迈克尔逊曾用它完成了三个著名的实验:否定“以太”的迈克尔逊—莫雷实验,光谱精细结构和利用光波波长标定长度单位。
迈克尔逊干涉仪结构简单、光路直观、精度高,其调整和使用具有典型性。
根据迈克尔逊干涉仪的基本原理发展的各种精密仪器已广泛应用于生产和科研领域。
【实验目的】1.了解迈克尔逊干涉仪的结构原理和调节方法;2.观察非定域干涉、定域等倾干涉、等厚干涉及白光干涉现象; 3.测量光波波长,了解条纹可见度等概念的物理意义。
【实验原理】1.迈克尔逊干涉仪的结构原理迈克尔逊干涉仪的典型光路如图23-1所示。
图中Μ1和Μ2是两面平面反射镜,分别装在相互垂直的两臂上。
Μ1位置固定而Μ2可通过精密丝杆沿臂长方向移动;Μ2倾角固定而Μ1的倾角可通过背面螺丝调节。
G 1和G 2是两块完全相同的玻璃板,在G 1的后表面上镀有半透明的银膜,能使入射光分为振幅相等的反射光和透射光,称为分光板。
G 1和G 2与M 1和M 2成45℃角倾斜安装。
由光源发出的光束,通过分光板G 1分成反射光束1和透射光束2,分别射向M 2和M 1,并被反射回到G 1。
由于两束光是相干光,从而产生干涉。
干涉仪中G 2称为补偿板,是为了使光束2也同光束1一样地三次通过玻璃板,以保证两光束间的光程差不致过大(这对使用单色性不好的光源是必要的)。
由于G 1银膜的反射,使在M 2附近形成M 1的一个虚象M 1'。
因此,光束1图23-1 迈克尔逊于涉仪的典型光路和光束2的干涉等效于由M 2和M 1'之间空气薄膜产生的干涉。
2.等倾干涉(定域干涉) 如图2所示,波长为λ的光束y 经间隔为d 的上下两平面M 2和M 1'反射,反射后的光束分别为y 1和y 2。
迈克尔逊干涉仪的调整与使用1、预习提问检查学生预习情况,提问问题:什么叫干涉?怎样才能产生干涉?(迈克尔逊干涉仪是一种分振幅双光束干涉仪,杨氏双缝干涉属于是分波阵面法干涉),迈克尔逊干涉仪的结构主要包括哪些部分?光路是怎样的?什么是定域干涉,非定域干涉?M1的移动和干涉条纹的变化有什么联系?a)、根据迈克尔逊干涉仪的光路,说明各光学元件的作用。
答:在迈克尔逊干涉仪光路图中(教材P181图5.13--4),分光板G将光线分成反射与透射两束;补偿板G/使两束光通过玻璃板的光程相等;动镜M1和定镜M2分别反射透射光束和反射光束;凸透镜将激光汇聚扩束。
b)、简述调出等倾干涉条纹的条件及程序。
答:因为公式λ=2△d△k是根据等倾干涉条纹花样推导出来的,要用此式测定λ,就必须使M1馆和M2/(M2的虚像)相互平行,即M1和M2相互垂直。
另外还要有较强而均匀的入射光。
调节的主要程序是:①用水准器调节迈氏仪水平;目测调节激光管(本实验室采用激光光源)中心轴线,凸透镜中心及分束镜中心三者的连线大致垂直于定镜M2。
②开启激光电源,用纸片挡住M1,调节M2背面的三个螺钉,使反射光点中最亮的一点返回发射孔;再用同样的方法,使M1反射的最亮光点返回发射孔,此时M1和M2/基本互相平行。
③微调M2的互相垂直的两个拉簧,改变M2的取向,直到出现圆形干涉条纹,此时可以认为M1与M2/已经平行了。
同方向旋动大、小鼓轮,就可以观察到非定域的等倾干涉环纹的“冒”或“缩”。
c)、读数前怎样调整干涉仪的零点?答:按某一方向旋动微调鼓轮,观察到圆环的“冒”或“缩”后,继续按原方向旋转微调鼓轮,使其“0”刻线与准线对齐;然后以相同方向转动粗调鼓轮,从读数窗内观察,使其某一刻度线与准线对齐。
此时调零完成,测量中只能按最初的旋转方向,转动微调鼓轮,不可再动粗调鼓轮。
d)、什么是空程?测量中如何操作才能避免引入空程?答:装在导轨上的动镜M 1 ,通过传动系统与丝杆相连。
迈克尔逊干涉仪调整和使用
【实验目的】
1.了解迈克尔逊干涉仪的结构及使用方法。
2.观察等倾干涉现象.
3.测量氦-氖激光光源的波长.
【实验原理】
迈克尔逊干涉仪是1883(1881)年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
它是利用分振幅法产生双光束以实现干涉。
迈克尔逊曾用它完成了三个著名的实验:
(1)否定“以太”的迈克尔逊—莫雷实验;
(2)分析光谱精细结构;
(3)利用光波波长标定长度单位.
在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
迈克尔逊干涉仪实物图
迈克尔逊干涉仪的主体结构包括:
(1)底座(2)导轨(3)拖板部分(4)定镜部分
(5)读数系统和传动部分(6)附件
光路图
当M1与M2,之间距离变大时,圆形干涉条纹从中心一个个长出,并向外扩张干涉条纹变密;距离变小时,圆形干涉条纹一个个向中心缩进,干涉条纹变稀。
不同光程差下的等倾干涉图象
调出适当宽度的等倾干涉圆条纹,然后转动微动手轮,将干涉圈中心调到最暗(或最亮),记下移动镜M2位置L0,继续转动微动手轮,当条纹变化数为m时,记下移动镜位置L2,则根据平板双光束干涉原理,测得单色光源的波长
【实验仪器】
迈克尔逊干涉仪(见实物图):氦氖激光光源、水平尺:用于校准迈克尔逊干涉仪底座水平;导轨固定在一只稳定的底座上,底座上有三只调平螺丝,支承调平后可以拧紧锁紧圈,以保持座架稳定。
丝杠螺距为1mm,转动粗动手轮,经过一对传动比大约为2:1的齿轮付带动丝杆旋转与丝杆啮合的可调螺母,通过方转挡块及顶块带动移动镜在导轨面上滑动,实现粗动,移动距离的毫米数可在机体侧面的毫米刻尺(被挡住,没有画出来)上读得;通过读数窗口可读到0.01 mm,微动手轮可读到0.0001 mm 。
【实验步骤】见书
【注意事项】
干涉仪是精密光学仪器,使用中不能触摸光学元件光学表面;不要对着仪器说话、咳嗽等;测量时动作要轻、要缓,尽量使身体部位离开实验台面,以防震动。
测量时还要认真做到:
1.在调整反射镜背后粗调螺钉时,先要把微调螺钉调在中间位置,以便能在两个方向上作微调。
决不允许强扳硬扭。
2.为了防止引进螺距差,每项测量时必须沿同一方向转动微动手轮,途中不能倒退,否则会引起较大的空回误差。
3.测量过程中,一定要非常细心和耐心,转动手轮时要缓慢、均匀。
4.在测波长时,M1镜的位置应保持在30—60毫米范围内。
5.为了测量读数准确,使用干涉仪前必须对读数系统进行校正。
将微调手轮沿测量方向旋转至零,然后以同方向转动粗调手轮对齐读数窗口中的某一刻度线,以后测量时微动手轮只能沿同一方向转动。
在调整好零点后,应将微调手轮沿测量方向旋转,直至视场中的圆环"冒出"或"缩进"为止,此时空程即已消除。