HSMS-2825-TR2G中文资料
- 格式:pdf
- 大小:212.34 KB
- 文档页数:14
HCPL-0452-000E AVAGOHCPL-0452-300E AVAGOHCPL-0452-500E AVAGOHCPL-0453-000E AVAGOHCPL-0453-300E AVAGOHCPL-0453-500E AVAGOHCPL-0454-000E AVAGOHCPL-0454-300E AVAGOHCPL-0454-500E AVAGOHCPL-0466-000E AVAGOHCPL-0466-300E AVAGOHCPL-0466-500E AVAGOHCPL-0500-000E AVAGOHCPL-0500-300E AVAGOHCPL-0500-500E AVAGOHCPL-0501-000E AVAGOHCPL-0501-300E AVAGOHCPL-0501-500E AVAGOHCPL-050L-000E AVAGOHCPL-050L-300E AVAGOHCPL-050L-500E AVAGOHCPL-0530-000E AVAGOHCPL-0530-300E AVAGOHCPL-0530-500E AVAGOHCPL-0531-000E AVAGOHCPL-0531-300E AVAGOHCPL-0531-500E AVAGOHCPL-0534-000E AVAGOHCPL-0534-300E AVAGO SN74AHC541DW TIHCPL-0534-500E AVAGO SN74AHC573N TIHCPL-053L-000E AVAGO SN74HC125DBR TIHCPL-053L-300E AVAGO SN74HC148N TIHCPL-053L-500E AVAGO SN74HC373DWR TIHCPL-0601-000E AVAGO SN74LS612N TIHCPL-0601-300E AVAGO SN74LV373APWR TIHCPL-0601-500E AVAGO SN74LVC245APWR TIHCPL-060L-000E AVAGO SN74LVC257APWR TIHCPL-060L-300E AVAGO SN74LVC573APWR TIHCPL-060L-500E AVAGO SNJ5410W TIHCPL-0611-000E AVAGO SNJ5420W TIHCPL-0611-300E AVAGO SNJ5450W TIHCPL-0611-500E AVAGO SNJ5474W TIHCPL-061A-000E AVAGO SNJ5483AW TIHCPL-061A-300E AVAGO SNJ54H102W TIHCPL-061A-500E AVAGO SNJ54LS08W TIHCPL-061N-000E AVAGO SNJ54LS123J TIHCPL-061N-300E AVAGO SNJ54LS279W TIHCPL-061N-500E AVAGO SNJ54LS86W TIHCPL-0630-000E AVAGO SPX1585AU-2.5SPHCPL-0630-300E AVAGO SPX1585AU-3.3SPHCPL-0630-500E AVAGO SRFIC08K40R2MOTOROLA HCPL-0631-000E AVAGO SSM2166SZ ADI HCPL-0631-300E AVAGO SSM2250RU-REEL ADI HCPL-0631-500E AVAGO SST39SF010-70-4C-NH sst HCPL-063A-000E AVAGO SST39VF010-70-4C-NHE SST HCPL-063A-300E AVAGO SST39VF800A-70-4C-EK SST HCPL-063A-500E AVAGO SST39VF800A-70-4C-EK SST HCPL-063L-000E AVAGO STAC9766T SIGMATEL HCPL-063L-300E AVAGO STC809JEUR-T STC HCPL-063L-500E AVAGO STC809LEUR-T STC HCPL-063N-000E AVAGO STC809MEUR-T STC HCPL-063N-300E AVAGO STC809REUR-T STC HCPL-063N-500E AVAGO STC809SEUR-T STC HCPL-0661-000E AVAGO STC809TEUR-T STC HCPL-0661-300E AVAGO STC810JEUR-T STC HCPL-0661-500E AVAGO STC810LEUR-T STC HCPL-0700-000E AVAGO STC810MEUR-T STC HCPL-0700-300E AVAGO STC810REUR-T STC HCPL-0700-500E AVAGO STC810SEUR-T STC HCPL-0701-000E AVAGO STC810TEUR-T STC HCPL-0701-300E AVAGO STC811JEUS-T STC HCPL-0701-500E AVAGO STC811LEUS-T STC HCPL-0708-000E AVAGO STC811MEUS-T STC HCPL-0708-300E AVAGO STC811REUS-T STC HCPL-0708-500E AVAGO STC811SEUS-T STC HCPL-070A-000E AVAGO STC811TEUS-T STC HCPL-070A-300E AVAGO STC812JEUS-T STC HCPL-070A-500E AVAGO STC812LEUS-T STC HCPL-070L-000E AVAGO STC812MEUS-T STC HCPL-070L-300E AVAGO STC812REUS-T STC HCPL-070L-500E AVAGO STC812SEUS-T STC HCPL-0710-000E AVAGO STC812TEUS-T STC HCPL-0710-300E AVAGO STM809JWX6F STHCPL-0710-500E AVAGO STM809LWX6F STHCPL-0720-000E AVAGO STM809MWX6F STHCPL-0720-300E AVAGO STM809RWX6F STHCPL-0720-500E AVAGO STM809SWX6F STHCPL-0721-000E AVAGO STM809TWX6F STHCPL-0721-300E AVAGO STM810JWX6F STHCPL-0721-500E AVAGO STM810LWX6F STHCPL-0723-000E AVAGO STM810MWX6F STHCPL-0723-300E AVAGO STM810RWX6F STHCPL-0723-500E AVAGO STM810SWX6F STHCPL-0730-000E AVAGO STM810TWX6F STHCPL-0730-300E AVAGO STM811JW16F STHCPL-0730-500E AVAGO STM811LW16F STHCPL-0731-000E AVAGO STM811MW16F STHCPL-0731-300E AVAGO STM811RW16F STHCPL-0731-500E AVAGO STM811SW16F STHCPL-0738-000E AVAGO STM811TW16F STHCPL-0738-300E AVAGO STM812JW16F STHCPL-0738-500E AVAGO STM812LW16F STHCPL-073A-000E AVAGO STM812MW16F STHCPL-073A-300E AVAGO STM812RW16F STHCPL-073A-500E AVAGO STM812SW16F STHCPL-073L-000E AVAGOHCPL-073L-300E AVAGOHCPL-073L-500E AVAGOHCPL-0900-000E AVAGOHCPL-0900-300E AVAGOHCPL-0900-500E AVAGOHCPL-090J-000E AVAGOHCPL-090J-300E AVAGOHCPL-090J-500E AVAGOHCPL-091J-000E AVAGOHCPL-091J-300E AVAGOHCPL-091J-500E AVAGOHCPL-092J-000E AVAGOHCPL-092J-300E AVAGOHCPL-092J-500E AVAGOHCPL-0930-000E AVAGOHCPL-0930-300E AVAGOHCPL-0930-500E AVAGOHCPL-0931-000E AVAGOHCPL-0931-300E AVAGOHCPL-0931-500E AVAGOHCPL-181-000E AVAGOHCPL-181-00AE AVAGO TCM810TENB713MICROCHIP HCPL-181-00BE AVAGO TCM811JERCTR MICROCHIP HCPL-181-00CE AVAGO TCM811LERCTR MICROCHIP HCPL-181-00DE AVAGO TCM811MERCTR MICROCHIP HCPL-181-060E AVAGO TCM811RERCTR MICROCHIP HCPL-181-06AE AVAGO TCM811SERCTR MICROCHIP HCPL-181-06BE AVAGO TCM811TERCTR MICROCHIP HCPL-181-06CE AVAGO TCM812JERCTR MICROCHIP HCPL-181-06DE AVAGO TCM812LERCTR MICROCHIP HCPL2200-000E AVAGO TCM812MERCTR MICROCHIP HCPL-2200-000E AVAGO TCM812RERCTR MICROCHIP HCPL2200-300E AVAGO TCM812SERCTR MICROCHIP HCPL-2200-300E AVAGO TCM812TERCTR MICROCHIP HCPL2200-500E AVAGO TD1605C wearnes HCPL-2200-500E AVAGO TFDU2201-TR1VISHAY HCPL2201-000E AVAGO TFDU2201-TR3VISHAYHCPL-2201-000E AVAGO TFDU4100-TR3VISHAY HCPL2201-300E AVAGO TFDU4100-TT3VISHAY HCPL-2201-300E AVAGO TFDU4201-TR1VISHAY HCPL2201-500E AVAGO TFDU4201-TR3VISHAY HCPL-2201-500E AVAGO TFDU4202-TR1VISHAY HCPL-2202-000E AVAGO TFDU4202-TR3VISHAY HCPL-2202-300E AVAGO TFDU4203-TR1VISHAY HCPL-2202-500E AVAGO TFDU4203-TR3VISHAY HCPL-2211-000E AVAGO TISP4350H3BJR BOURNS HCPL-2211-300E AVAGO TJA1020T PHI HCPL-2211-500E AVAGO TJA1040TD PHI HCPL2212-000E AVAGO TL062IDR TI HCPL-2212-000E AVAGO TL064IDR TI HCPL2212-300E AVAGO TL071IDR TI HCPL-2212-300E AVAGO TL072IDR TI HCPL2212-500E AVAGO TL074IDR TI HCPL-2212-500E AVAGO TL081IP TIHCPL-2219-000E AVAGO TL082IDR TI HCPL-2219-300E AVAGO TL084IDR TI HCPL-2219-500E AVAGO TL431AIDR TIHCPL2231-000E AVAGO TL431BCLP TIHCPL-2231-000E AVAGO TL431IPK TIHCPL2231-300E AVAGO TLC0820AIDWR TIHCPL-2231-300E AVAGO TLC2254CD TIHCPL2231-500E AVAGO TLC27L2IDR TI HCPL-2231-500E AVAGO TLC3702CDR TIHCPL2232-000E AVAGO TLC542IDW TIHCPL-2232-000E AVAGO TLC5615CDR TIHCPL2232-300E AVAGO TLC5615IDR TIHCPL-2232-300E AVAGO TLE2062CDR TIHCPL-2232-500E AVAGO TLE2062IDR TIHCPL-2300-000E AVAGO TLV2211CDBVR TIHCPL-2300-300E AVAGO TLV2211IDBVR TIHCPL-2300-500E AVAGO TLV2231CDBVR TIHCPL-2400-000E AVAGO TLV2451IDBVR TIHCPL-2400-300E AVAGO TLV2471CDBVR TIHCPL-2400-500E AVAGO TLV2711IDBVR TIHCPL-2430-000E AVAGO TLV27L1IDBVR TIHCPL-2430-300E AVAGO TLV431AIDR TI HCPL-2430-500E AVAGO TMP82C79M-2TOSHIBA HCPL-2502-000E AVAGO TOIM4232-TR1VISHAY HCPL-2502-300E AVAGO TPA3008D2PHPRG4TI HCPL-2502-500E AVAGO TPS61042DRBR TI HCPL-2503-000E AVAGO UC2833N TI HCPL-2503-300E AVAGO UC2846DW TIHCPL-2503-500E AVAGO UC2846N TIHCPL-2530-000E AVAGO UC3833N TI HCPL-2530-300E AVAGO UC3846DWTR TIHCPL-2530-500E AVAGO UC3846N TIHCPL-2531-000E AVAGO UCC2818AADTRG4TI HCPL-2531-300E AVAGO UCC2818ADG4TI HCPL-2531-500E AVAGO UCC2818DG4TI HCPL-2601-000E AVAGO UCC2818DTRG4TI HCPL-2601-300E AVAGO UCC2895DWR TI HCPL-2601-500E AVAGO UCC3895DWR TI HCPL-2602-000E AVAGO UPC2758T-E3NECHCPL-2602-300E AVAGO uPD6453GT101NECHCPL-2602-500E AVAGO uPD6464AGT101NECHCPL-260L-000E AVAGO W78LE516-24WINBOND HCPL-260L-300E AVAGO W78LE516P-24WINBOND HCPL-260L-500E AVAGO W78LE52P-24WINBOND HCPL-2611-000E AVAGO W89C92WINBOND HCPL-2611-300E AVAGO X1227S8I XICOR HCPL-2611-500E AVAGO X25650S8I2.5XICOR HCPL-2612-000E AVAGO XEL22MICREL HCPL-2612-300E AVAGO XEL22L MICREL HCPL-2612-500E AVAGO XEL23MICREL HCPL-261A-000E AVAGO XEL23L MICREL HCPL-261A-300E AVAGO XPC850DSLZT50BU MOTOROLA HCPL-261A-500E AVAGO XR17C158CV MOTOROLA HCPL-261N-000E AVAGO TPS62220DDCR TIHCPL-261N-300E AVAGO TPS62222DDCR TIHCPL-261N-500E AVAGO HCPL-J314-000E AVAGO HCPL-2630-000E AVAGO HCPL-J314-300E AVAGO HCPL-2630-300E AVAGO HCPL-J314-500E AVAGO HCPL-2630-500E AVAGO HCPL-7860-300E AVAGO HCPL-2631-000E AVAGO HCPL-7860-500E AVAGO HCPL-2631-300E AVAGO MGA-87563-BLKG AVAGO HCPL-2631-500E AVAGO MGA-87563-TR1G AVAGO HCPL-263A-000E AVAGO MGA-87563-TR2G AVAGO HCPL-263A-300E AVAGO HLMP-6000AVAGO HCPL-263A-500E AVAGO OP42GSZ ADI HCPL-263N-000E AVAGO TLV5620IDR TI HCPL-263N-300E AVAGO DS1306EN+T DALLAS HCPL-263N-500E AVAGO TMS320F206PZA TI HCPL-2730-000E AVAGO AD8323ARUZ-REEL ADI HCPL-2730-300E AVAGO HCPL-3101-000E AVAGO HCPL-2730-500E AVAGO HCPL-3101-300E AVAGO HCPL-2731-000E AVAGO HCPL-3101-500E AVAGO HCPL-2731-300E AVAGO DS1338Z-33+DALLAS HCPL-2731-500E AVAGO DS1817R-10+TR DALLAS HCPL-273L-000E AVAGO HSMS-2825-TR2G AVAGO HCPL-273L-300E AVAGO HSMS-2825-TR1G AVAGO HCPL-273L-500E AVAGO HSMS-282C-TR1G AVAGO HCPL-3020-000E AVAGO HSMS-282C-BLKG AVAGO HCPL-3020-300E AVAGO HSMS-282C-TR2G AVAGOHCPL-3020-500E AVAGO HSMS-2820-TR1G AVAGO HCPL-3100-000E AVAGO HSMS-2820-BLKG AVAGO HCPL-3100-300E AVAGO HSMS-2820-TR2G AVAGO HCPL-3120-000E AVAGO HSMS-282F-TR1G AVAGO HCPL-3120-300E AVAGO HSMS-282F-BLKG AVAGO HCPL-3120-500E AVAGO HSMS-282F-TR2G AVAGO HCPL-3140-000E AVAGO AD712SQ/883B ADI HCPL-3140-300E AVAGO OPA2277PA TI HCPL-3140-500E AVAGO OPA2277UA TI HCPL-314J-000E AVAGO LM2675MX-ADJ NS HCPL-314J-300E AVAGO LTC1265CS Linear HCPL-314J-500E AVAGO LTC1265IS Linear HCPL-3150-000E AVAGO HSMS-2805-TR1G AVAGO HCPL-3150-300E AVAGO HSMS-2805-TR2G AVAGO HCPL-3150-500E AVAGO HSMP-3894-TR1G AVAGO HCPL-316J-000E AVAGO HSMP-3894-TR2G AVAGO HCPL-316J-300E AVAGO AT89C4051-24PU ATMEL HCPL-316J-500E AVAGO AT89C55WD-24JU ATMEL HCPL-3180-000E AVAGO MAX487ESA+T MAXIM HCPL-3180-300E AVAGO MAX487EEPA+MAXIM HCPL-3180-500E AVAGO MSP430F149IPMR TI HCPL-3700-000E AVAGO TPS65021RHAR TI HCPL-3700-300E AVAGO SSM2211SZ ADI HCPL-3700-500E AVAGO TLC3578IDW TI HCPL-3760-000E AVAGO AD9048SQ/883B ADI HCPL-3760-300E AVAGO AD9048TQ/883B ADI HCPL-3760-500E AVAGO AT89S52-24JU ATMEL HCPL-4100-000E AVAGO XC9536XL-7VQ64C XILINX HCPL-4100-300E AVAGO XTR101BG TI HCPL-4100-500E AVAGO MSC1210Y4PAGT TI HCPL-4200-000E AVAGO MSC1210Y4PAGR TI HCPL-4200-300E AVAGO ADS1178IPAPT TI HCPL-4200-500E AVAGO ACNW3190-300E AVAGO HCPL-4502-000E AVAGO MSP430F2418TPNR TI HCPL-4502-300E AVAGO MSP430F2418TPMR TI HCPL-4502-500E AVAGO XC95288XL-7TQ144C XILINX HCPL-4503-000E AVAGO TPS5100IPWR TI HCPL-4503-300E AVAGO EPM7128AETC144-10ALTERA HCPL-4503-500E AVAGO TMS320DM6446AZWTA TI HCPL-4504-000E AVAGO TMS320DM6446ZWT TI HCPL-4504-300E AVAGO UC3906N TI HCPL-4504-500E AVAGO UC3906DW TI HCPL-4506-000E AVAGO TPS54614PWPR TI HCPL-4506-300E AVAGO HCPL-0600-500E AVAGO HCPL-4506-500E AVAGO HEDS-9701#C54AVAGO HCPL-4534-000E AVAGO TLC04CP TI HCPL-4534-300E AVAGO X9313WSZ-3T1INTERSIL HCPL-4534-500E AVAGO TMS320LF2402APGA TIHCPL-4562-000E AVAGO TMS320LF2406APZA TI HCPL-4562-300E AVAGO AD9910BSVZ ADI HCPL-4562-500E AVAGO AD9957BSVZ ADI HCPL-4661-000E AVAGO TLV320AIC33IRGZ TI HCPL-4661-300E AVAGO TLV320AIC33IZQER TI HCPL-4661-500E AVAGO TPS54616PWPR TI HCPL-4731-000E AVAGO OPA551PA TI HCPL-4731-300E AVAGO DS1813R-15+DALLAS HCPL-4731-500E AVAGO TPS7333QDR TI HCPL-7510-000E AVAGO OPA277UA TI HCPL-7510-300E AVAGO LM1877MX-9NS HCPL-7510-500E AVAGO ISO7221BDR TI HCPL-7520-000E AVAGO TL16C550CIPTR TI HCPL-7520-300E AVAGO MAX9324EUP+MAXIM HCPL-7520-500E AVAGO MAX1706EEE-T MAXIM HCPL-7560-000E AVAGO TPS75733KTTR TI HCPL-7560-300E AVAGO LM2674MX-ADJ NS HCPL-7560-500E AVAGO ADS8321EB TI HCPL-7611-000E AVAGO ADS8320EB TI HCPL-7611-300E AVAGO W29C040T-90B WINBOND HCPL-7611-500E AVAGO ISO124U TI HCPL-7710-000E AVAGO FM25L04B-GTR RAMTRON HCPL-7710-300E AVAGO TLE2084CN TI HCPL-7710-500E AVAGO TL317CDR TI HCPL-7720-000E AVAGO MAX354CPE+MAXIM HCPL-7720-300E AVAGO MAX354EPE+MAXIM HCPL-7720-500E AVAGO DEI0429-WMB DEI HCPL-7721-000E AVAGO AT91SAM7SE512-AU atmel HCPL-7721-300E AVAGO EL1881CSZ-T7INTERSIL HCPL-7721-500E AVAGO SN74ACT2440FNR TI HCPL-7723-000E AVAGO MT4LC8M8C2P-5MICRON HCPL-7723-300E AVAGOHCPL-7723-500E AVAGOHCPL-7800-000E AVAGOHCPL-7800-300E AVAGOHCPL-7800-500E AVAGOHCPL-7800A-000E AVAGOHCPL-7800A-300E AVAGOHCPL-7800A-500E AVAGOHCPL-7840-000E AVAGOHCPL-7840-300E AVAGOHCPL-7840-500E AVAGOHCPL786J-000E AVAGOHCPL-786J-000E AVAGOHCPL786J-300E AVAGOHCPL-786J-300E AVAGOHCPL786J-500E AVAGOHCPL-786J-500E AVAGOHCPL788J-000E AVAGOHCPL-788J-000E AVAGOHCPL788J-300E AVAGOHCPL-788J-300E AVAGOHCPL788J-500E AVAGOHCPL-788J-500EHCPL-817-000EHCPL-817-00AEHCPL-817-00BEHCPL-817-00CEHCPL-817-00DEHCPL-817-00LEHCPL-817-060EHCPL-817-06AEHCPL-817-06BEHCPL-817-06CEHCPL-817-06DEHCPL-817-06LEHCPL-817-300EHCPL-817-30AEHCPL-817-30BEHCPL-817-30CEHCPL-817-30DEHCPL-817-30LEHCPL-817-360EHCPL-817-36AEHCPL-817-36BEHCPL-817-36CEHCPL-817-36DEHCPL-817-36LEHCPL-817-500EHCPL-817-50AEHCPL-817-50BEHCPL-817-50CEHCPL-817-50DEHCPL-817-50LEHCPL-817-560EHCPL-817-56AEHCPL-817-56BEHCPL-817-56CEHCPL-817-56DEHCPL-817-56LEHCPL-9000-000EHCPL-9000-300EHCPL-9000-500EHCPL-902J-000EHCPL-902J-300E AVAGO TLV320AIC3204IRHBR TI HCPL-902J-500E AVAGO TLV5625CDR TIHCPL-J312-000E AVAGO TLV5625IDR TIHCPL-J312-300E AVAGO TLV320AIC3104IRHBT TIHCPL-J312-500E AVAGO TLV320AIC3104IRHBR TIHCPL-J456-000E AVAGO AT45DB041D-SU ATMEL HCPL-J456-300E AVAGO MAX6657MSA+T MAXIM HCPL-J456-500E AVAGO HCPL-J454-000E AVAGO HCPL-M453-000E AVAGO HCPL-J454-300E AVAGO HCPL-M453-300E AVAGO HCPL-J454-400E AVAGO HCPL-M453-500E AVAGO HCPL-J454-500E AVAGO HCPL-M454-000E AVAGO HCPL-J454-600E AVAGO HCPL-M454-300E AVAGO TC7660IJA MICROCHIP HCPL-M454-500E AVAGO TC7660MJA MICROCHIP HCPL-M456-000E AVAGO ADT7460ARQZ ADIHCPL-M456-300E AVAGO ADSP-21065LKCA264ADIHCPL-M456-500E AVAGO ADSP-21065LKCAZ264ADI HCPL-M600-000E AVAGO AD7859ASZ ADI HCPL-M600-300E AVAGO MJD45H11G ONHCPL-M600-500E AVAGO TPD3E001DRLR TIHCPL-M601-000E AVAGO XTR116U TIHCPL-M601-300E AVAGO DS1233-5+DALLAS HCPL-M601-500E AVAGO TRU050GALGA32.0000/16.0000V ectron HCPL-M611-000E AVAGO TRU050GACCA28.7040/14.3520V ectron HCPL-M611-300E AVAGO AD9516-3BCPZ ADI HCPL-M611-500E AVAGO REF3125AIDBZT TIHCPL-M700-000E AVAGO REF3125AIDBZR TIHCPL-M700-300E AVAGO AD8592ARMZ ADI HCPL-M700-500E AVAGO QCPL-034H-500E AVAGOHD6413079F18HIT AD9865BCPZ ADI HDMP1636A AVAGO QCPL-312H-500E AVAGO HDMP-1636A AVAGO M74VHC1G135DFT1G ONHDMP-1637A AVAGO HSMD-A100-J00J1AVAGO HDMP1638AVAGO LT1587CT LTHDMP-1638AVAGO AD827JRZ-16ADI HEDS9710-R50AVAGO HSMP-389F-BLKG AVAGO HEDS-9710-R50AVAGO HSMP-389F-TR1G AVAGO HEL22MICREL HSMP-389F-TR2G AVAGO HEL23MICREL XC3064A-7PC84C XILINX HFBR-1414Z AVAGO XC3064A-7PC84I XILINX HFBR-1414TZ AVAGO Si7703EDN-T1-E3VISHAY HFBR-1521Z AVAGO Si7703EDN-T1-GE3VISHAYT-1521Z AVAGO Si7703EDN-T1-GE3ADIT-1521ETZ AVAGO AD605ARZ ADI HFBR-1521ETZ AVAGO MACH110-15JC AMDT-1522Z AVAGO MACH210-20JC AMDT-1522ETZ AVAGO LTC4213IDDB LINEAR HFBR-1522ETZ AVAGO DS1233-15+DALLAS HFBR1522Z AVAGO LTC3412EFE LINEAR HFBR-1522Z AVAGO MAX513ESD+T MAXIMHFBR1523Z AVAGO MAX3681EAG+MAXIM HFBR-1523Z AVAGO ICS1893CKILF IDT HFBR1528Z AVAGO TMS32C6416DGLZA5E0TI HFBR-1528Z AVAGO TMS32C6416EGLZ5E0TI HFBR-1531Z AVAGO TMS32C6416EGLZ6E3TI HFBR-1531ETZ AVAGO TMS32C6416EGLZ7E3TI HFBR-2531ETZ AVAGO TMS32C6416EGLZA5E0TI 1531ETZ AVAGO TMS32C6416EGLZA6E3TI 2531ETZ AVAGO AD829JRZ ADI HFBR1532Z AVAGO MAX14830ETM+MAXIM HFBR-1532Z AVAGO MX69GL128EAXGW-90G MXIC HFBR-1532ETZ AVAGO AD7811YRUZ ADI HFBR1533Z AVAGO TPS76318DBVR TI HFBR-1533Z AVAGO ADMP421ACEZ ADI HFBR-2412TZHFBR-2412ZHFBR2416TZHFBR-2416TZHFBR-2521Z AVAGO LT1304CS8Linear R-2521Z AVAGO MAX16801BEUA+T maxim R-2521ETZ AVAGO ACPL-M61L-500E AVAGO HFBR-2521ETZ AVAGO DS26503LN+DALLAS HFBR-2522Z AVAGO MAX9205EAI+T MAXIM R-2522Z AVAGO TMP105YZCT TIR-2522ETZ AVAGO TMP105YZCR TI HFBR-2522ETZ AVAGO AD5821BCBZ ADI HFBR-2523Z AVAGO PM5347-RI PMC HFBR-2528Z AVAGO PM73121-RI PMC HFBR-2531Z AVAGO TPA4411RTJT TI HFBR-2532Z AVAGO TPA4411RTJR TI HFBR-2532ETZ AVAGO LTC1438CG-ADJ Linear HFBR-2533Z AVAGO LTC1438IG-ADJ Linear HFBR-4501Z AVAGO DS1318E+DALLAS HFBR-4503Z AVAGO TMS320DM643AGDK5TI HFBR-4506Z AVAGO ACPL-M75L-000E AVAGO HFBR-4511Z AVAGO ACPL-M75L-060E AVAGO HFBR-4513Z AVAGO ACPL-M75L-500E AVAGO HFBR-4516Z AVAGO ACPL-M75L-560E AVAGO HFBR-4525Z AVAGO ACPL-T350-000E AVAGO HFBR-4526Z AVAGO ACPL-T350-060E AVAGO HFBR-4531Z AVAGO ACPL-T350-300E AVAGO HFBR-4532Z AVAGO ACPL-T350-360E AVAGO HFBR-4533Z AVAGO ACPL-T350-500E AVAGO HFBR-4535Z AVAGO ACPL-T350-560E AVAGO HFBR-4593Z AVAGO ADXRS620BBGZ ADI HFBR-4597Z AVAGO LT1521CS8Linear HFBR-EUD100Z AVAGO LT1521CS8-3.3Linear HFBR-EUD500Z AVAGO LT1521IS8LinearHFBR-EUS100Z AVAGO LT1521IS8-3.3Linear HFBR-EUS500Z AVAGO MAX6835VXSD3+T MAXIM HFBR-RUD100Z AVAGO AD9059BRSZ ADI HFBR-RUD500Z AVAGO HFBR-4515Z AVAGO HFBR-RUS100Z AVAGO HFBR-57E0PZ AVAGO HFBR-RUS500Z AVAGO HFCT-53D5EMZ AVAGO HG88510MITEL HFCT-5611AVAGOHI1-508-5HAR LT1242CS8Linear HI1-509-5HAR LT1242IS8Linear HM628512ALFP-5日立LT1140ACSW LinearHM628512BLFP-5日立AFBR-2419TZ AVAGO HS1101HUMIREL AD7156BCPZ ADIHS6118MACONICS ADP151ACBZ-2.8ADI HSDL-3201#021AVAGO DS1805Z-010+MAXIM HSDL-3201#001AVAGO TLP285-4GB TOSHIBA HSDL-3209-021AVAGO AD421BRZ ADI HSDL-7001#100AVAGO OPA2336PA TI HSDL-7002AVAGO ADUC812BSZ ADI HSMP-3814-BLKG AVAGO STPS6045CW ST HSMP-3814-TR1G AVAGO SG-3030JF EPSON HSMP-3814-TR2G AVAGO MPC8313VRAFFB FREESCAL HSMP-3822-BLKG AVAGO MAX1617AMEE+T maxim HSMP-3822-TR1G AVAGO MCP809M3X-4.63NS HSMP-3822-TR2G AVAGO MCP809M3X-4.38NS HSMP-3823-BLKG AVAGO MCP809M3X-4.00NS HSMP-3823-TR1G AVAGO MCP809M3X-3.08NS HSMP-3823-TR2G AVAGO MCP809M3X-2.93NS HSMP-3824-BLKG AVAGO MCP809M3X-2.63NS HSMP-3824-TR1G AVAGO MCP810M3X-4.63NS HSMP-3824-TR2G AVAGO MCP810M3X-4.38NS HSMP-3832-BLKG AVAGO MCP810M3X-4.00NS HSMP-3832-TR1G AVAGO MCP810M3X-3.08NS HSMP-3832-TR2G AVAGO MCP810M3X-2.93NS HSMP-3860-BLKG AVAGO MCP810M3X-2.63NS HSMP-3860-TR1G AVAGO LT1317BCS8Linear HSMP-3860-TR2G AVAGO LT1317BIS8Linear HSMP-3862-BLKG AVAGO LTC1757A-1EMS8Linear HSMP-3862-TR1G AVAGO ACPL-K342-000E AVAGO HSMP-3862-TR2G AVAGO ACPL-K342-500E AVAGO HSMP-3880-BLKG AVAGO AFBR-57M5APZ AVAGO HSMP-3880-TR1G AVAGO CY7C144AV-25AIT CY HSMP-3880-TR2G AVAGO CY7C144AV-25ACT CY HSMP-3892-BLKG AVAGO CY7C144AV-25AXIT CY HSMP-3892-TR1G AVAGO CY7C144AV-25AXCT CY HSMP-3892-TR2G AVAGO ABA-54563-TR1G AVAGO HSMP-389L-BLKG AVAGO ABA-54563-TR2G AVAGO HSMP-389L-TR1G AVAGO ABA-54563-BLKG AVAGO HSMP-389L-TR2G AVAGO LT1138ACG LinearHSMS-2812-BLKG AVAGO LT1138AIG Linear HSMS-2812-TR1G AVAGO ISL8120IRZ INTERSIL HSMS-2812-TR2G AVAGO ISL8120CRZ INTERSIL HSMS-2817-BLKG AVAGO LTC1421IG-2.5Linear HSMS-2817-TR1G AVAGO LTC1421CG-2.5Linear HSMS-2817-TR2G AVAGO MSC1212Y5PAGT TI HSMS-282K-BLKG AVAGO MSC1212Y5PAGR TI HSMS-282K-TR1G AVAGO TPS7330QDR TI HSMS-282K-TR2G AVAGO ADP3110KRZ ADI HSMS-2850-BLKG AVAGO MAX3263CAG MAXIM HSMS-2850-TR1G AVAGO MAX1729EUB MAXIM HSMS-2850-TR2G AVAGO MAX1651CSA MAXIM HSMS-8202-BLKG AVAGO AD876JR ADI HSMS-8202-TR1G AVAGO MAX1701EEE MAXIM HSMS-8202-TR2G AVAGO Si4201-BMR silicon HT2012-PL SMAR DS12C887+DALLAS HY62256ALT1-70HY LM236DR-2.5TIHY628100BLLG-70HY DS1722U DALLAS HY628100BLLG-70I HY LM7372MRX NSHY628400ALLG-55HY MAX490ESA+T MAXIM HY628400ALLG-70HY HSMS-2822-TR1G AVAGO HY62WT08081E-DG70C HY HSMP-389C-TR1G AVAGO HY62WT08081E-DG70I HY HSMP-389C-BLKG AVAGO ICL232IPE HAR HSMP-389C-TR2G AVAGO ICS8432DY-101ICS MC33375D-3.3R2G ONICS85322AM ICS AFBR-1529Z AVAGO ICS9112M-16ICS AFBR-2529Z AVAGO IDT75K62134S200BB IDT AFBR-1629Z AVAGO ILX139K SONY HSMS-2828-TR1G AVAGO IMP560ESA IMP TPS7101QDR TIIMP809JEUR-T IMP AFBR-57R5APZ AVAGO IMP809LEUR-T IMP UC3875DWPTR TIIMP809MEUR-T IMP ASSR-1510-503E AVAGO IMP809REUR-T IMP ASSR-1510-003E AVAGO IMP809SEUR-T IMP CY7B9514V-AC CYIMP809TEUR-T IMP MAX4450EXK+T MAXIM IMP810JEUR-T IMP SN75976A1DLR TIIMP810LEUR-T IMP ADUC831BSZ ADIIMP810MEUR-T IMP LTC1348IG LINEAR IMP810REUR-T IMP MSA-2111-TR1G AVAGO IMP810SEUR-T IMP DS1621S+T DALLAS IMP810TEUR-T IMP MAX485EESA+T MAXIM IMP811JEUS-T IMP MAX9669ETI+T MAXIM IMP811LEUS-T IMP MSA-0711-TR1G AVAGO IMP811MEUS-T IMP ACPL-P480-500E AVAGO IMP811REUS-T IMP HSMS-2800-TR1G AVAGO IMP811SEUS-T IMP LTC1622IS8LINEAR IMP811TEUS-T IMP MAX2102CWI MAXIMACPL-312T-500E AVAGO X24165S-2.7T1XICOR ACPL-H342-560E AVAGO X84129SI-2.5T1XICOR ACPL-H342-500E AVAGO HCNW4502-500E AVAGO ACPL-H342-060E AVAGO HCNW4502-300E AVAGO ACPL-H342-000E AVAGO AD811ARZ-16ADI ACPL-K63L-500E AVAGO TOCP155TOSHIBA ACPL-K63L-560E AVAGO TOCP200TOSHIBA ACPL-K63L-000E AVAGO HFBR-14E4Z AVAGO AFBR-5803AQZ AVAGO HFBR-24E2Z AVAGO ASSR-4128-502E AVAGO ALM-2412-TR1G AVAGO HSMH-C680AVAGO TLV320DAC23GQER TIWS1403-TR1AVAGO CY2509ZXC-1T CYLST2825-T-SC AGILENT ACPL-312T-300E AVAGO MAX853ESA+T MAXIM MAX3814CHJ+T MAXIM。
ATS2825使用手册一、设备简介ATS2825是一款高效、可靠的自动测试系统,广泛应用于各种电子产品的测试和测量。
它集成了多种测试功能于一体,具有高精度、高可靠性、易操作等特点。
本手册将指导您如何正确使用ATS2825。
二、设备安装在安装ATS2825之前,请先阅读本手册并确保您已了解所有注意事项。
然后按照以下步骤进行安装:1.打开包装箱,检查设备组件是否齐全,是否有损坏。
2.根据提供的安装指南和图纸进行安装,确保将设备安装在稳定、平整的地面上。
3.连接电源和信号线,确保符合当地法规和标准。
4.进行初步测试,确保设备正常工作。
三、设备配置ATS2825的配置包括硬件和软件两部分。
请按照以下步骤进行配置:1.根据您的测试需求,选择合适的测试模块和附件,并进行连接。
2.安装随设备提供的软件,并进行必要的配置,如测试项目、测试参数等。
3.启动软件并连接ATS2825,确保软件能够控制设备进行测试。
四、设备操作ATS2825的操作主要包括软件操作和硬件操作两部分:1.软件操作:通过软件界面进行测试项目的选择、参数设置、数据采集和结果显示等操作。
2.硬件操作:根据需要连接被测件、设置测试模块、执行测试等操作。
五、设备维护为了保持ATS2825的性能和延长其使用寿命,应定期进行维护:1.清洁设备表面,保持整洁。
2.检查电源线和信号线是否连接牢固,是否有破损或腐蚀现象。
3.对测试模块进行检查和清洁,确保其正常工作。
4.对软件进行更新,以获得最新的功能和修复潜在的错误。
5.定期进行全面检查和维护,以确保设备的整体性能和可靠性。
六、常见问题与解决在遇到问题时,请参考本手册中的“常见问题与解决”部分,查找相应的问题描述和解决方案。
如果问题仍未解决,请联系制造商或专业技术人员寻求帮助。
七、技术支持与售后服务为了确保您能够充分利用ATS2825的功能并解决使用中遇到的问题,我们提供全面的技术支持和售后服务:1.技术支持:我们提供技术咨询、故障排除和技术培训等服务,以确保您正确使用设备并充分利用其功能。
第二章二线制25Hz相敏轨道电路预叠加2000系列(闭环)电码化接口器材第一节配套器材列表二线制25Hz相敏轨道电路预叠加2000系列(闭环)电码化接口设备包括室隔离盒、室外隔离盒、室调整变压器、股道发送调整器、道岔发送调整器、送电调整电阻盒、受电调整电阻盒、室轨道电路防雷组合等设备,设备清单见下表1。
表1 25Hz相敏轨道电路预叠加2000系列(闭环)电码化设备清单序号名称型号外形尺寸(长×宽×高)1 室隔离盒NGL-T 295mm×100mm×155mm2 室外隔离盒WGL-T 202mm×116mm×202mm3 室调整变压器BMT-25 285mm×100mm×155mm4 股道发送调整器ZPW.TFG 285mm×100mm×155mm5 道岔发送调整器ZPW.TFD 295mm×150mm×155mm6 送电调整电阻盒RT-F 285mm×100mm×155mm7 受电调整电阻盒RT-R 285mm×150mm×155mm8 室轨道电路防雷组合MGFL-T 880mm×170mm×200mm9 股道发送调整组合ZPW.TFGZ 880mm×170mm×200mm10 道岔发送调整组合ZPW.TFDZ 880mm×170mm×200mm11 送端室隔离组合MGL-F 880mm×100mm×155mm12 受端室隔离组合MGL-R 880mm×100mm×155mm13 25Hz防护盒HF3-25 90mm×168mm×168mm14 25Hz防护盒HF4-25 90mm×168mm×168mm第二节配套器材介绍1 NGL-T型室隔离盒1.1 用途NGL-T型室隔离盒用于25Hz相敏轨道电路预叠加2000系列(闭环)电码化系统接口电路中,为室送电端和受电端通用的隔离设备,电化、非电化通用。
Instruction ManualMechanically Jointed Rodless CylinderII 2G Ex h IIC T6/T5 GbMarking Description:II2provided by compressed air into a force which causes mechanical linearsubject to “Special Conditions of Use”, please see Section 2.3.1 Safety InstructionsThese safety instructions are intended to prevent hazardous situationsand/or equipment damage. These instructions indicate the level ofpotential hazard with the labels of “Caution,” “Warning” or “Danger.”They are all important notes for safety and must be followed in additionto International Standards (ISO/IEC) *1), and other safety regulations.*1) ISO 4414: Pneumatic fluid power - General rules relating to systems.ISO 4413: Hydraulic fluid power - General rules relating to systems.IEC 60204-1: Safety of machinery - Electrical equipment of machines.(Part 1: General requirements)ISO 10218-1: Robots and robotic devices - Safety requirements forindustrial robots - Part 1: Robots.•Refer to product catalogue, Operation Manual and HandlingPrecautions for SMC Products for additional information.• Keep this manual in a safe place for future reference.Warning•Always ensure compliance with relevant safety laws andstandards.•All work must be carried out in a safe manner by a qualified person incompliance with applicable national regulations.2 SpecificationsThis product is suitable for use in Zones 1 and 2 only.2.1 Product Specifications:Refer to the operation manual for this product;2.2 Production Batch Code:The batch code printed on the label indicates the month and the year ofproduction as per the following table;2.3 Special Conditions of Use:•Products are suitable for sub-divisions IIC.•Products are suitable for Zones 1 & 2 only.2.3.1 Temperature Marking:2.3.1.1 Standard Product:•In the normal ambient temperature range (+5°C to +40°C) the productis rated to temperature class T6.•In the special ambient temperature range (+40°C to +60°C) the productis rated to temperature class T5.2.3.2 Static:•Danger of electrostatic discharge.3 Installation3.1 InstallationWarning•Do not install the product unless the safety instructions have been readand understood.•Do not twist or bend the cylinder, or mount the product when subjectto tension.•Do not use in an application where the product is stopped mid-stroke,via an external stop.•Do not use where cylinders are being synchronised to move a singleload.•In order to install the product, use one of the brackets available foundin the standard product catalogue;SketchSee the product catalogue for the exact code to order which relates to thebore size of your product.•When replacing the side supports, use the hexagonal socket head capscrews of the following sizes, and the hexagon wrenches shown below.3.2 EnvironmentWarning•Do not use in an environment where corrosive gases, chemicals, saltwater or steam are present.•Do not use in an explosive atmosphere except within the specifiedrating.•Do not expose to direct sunlight. Use a suitable protective cover.•Do not install in a location subject to vibration or impact in excess ofthe product’s specifications.•Do not mount in a location exposed to radiant heat that would result intemperatures in excess of the product’s specifications.•Do not use in a place subject to heavy vibration and/or shock.•Do not use in wet environments, where water can remove the presenceof the lubrication.•Do not use in case of heavy dusty environments where dust canpenetrate into the cylinder and dry the grease.•Do not allow dust layers to build up on the cylinder surface and insulatethe product.3.3 PipingCaution•Before connecting piping make sure to clean up chips, cutting oil, dustetc.•When installing piping or fittings, ensure sealant material does notenter inside the port. When using seal tape, leave 1 thread exposedon the end of the pipe/fitting.•3.4 LubricationCaution•SMC products have been lubricated for life at manufacture, and do notrequire lubrication in service.•If a lubricant is used in the system, refer to catalogue for details.Basic Circuituse, and could relate to an increase in maximum surface temperatureabove what the product specification declares.3.6 Electrical Connection•The product should be grounded by the piston rod and the body inorder to create an electrically conductive path to thesystem/application.•Ground the product in accordance with applicable regulations.•Do not pass an electrical current through the product.4 Settings4.1 Air Cushion adjustment•For air-cushion adjustment, tighten or loosen the cushion valve usinga hexagon socket wrench or a flat head screwdriver (excluding ø10).Warning•Do not operate the cushion valve in the fully closed or fully openedstate.Using it in the fully closed state will cause the cushion seal to bedamaged. Using it in the fully opened state will cause the piston assemblyor the cover to be damaged.•Be certain to activate the air cushion at the stroke end.When the cylinder is used with the cushion valve in a fully open position,a suitable external device should be installed to absorb all of the kineticenergy of the mechanism, of which the actuator is part, before reachingeach end of stroke. If this is not done, the piston assembly will bedamaged.5 How to OrderRefer to product catalogue for ‘How to Order’.6 Outline DimensionsRefer to the standard product catalogue for general dimensions.ORIGINAL INSTRUCTIONS7.1General maintenanceCaution•Not following proper maintenance procedures could cause the product to malfunction and lead to equipment damage.•If handled improperly, compressed air can be dangerous.• Maintenance of pneumatic systems should be performed only by qualified personnel.• Before performing maintenance, turn off the power supply and be sure to cut off the supply pressure. Confirm that the air is released to atmosphere.• After installation and maintenance, apply operating pressure and power to the equipment and perform appropriate functional and leakage tests to make sure the equipment is installed correctly.• If any electrical connections are disturbed during maintenance, ensure they are reconnected correctly and safety checks are carried out as required to ensure continued compliance with applicable national regulations.• Do not make any modification to the product.• Do not disassemble the product, unless required by installation or maintenance instructions.• Do not use a product which looks or contains damage, this will invalidate the certification. If damage is seen, please replace the product immediately.• Periodically check the product for any damage or rust appearing. This could result in an increase in friction and lead to dangerous conditions. Replace the whole actuator if any of these conditions appear.• Replace the product, when air leakage is above the allowable value 7.2 Replacement of Dust Seal BandWarning• The dust seal band is the only customer replaceable part.• If other parts are deemed to have failed please replace the product.Use only original SMC dust seal bands, given in the table below.7.3 Disassembly procedure• Disassemble the cylinder, remove the old grease and place all the parts on a clean cloth in a clean environment. The following flat head screwdriver or hexagon socket wrench shall be used to loosen the set• The following screwdriver or hexagon socket wrenches shall be used• Remove the old dust seal band, scrapers and if necessary, bearings and side scrapers.1 Dust seal band2 Scraper3 Bearing S4 Bearing R 7.4 Lubrication procedure▪ Dust seal band inner and outer surface ▪ scrapers ▪ bearings▪ side scrapers ▪ tube top surface7.5 Assembly procedure• The cylinder is assembled in the following order: bearings, dust seal band, side scraper, parallel key, scraper, stopper, spacer and end cover. Tighten the cross recessed binding head screws or the hexagon socket button bolt according to the torque values given.• Finally tighten the two set screws at each side with tightening torque of 0.1 Nm.• Check for cylinder smooth movement and for air leakage.8 Limitations of Use8.1 Limited warranty and disclaimer/compliance requirements Refer to Handling Precautions for SMC Products.Caution8.2 Obligations of the end-user• Ensure the product is used within the specification outlined.• Ensure that the maintenance periods are suitable for the application. • Ensure any cleaning processes to remove dust layers are made with the atmosphere in mind (e.g. using a damp cloth to avoid static build up).• Ensure that the application does not introduce additional hazards by mounting, loading, impacts or other methods.• Ensure that there is sufficient ventilation and air circulation around the product.• If the product is subject to direct heat sources in the application, they should be shielded so that the actuator temperature stays within the stated operating range.Danger• Do not exceed any of the specifications listed in Section 2 of this document as this will be deemed improper use.• Air equipment has an air leakage during operation within certain limits. Do not use this equipment when the air itself introduces additional hazards and could lead to an explosion.• Use only Ex certified auto switches. These should be ordered separately.• Do not use this product in the presence of strong magnetic fields that could generate a surface temperature higher than the product specification.• Avoid applications where the piston rod end and the adjoining part in the application can create a possible ignition source.• Do not install or use these actuators where there is the possibility for the piston rod to impact foreign objects.• In the event of damage or failure of any parts located in the vicinity where this product has been installed, it is the responsibility of the user to determine whether or not this has compromised the safety and condition of this product and/or the application.• External impact on the cylinder body could result in a spark and/or cylinder damage. Avoid any application where foreign objects can hit or impact the cylinder. In such situations the application should install a suitable guard to prevent this occurrence.• Do not use this equipment where vibration could lead to failure.9 Product DisposalThis product shall not be disposed of as municipal waste. Check your local regulations and guidelines to dispose this product correctly, in order to reduce the impact on human health and the environment.Refer to or www.smc.eu for your local distributor/importer.URL : https:// (Global) https:// www.smc.eu (Europe) SMC Corporation, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JapanSpecifications are subject to change without prior notice from the manufacturer. © 2022 SMC Corporation All Rights Reserved. Template DKP50047-F-085M。
Surface Mount Zero Bias Schottky Detector Diodes Technical DataHSMS-285x SeriesSOT-23/SOT-143 Package Lead Code Identification (top view)DescriptionAgilent’s HSMS-285x family of zero bias Schottky detector diodes has been designed and optimized for use in small signal (P in <-20 dBm) applications at frequencies below 1.5GHz. They are ideal for RF/ID and RF Tag applications where primary (DC bias) power is not available.Important Note: For detector applications with input power levels greater than –20 dBm, use the HSMS-282x series at frequen-cies below 4.0 GHz, and theHSMS-286x series at frequencies above 4.0GHz. The HSMS-285x series IS NOT RECOMMENDED for these higher power level applications.Available in various package configurations, these detector diodes provide low cost solutions to a wide variety of design prob-lems. Agilent’s manufacturing techniques assure that when two diodes are mounted into a single package, they are taken from adjacent sites on the wafer,assuring the highest possible degree of match.SOT-323 Package LeadCode Identification (top view)Features•Surface Mount SOT-23/SOT-143 Packages •Miniature SOT-323 and SOT-363 Packages •High Detection Sensitivity:up to 50 mV/µW at 915 MHz •Low Flicker Noise:-162 dBV/Hz at 100 Hz •Low FIT (Failure in Time)Rate*•Tape and Reel Options Available •Matched Diodes forConsistent Performance •Better ThermalConductivity for Higher Power Dissipation •Lead-free Option Available* For more information see the Surface Mount Schottky Reliability Data Sheet.SOT-363 Package Lead Code Identification (top view)SERIES SINGLESERIESSINGLE BRIDGE QUADPUNCONNECTEDTRIOLPin Connections and Package MarkingNotes:1.Package marking provides orienta-tion and identification.2.See “Electrical Specifications” for appropriate package marking.123654SOT-23/SOT-143 DC Electrical Specifications, T C = +25°C, Single Diode Part Package Maximum Typical Number Marking Lead Forward Voltage Capacitance HSMS-Code[1]Code Configuration V F (mV)C T (pF)2850P00Single1502500.302852P22Series Pair[2,3]2855P55Unconnected Pair[2,3]Test I F = 0.1 mA I F = 1.0 mA V R = –0.5V to –1.0V Conditions f = 1 MHz Notes:1. Package marking code is in white.2. ∆V F for diodes in pairs is 15.0 mV maximum at 1.0 mA.3. ∆C T for diodes in pairs is 0.05 pF maximum at –0.5V.SOT-323/SOT-363 DC Electrical Specifications, T C = +25°C, Single Diode Part Package Maximum Typical Number Marking Lead Forward Voltage Capacitance HSMS-Code[1]Code Configuration V F (mV)C T (pF)285B P0B Single[2]1502500.30285C P2C Series Pair[2,3]285L PL L Unconnected Trio285P PP P Bridge QuadTest I F = 0.1 mA I F = 1.0 mA V R = 0.5V to –1.0V Conditions f = 1 MHz Notes:1. Package marking code is laser marked.2. ∆V F for diodes in pairs is 15.0 mV maximum at 1.0 mA.3. ∆C T for diodes in pairs is 0.05 pF maximum at –0.5V.RF Electrical Specifications, T C = +25°C, Single DiodePart Number Typical Tangential Sensitivity Typical Voltage Sensitivity Typical Video HSMS-TSS (dBm) @ f = 915 MHzγ (mV/µW) @ f = 915 MHz Resistance RV (KΩ) 2850–57408.028522855285B285C285L285PTest Video Bandwidth = 2 MHz Power in = –40 dBmConditions Zero Bias R L = 100 KΩ, Zero Bias Zero BiasEquivalent Linear Circuit ModelHSMS-285x chipSPICE ParametersParameterUnits HSMS-285xB V V 3.8C J0pF 0.18E G eV0.69I BV A 3 E -4I SA 3 E-6N 1.06R S Ω25P B (V J )V0.35P T (XTI)2M0.5Absolute Maximum Ratings, T C = +25°C, Single DiodeSymbol Parameter Unit Absolute Maximum [1]SOT-23/143SOT-323/363P IV Peak Inverse Voltage V2.0 2.0T J Junction Temperature °C 150150T STG Storage Temperature °C -65 to 150-65 to 150T OP Operating Temperature °C -65 to 150-65 to 150θjcThermal Resistance [2]°C/W500150Notes:1. Operation in excess of any one of these conditions may result in permanent damage to the device.2. T C = +25°C, where T C is defined to be the temperature at the package pins where contact is made to the circuit board.ESD WARNING:Handling PrecautionsShould Be Taken To Avoid Static Discharge.C jR j =8.33 X 10-5 nTI b + I swhereI b = externally applied bias current in ampsI s = saturation current (see table of SPICE parameters)T = temperature, °Kn = ideality factor (see table of SPICE parameters)Note:To effectively model the packaged HSMS-285x product, please refer to Application Note AN1124.R S = series resistance (see Table of SPICE parameters)C j = junction capacitance (see Table of SPICE parameters)Typical Parameters, Single DiodeFigure 1. Typical Forward Current vs. Forward Voltage.Figure 2. +25°C Output Voltage vs. Input Power at Zero Bias.Figure 3. +25°C Expanded Output Voltage vs. Input Power. See Figure 2.Figure 4. Output Voltage vs. Temperature.I F – F O R W A R D C U R R E N T (m A )00.01V F – FORWARD VOLTAGE (V)0.8 1.010010.10.2 1.8101.40.40.6 1.2 1.6V O L T A G E O U T (m V )POWER IN (dBm)V O L T A G E OU T (m V )0.3POWER IN (dBm)10130O U T P U T V O L T A G E (m V )TEMPERATURE (°C)Applications Information IntroductionAgilent’s HSMS-285x family of Schottky detector diodes has been developed specifically for low cost, high volume designs in small signal (P in < -20dBm) applica-tions at frequencies below1.5GHz. At higher frequencies, the DC biased HSMS-286x family should be considered.In large signal power or gain con-trol applications (P in>-20dBm), the HSMS-282x and HSMS-286x products should be used. The HSMS-285x zero bias diode is not designed for large signal designs. Schottky Barrier Diode CharacteristicsStripped of its package, a Schottky barrier diode chip consists of a metal-semiconductor barrier formed by deposition of a metal layer on a semiconductor. The most common of several different types, the passivated diode, is shown in Figure 5, along with its equivalent circuit.Figure 5. Schottky Diode Chip.R S is the parasitic series resistance of the diode, the sum of the bondwire and leadframe resistance, the resistance of the bulk layer of silicon, etc. RF energy coupled into R S is lost as heat—it does not contribute to the rectified output of the diode.C J is parasitic junction capaci-tance of the diode, controlled bythe thickness of the epitaxial layerand the diameter of the Schottkycontact. R j is the junctionresistance of the diode, a functionof the total current flowingthrough it.8.33 X 10-5n TR j = –––––––––––– = R V – R sI S + I b0.026= ––––– at 25°CI S + I bwheren = ideality factor (see table ofSPICE parameters)T = temperature in °KI S = saturation current (seetable of SPICE parameters)I b = externally applied biascurrent in ampsI S is a function of diode barrierheight, and can range frompicoamps for high barrier diodesto as much as 5 µA for very lowbarrier diodes.The Height of the SchottkyBarrierThe current-voltage characteristicof a Schottky barrier diode atroom temperature is described bythe following equation:V - IR SI = I S (exp (––––––) - 1)0.026On a semi-log plot (as shown inthe Agilent catalog) the currentgraph will be a straight line withinverse slope 2.3 X 0.026 = 0.060volts per cycle (until the effect ofR S is seen in a curve that droopsat high current). All Schottkydiode curves have the same slope,but not necessarily the same valueof current for a given voltage. Thisis determined by the saturationcurrent, I S, and is related to thebarrier height of the diode.Through the choice of p-type orn-type silicon, and the selection ofmetal, one can tailor the charac-teristics of a Schottky diode.Barrier height will be altered, andat the same time C J and R S will bechanged. In general, very lowbarrier height diodes (with highvalues of I S, suitable for zero biasapplications) are realized onp-type silicon. Such diodes sufferfrom higher values of R S than dothe n-type. Thus, p-type diodes aregenerally reserved for small signaldetector applications (where veryhigh values of R V swamp out highR S) and n-type diodes are used formixer applications (where highL.O. drive levels keep R V low).Measuring Diode ParametersThe measurement of the fiveelements which make up the lowfrequency equivalent circuit for apackaged Schottky diode (seeFigure 6) is a complex task.Various techniques are used foreach element. The task beginswith the elements of the diodechip itself.FOR THE HSMS-285x SERIESC P = 0.08 pFL P = 2 nHC j = 0.18 pFR S = 25 ΩR V = 9 KΩFigure 6. Equivalent Circuit of aSchottky Diode.jCROSS-SECTION OF SCHOTTKYBARRIER DIODE CHIP CIRCUITR S is perhaps the easiest tomeasure accurately. The V-I curve is measured for the diode under forward bias, and the slope of the curve is taken at some relatively high value of current (such as 5mA). This slope is converted into a resistance R d .0.026R S = R d – ––––––I fR V and C J are very difficult tomeasure. Consider the impedance of C J = 0.16 pF when measured at 1 MHz — it is approximately 1M Ω. For a well designed zero bias Schottky, R V is in the range of 5 to 25 K Ω, and it shorts out the junction capacitance. Moving up to a higher frequency enables the measurement of the capacitance,but it then shorts out the video resistance. The best measurement technique is to mount the diode in series in a 50 Ω microstrip test circuit and measure its insertion loss at low power levels (around -20 dBm) using an HP8753C network analyzer. The resulting display will appear as shown in Figure 7.I N S E R T I O N L O S S (d B )FREQUENCY (MHz)Figure 7. Measuring C J and R V .At frequencies below 10 MHz, the video resistance dominates the loss and can easily be calculated from it. At frequencies above300MHz, the junction capacitancesets the loss, which plots out as a straight line when frequency is plotted on a log scale. Again,calculation is straightforward.L P and C P are best measured on the HP8753C, with the diode terminating a 50 Ω line on the input port. The resulting tabula-tion of S 11 can be put into a microwave linear analysisprogram having the five element equivalent circuit with R V , C J and R S fixed. The optimizer can then adjust the values of L P and C P until the calculated S 11 matches the measured values. Note that extreme care must be taken to de-embed the parasitics of the 50Ω test fixture.Detector CircuitsWhen DC bias is available,Schottky diode detector circuits can be used to create low cost RF and microwave receivers with a sensitivity of -55 dBm to-57dBm.[1] These circuits can take a variety of forms, but in the mostsimple case they appear as shown in Figure 8. This is the basic detector circuit used with theHSMS-285x family of diodes.In the design of such detector circuits, the starting point is the equivalent circuit of the diode, as shown in Figure 6.Of interest in the design of the video portion of the circuit is the diode’s video impedance —the other four elements of the equiv-alent circuit disappear at all reasonable video frequencies. In general, the lower the diode’s video impedance, the better the design.RF IN The situation is somewhat more complicated in the design of the RF impedance matching network,which includes the package inductance and capacitance (which can be tuned out), the series resistance, the junction capacitance and the videoresistance. Of these five elements of the diode’s equivalent circuit,the four parasitics are constants and the video resistance is a function of the current flowing through the diode.26,000R V ≈ ––––––I S + I bwhereI S = diode saturation currentin µAI b = bias current in µA Saturation current is a function of the diode’s design,[2] and it is a constant at a given temperature.For the HSMS-285x series, it is typically 3 to 5 µA at 25°C.Saturation current sets the detec-tion sensitivity, video resistance and input RF impedance of the zero bias Schottky detector diode.[1] Agilent Application Note 923, Schottky Barrier Diode Video Detectors.[2] Agilent Application Note 969, An Optimum Zero Bias Schottky Detector Diode.Since no external bias is used with the HSMS-285x series, a single transfer curve at any given frequency is obtained, as shown in Figure2.The most difficult part of the design of a detector circuit is the input impedance matching network. For very broadband detectors, a shunt 60 Ω resistor will give good input match, but at the expense of detection sensitivity.When maximum sensitivity is required over a narrow band of frequencies, a reactive matching network is optimum. Such net-works can be realized in either lumped or distributed elements, depending upon frequency, size constraints and cost limitations, but certain general design principals exist for all types.[3] Design work begins with the RF impedance of the HSMS-285x series, which is given in Figure 9.Figure 9. RF Impedance of theHSMS-285x Series at -40dBm.915 MHz Detector Circuit Figure 10 illustrates a simple impedance matching network for a 915 MHz detector.VIDEOOUTDIMENSIONS ARE FORMICROSTRIP ON0.032" THICK FR-4.Figure 10. 915MHz MatchingNetwork for the HSMS-285x Seriesat Zero Bias.A 65 nH inductor rotates theimpedance of the diode to a pointon the Smith Chart where a shuntinductor can pull it up to thecenter. The short length of 0.065"wide microstrip line is used tomount the lead of the diode’sSOT-323 package. A shorted shuntstub of length <λ/4 provides thenecessary shunt inductance andsimultaneously provides thereturn circuit for the current gen-erated in the diode. The imped-ance of this circuit is given inFigure11.FREQUENCY (GHz): 0.9-0.93Figure 11. Input Impedance.The input match, expressed interms of return loss, is given inFigure 12.RETURNLOSS(dB)0.9-20FREQUENCY (GHz)0.915-10-150.93-5Figure 12. Input Return Loss.As can be seen, the band overwhich a good match is achieved ismore than adequate for 915 MHzRFID applications.Voltage DoublersTo this point, we have restrictedour discussion to single diodedetectors. A glance at Figure 8,however, will lead to the sugges-tion that the two types of singlediode detectors be combined intoa two diode voltage doubler[4](known also as a full wave recti-fier). Such a detector is shown inFigure 13.VIDEO OUTRF INFigure 13. Voltage Doubler Circuit.Such a circuit offers severaladvantages. First the voltageoutputs of two diodes are addedin series, increasing the overallvalue of voltage sensitivity for thenetwork (compared to a singlediode detector). Second, the RFimpedances of the two diodes areadded in parallel, making the jobof reactive matching a bit easier.[3] Agilent Application Note 963, Impedance Matching Techniques for Mixers and Detectors.[4] Agilent Application Note 956-4, Schottky Diode Voltage Doubler.[5] Agilent Application Note 965-3, Flicker Noise in Schottky Diodes.Such a circuit can easily be realized using the two series di-odes in the HSMS-285C.Flicker NoiseReference to Figure 5 will show that there is a junction of metal,silicon, and passivation around the rim of the Schottky contact. It is in this three-way junction that flicker noise [5] is generated. This noise can severely reduce the sensitivity of a crystal video receiver utilizing a Schottky detector circuit if the video frequency is below the noise corner. Flicker noise can be substantially reduced by the elimination of passivation, but such diodes cannot be mounted in non-hermetic packages. p-type silicon Schottky diodes have the least flicker noise at a given value of external bias (compared to n-type silicon or GaAs). At zero bias, such diodes can have extremely low values of flicker noise. For the HSMS-285x series,the noise temperature ratio is given in Figure 14.N O I S E T E M P E R A T U R E R A T I O (d B )FREQUENCY (Hz)Figure 14. Typical Noise Temperature Ratio.Noise temperature ratio is the quotient of the diode’s noise power (expressed in dBV/Hz) di-vided by the noise power of an ideal resistor of resistance R =R V .For an ideal resistor R, at 300°K,the noise voltage can be com-puted fromv = 1.287 X 10-10 √R volts/Hz which can be expressed as20 log 10 vdBV/HzThus, for a diode with R V = 9K Ω,the noise voltage is 12.2 nV/Hz or -158 dBV/Hz. On the graph of Figure 14, -158 dBV/Hz would replace the zero on the vertical scale to convert the chart to one of absolute noise voltage vs.frequency.Diode BurnoutAny Schottky junction, be it an RF diode or the gate of a MESFET, is relatively delicate and can be burned out with excessive RF power. Many crystal video receiv-ers used in RFID (tag) applica-tions find themselves in poorly controlled environments where high power sources may bepresent. Examples are the areas around airport and FAA radars,nearby ham radio operators, the vicinity of a broadcast band trans-mitter, etc. In such environments,the Schottky diodes of thereceiver can be protected by a de-vice known as a limiter diode.[6]Formerly available only in radar warning receivers and other high cost electronic warfare applica-tions, these diodes have been adapted to commercial and consumer circuits.Agilent offers a complete line of surface mountable PIN limiter diodes. Most notably, ourHSMP-4820 (SOT-23) can act as a very fast (nanosecond) power-sensitive switch when placedbetween the antenna and the Schottky diode, shorting out the RF circuit temporarily andreflecting the excessive RF energy back out the antenna.Assembly InstructionsSOT-323 PCB FootprintA recommended PCB pad layout for the miniature SOT-323 (SC-70)package is shown in Figure 15(dimensions are in inches). This layout provides ample allowance for package placement by auto-mated assembly equipment without adding parasitics that could impair the performance.Figure 16 shows the pad layout for the six-lead SOT-363.Figure 15. PCB Pad Layout (dimensions in inches).Figure 16. PCB Pad Layout (dimensions in inches).[6] Agilent Application Note 1050, Low Cost, Surface Mount Power Limiters.SMT AssemblyReliable assembly of surface mount components is a complex process that involves manymaterial, process, and equipment factors, including: method of heating (e.g., IR or vapor phase reflow, wave soldering, etc.)circuit board material, conductor thickness and pattern, type of solder alloy, and the thermalconductivity and thermal mass of components. Components with a low mass, such as the SOT packages, will reach solderreflow temperatures faster than those with a greater mass.Agilent’s diodes have beenqualified to the time-temperature profile shown in Figure 17. This profile is representative of an IR reflow type of surface mount assembly process.TIME (seconds)T E M P E R A T U R E (°C )05010015020025060120180240300Figure 17. Surface Mount Assembly Profile.After ramping up from room temperature, the circuit board with components attached to it (held in place with solder paste)passes through one or morepreheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evapo-rating solvents from the solder paste. The reflow zone briefly elevates the temperature suffi-ciently to produce a reflow of the solder.The rates of change of tempera-ture for the ramp-up and cool-down zones are chosen to be low enough to not cause deformation of the board or damage to compo-nents due to thermal shock. The maximum temperature in the reflow zone (T MAX ) should not exceed 235°C.These parameters are typical for a surface mount assembly process for Agilent diodes. As a general guideline, the circuit board and components should be exposed only to the minimum temperatures and times necessary to achieve a uniform reflow of solder.Part Number Ordering InformationNo. of Part Number Devices Container HSMS-285x-TR2*1000013" Reel HSMS-285x-TR1*30007" Reel HSMS-285x-BLK *100antistatic bagwhere x = 0, 2, 5, B, C, L and P for HSMS-285x.For lead-free option, the part number will have the character "G" at the end, eg. HSMS-285x-TR2G for a 10,000 lead-free reel.Package DimensionsOutline 23 (SOT-23)Outline 143 (SOT-143)SIDE VIEWEND VIEWDIMENSIONS ARE IN MILLIMETERS (INCHES)DIMENSIONS ARE IN MILLIMETERS (INCHES)PACKAGE MARKING CODE (XX)Outline SOT-363 (SC-70 6 Lead)Outline SOT-323 (SC-70 3 Lead)0.25 (0.010)0.15 (0.006)0.30 (0.012)0.10 (0.004)0.425 (0.017)DIMENSIONS ARE IN MILLIMETERS (INCHES)0.30 (0.012)0.10 (0.004)0.425 (0.017)DIMENSIONS ARE IN MILLIMETERS (INCHES)Device OrientationUSER FEEDFor Outline SOT-143Note: "AB" represents package marking code. "C" represents date code.END VIEWTOP VIEW For Outlines SOT-23, -323Note: "AB" represents package marking code. "C" represents date code.END VIEWTOP VIEW END VIEWTOP VIEW Note: "AB" represents package marking code. "C" represents date code.For Outline SOT-363Tape Dimensions and Product OrientationFor Outline SOT-23DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETER A 0B 0K 0P D 1 3.15 ± 0.102.77 ± 0.101.22 ± 0.104.00 ± 0.101.00 + 0.050.124 ± 0.0040.109 ± 0.0040.048 ± 0.0040.157 ± 0.0040.039 ± 0.002CAVITYDIAMETER PITCH POSITION D P 0E 1.50 + 0.104.00 ± 0.101.75 ± 0.100.059 + 0.0040.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTH THICKNESSW t18.00 + 0.30 – 0.100.229 ± 0.0130.315 + 0.012 – 0.0040.009 ± 0.0005CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)F P 23.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCE BETWEEN CENTERLINEFor Outline SOT-1431DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETER A 0B 0K 0P D 1 3.19 ± 0.102.80 ± 0.101.31 ± 0.104.00 ± 0.101.00 + 0.250.126 ± 0.0040.110 ± 0.0040.052 ± 0.0040.157 ± 0.0040.039 + 0.010CAVITYDIAMETER PITCH POSITION D P 0E 1.50 + 0.104.00 ± 0.101.75 ± 0.100.059 + 0.0040.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTH THICKNESSW t18.00 + 0.30 – 0.100.254 ± 0.0130.315+ 0.012 – 0.0040.0100 ± 0.0005CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)F P 23.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCE/semiconductorsFor product information and a complete list of distributors, please go to our web site.For technical assistance call:Americas/Canada: +1 (800) 235-0312 or (916) 788-6763Europe: +49 (0) 6441 92460China: 10800 650 0017Hong Kong: (65) 6756 2394India, Australia, New Zealand: (65) 6755 1939Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only)Korea: (65) 6755 1989Singapore, Malaysia, Vietnam, Thailand, Philippines,Indonesia: (65) 6755 2044Taiwan: (65) 6755 1843Data subject to change.Copyright © 2004 Agilent Technologies, Inc.Obsoletes 5968-7457E March 24, 20045989-0479ENTape Dimensions and Product OrientationFor Outlines SOT-323, -363(CARRIER TAPE THICKNESS)(COVER TAPE THICKNESS)DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETER A 0B 0K 0P D 1 2.40 ± 0.102.40 ± 0.101.20 ± 0.104.00 ± 0.101.00 + 0.250.094 ± 0.0040.094 ± 0.0040.047 ± 0.0040.157 ± 0.0040.039 + 0.010CAVITYDIAMETER PITCH POSITION D P 0E 1.55 ± 0.054.00 ± 0.101.75 ± 0.100.061 ± 0.0020.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTH THICKNESS W t 18.00 ± 0.300.254 ± 0.020.315 ± 0.0120.0100 ± 0.0008CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)F P 2 3.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCEFOR SOT-323 (SC70-3 LEAD)An8°C MAX FOR SOT-363 (SC70-6 LEAD)10°C MAXANGLEWIDTHTAPE THICKNESS C T t 5.4 ± 0.100.062 ± 0.0010.205 ± 0.0040.0025 ± 0.00004COVER TAPE。
Surface Mount RF SchottkyBarrier DiodesTechnical DataHSMS-282x SeriesFeatures•Low Turn-On Voltage(As Low as 0.34V at 1 mA)•Low FIT (Failure in Time) Rate*•Six-sigma Quality Level •Single, Dual and QuadVersions•Unique Configurations in Surface Mount SOT-363Package– increase flexibility– save board space– reduce cost•HSMS-282K GroundedCenter Leads Provide up to10 dB Higher Isolation •Matched Diodes forConsistent Performance •Better Thermal Conductivity for Higher Power Dissipation •Lead-free Option Available *For more information see the Surface Mount SchottkyReliability Data Sheet. Description/Applications These Schottky diodes are specifically designed for both analog and digital applications. This series offers a wide range of specifications and package configurations to give the designer wide flexibility. Typical applications of these Schottky diodes are mixing, detecting, switching, sampling, clamping,Package Lead Code Identification, SOT-23/SOT-143 (Top View)COMMONCATHODECOMMONANODESERIESSINGLEPackage Lead Code Iden-tification, SOT-323(Top View)Package Lead Code Iden-tification, SOT-363(Top View)UNCONNECTEDTRIOP RHIGH ISOLATIONUNCONNECTED PAIRand wave shaping. TheHSMS-282x series of diodes is thebest all-around choice for mostapplications, featuring low seriesresistance, low forward voltage atall current levels and good RFcharacteristics.Note that Agilent’s manufacturingtechniques assure that dice foundin pairs and quads are taken fromadjacent sites on the wafer,assuring the highest degree ofmatch.2Electrical Specifications T C = 25°C, Single Diode [4]MaximumMaximum Minimum Maximum Forward Reverse Typical Part PackageBreakdown Forward Voltage Leakage Maximum Dynamic Number Marking Lead Voltage Voltage V F (V) @I R (nA) @Capacitance Resistance HSMS [5]Code Code Configuration V BR (V)V F (mV)I F (mA)V R (V)C T (pF)R D (Ω)[6]2820C0[3]0Single 153400.510100 11.0122822C2[3]2Series2823C3[3]3Common Anode 2824C4[3]4Common Cathode 2825C5[3]5Unconnected Pair 2827C7[3]7Ring Quad [5]2828C8[3]8Bridge Quad [5]2829C9[3]9Cross-over Quad 282B C0[7]B Single 282C C2[7]C Series282E C3[7]E Common Anode 282F C4[7]F Common Cathode 282K CK [7]K High IsolationUnconnected Pair 282L CL [7]L Unconnected Trio282M HH [7]M Common Cathode Quad 282N NN [7]N Common Anode Quad 282P CP [7]P Bridge Quad 282ROO [7]RRing QuadTest ConditionsI R = 100 µA I F = 1 mA [1]V F = 0 V I F = 5 mAf = 1 MHz [2]Notes:1. ∆V F for diodes in pairs and quads in 15 mV maximum at 1 mA.2. ∆C TO for diodes in pairs and quads is 0.2 pF maximum.3. Package marking code is in white.4. Effective Carrier Lifetime (τ) for all these diodes is 100 ps maximum measured with Krakauer method at 5 mA.5. See section titled “Quad Capacitance.”6. R D = R S + 5.2Ω at 25°C and I f = 5 mA.7. Package marking code is laser marked.Absolute Maximum Ratings [1] T C = 25°CSymbol Parameter Unit SOT-23/SOT-143SOT-323/SOT-363I f Forward Current (1 µs Pulse)Amp 11P IV Peak Inverse Voltage V 1515T j Junction Temperature °C 150150T stg Storage Temperature °C -65 to 150-65 to 150θjcThermal Resistance [2]°C/W500150Notes:1.Operation in excess of any one of these conditions may result in permanent damage tothe device.2.T C = +25°C, where T C is defined to be the temperature at the package pins wherecontact is made to the circuit board.1.Package marking providesorientation and identification.2.See “Electrical Specifications ” forappropriate package marking.Pin Connections and Package Marking1236543Quad CapacitanceCapacitance of Schottky diode quads is measured using an HP4271 LCR meter. Thisinstrument effectively isolates individual diode branches from the others, allowing accuratecapacitance measurement of each branch or each diode. The conditions are: 20 mV R.M.S.voltage at 1 MHz. Agilent defines this measurement as “CM ”, and it is equivalent to the capacitance of the diode by itself. The equivalent diagonal and adjacent capaci-tances can then be calculated by the formulas given below.In a quad, the diagonal capaci-tance is the capacitance between points A and B as shown in the figure below. The diagonal capacitance is calculated using the following formulaC 1 x C 2 C 3 x C 4C DIAGONAL = _______ + _______C 1 + C 2 C 3 + C 4C 1C 2C 4C 3ABCThe equivalent adjacentcapacitance is the capacitance between points A and C in the figure below. This capacitance is calculated using the following formula1C ADJACENT = C 1 + ____________1 1 1–– + –– + –– C2 C 3C 4This information does not apply to cross-over quad diodes.SPICE ParametersParameter UnitsHSMS-282x B V V 15C J0pF 0.7E G eV 0.69I BV A 1E -4I S A 2.2E-8N 1.08R S Ω 6.0P B V0.65P T 2M0.5C jR j =8.33 X 10-5 nT I b + I swhereI b = externally applied bias current in ampsI s = saturation current (see table of SPICE parameters)T = temperature, °Kn = ideality factor (see table of SPICE parameters)Note:To effectively model the packaged HSMS-282x product, please refer to Application Note AN1124.R S = series resistance (see Table of SPICE parameters)C j = junction capacitance (see Table of SPICE parameters)Linear Equivalent Circuit Model Diode ChipESD WARNING:Handling Precautions Should Be Taken To Avoid Static Discharge.4Typical Performance, T C = 25°C (unless otherwise noted), Single DiodeFigure 1. Forward Current vs. Forward Voltage at Temperatures.I F – F O R W A R D C U R R E N T (m A )V F – FORWARD VOLTAGE (V)Figure 2. Reverse Current vs. Reverse Voltage at Temperatures.I R – R E V E R S E C U R R E N T (n A )V R – REVERSE VOLTAGE (V)1100010010100,00010,000Figure 3. Total Capacitance vs. Reverse Voltage.286C T – C A P A C I T A N C E (p F )V R – REVERSE VOLTAGE (V)400.60.40.210.8Figure 4. Dynamic Resistance vs. Forward Current.0.11100R D – D Y N A M I C R E S I S T A N C E (Ω)I F – FORWARD CURRENT (mA)101101000100V F - FORWARD VOLTAGE (V)Figure 5. Typical V f Match, Series Pairs and Quads at Mixer Bias Levels.301010.3I F - F O R W A R D C U R R E N T (m A )∆V F - F O R W A R D V O L T A G E D I F F E R E N C E (m V )0.20.40.60.8 1.0 1.21.4V F - FORWARD VOLTAGE (V)Figure 6. Typical V fMatch, Series Pairs at Detector Bias Levels.100101I F - F O R W A R D C U R R E N T (µA )∆V F - F O R W A R D V O L T A G E D I F F E R E N C E (m V )0.100.150.200.25Figure 7. Typical Output Voltage vs. Input Power, Small Signal Detector Operating at 850 MHz.V O – O U T P U T V O L T A G E (V )P in – INPUT POWER (dBm)Figure 8. Typical Output Voltage vs. Input Power, Large Signal Detector Operating at 915 MHz.V O – O U T P U T V O L T A G E (V )P in – INPUT POWER (dBm)LOCAL OSCILLATOR POWER (dBm)Figure 9. Typical Conversion Loss vs. L.O. Drive, 2.0 GHz (Ref AN997).C O N V E R S I O N L O S S (d B )121098762681045Applications Information Product SelectionAgilent’s family of surface mount Schottky diodes provide unique solutions to many design prob-lems. Each is optimized for certain applications.The first step in choosing the right product is to select the diode type. All of the products in theHSMS-282x family use the same diode chip–they differ only in package configuration. The same is true of the HSMS-280x, -281x, 285x, -286x and -270x families. Each family has a different set of characteristics, which can be compared most easily by consult-ing the SPICE parameters given on each data sheet.The HSMS-282x family has been optimized for use in RF applica-tions, such asDC biased small signaldetectors to 1.5 GHz.Biased or unbiased largesignal detectors (AGC orpower monitors) to 4 GHz.Mixers and frequencymultipliers to 6 GHz.The other feature of theHSMS-282x family is itsunit-to-unit and lot-to-lot consis-tency. The silicon chip used in this series has been designed to use the fewest possible processing steps to minimize variations in diode characteristics. Statistical data on the consistency of this product, in terms of SPICE parameters, is available from Agilent.For those applications requiring very high breakdown voltage, use the HSMS-280x family of diodes. Turn to the HSMS-281x when you need very low flicker noise. TheHSMS-285x is a family of zero biasdetector diodes for small signalapplications. For high frequencydetector or mixer applications,use the HSMS-286x family. TheHSMS-270x is a series of specialtydiodes for ultra high speedclipping and clamping in digitalcircuits.Schottky Barrier Diode Char-acteristicsStripped of its package, aSchottky barrier diode chipconsists of a metal-semiconductorbarrier formed by deposition of ametal layer on a semiconductor.The most common of severaldifferent types, the passivateddiode, is shown in Figure 10,along with its equivalent circuit.R S is the parasitic series resis-tance of the diode, the sum of thebondwire and leadframe resis-tance, the resistance of the bulklayer of silicon, etc. RF energycoupled into R S is lost as heat—itdoes not contribute to the recti-fied output of the diode. C J isparasitic junction capacitance ofthe diode, controlled by the thick-ness of the epitaxial layer and thediameter of the Schottky contact.R j is the junction resistance of thediode, a function of the totalcurrent flowing through it.jCROSS-SECTION OF SCHOTTKYBARRIER DIODE CHIP CIRCUIT8.33 X 10-5n TR j = –––––––––––– = R V– R sI S + I b0.026≈––––– at 25°CI S + I bwheren =ideality factor (see table ofSPICE parameters)T =temperature in °KI S =saturation current (seetable of SPICE parameters)I b =externally applied biascurrent in ampsR v =sum of junction and seriesresistance, the slope of theV-I curveI S is a function of diode barrierheight, and can range frompicoamps for high barrier diodesto as much as 5 µA for very lowbarrier diodes.The Height of the SchottkyBarrierThe current-voltage characteristicof a Schottky barrier diode atroom temperature is described bythe following equation:V - IR SI = I S (e–––––– 1)0.026On a semi-log plot (as shown inthe Agilent catalog) the currentgraph will be a straight line withinverse slope 2.3 X 0.026 = 0.060volts per cycle (until the effect of Figure 10. Schottky Diode Chip.6R S is seen in a curve that droops at high current). All Schottky diode curves have the same slope, but not necessarily the same value of current for a given voltage. This is determined by the saturation current, I S, and is related to the barrier height of the diode.Through the choice of p-type orn-type silicon, and the selection of metal, one can tailor the characteristics of a Schottky diode. Barrier height will be altered, and at the same time C J and R S will be changed. In general, very low barrier height diodes (with high values of I S, suitable for zero bias applica-tions) are realized on p-type silicon. Such diodes suffer from higher values of R S than do then-type. Thus, p-type diodes are generally reserved for detector applications (where very high values of R V swamp out high R S) and n-type diodes such as the HSMS-282x are used for mixer applications (where high L.O. drive levels keep R V low). DC biased detectors and self-biased detectors used in gain or power control circuits.Detector Applications Detector circuits can be divided into two types, large signal(P in > -20 dBm) and small signal (P in < -20 dBm). In general, the former use resistive impedance matching at the input to improve flatness over frequency—this is possible since the input signal levels are high enough to produce adequate output voltages without the need for a high Q reactive input matching network. These circuits are self-biased (no external DC bias) and are used for gain and power control of amplifiers.Small signal detectors are used asvery low cost receivers, andrequire a reactive input imped-ance matching network toachieve adequate sensitivity andoutput voltage. Those operatingwith zero bias utilize the HSMS-285x family of detector diodes.However, superior performanceover temperature can be achievedwith the use of 3 to 30 µA of DCbias. Such circuits will use theHSMS-282x family of diodes if theoperating frequency is 1.5 GHz orlower.Typical performance of singlediode detectors (usingHSMS-2820 or HSMS-282B) canbe seen in the transfer curvesgiven in Figures 7 and 8. Suchdetectors can be realized eitheras series or shunt circuits, asshown in Figure 11.DC Biased DiodesZero Biased DiodesFigure 11. Single Diode Detec-tors.The series and shunt circuits canbe combined into a voltagedoubler[1], as shown in Figure 12.The doubler offers three advan-tages over the single diodecircuit.The two diodes are in parallelin the RF circuit, lowering theinput impedance and makingthe design of the RF matchingnetwork easier.The two diodes are in seriesin the output (video) circuit,doubling the output voltage.Some cancellation ofeven-order harmonics takesplace at the input.DC Biased DiodesZero Biased DiodesFigure 12. Voltage Doubler.The most compact and lowestcost form of the doubler isachieved when the HSMS-2822 orHSMS-282C series pair is used.Both the detection sensitivity andthe DC forward voltage of abiased Schottky detector aretemperature sensitive. Whereboth must be compensated over awide range of temperatures, thedifferential detector[2] is oftenused. Such a circuit requires thatthe detector diode and thereference diode exhibit identicalcharacteristics at all DC biaslevels and at all temperatures.This is accomplished through theuse of two diodes in one package,for example the HSMS-2825 inFigure 13. In the Agilent assemblyfacility, the two dice in a surfacemount package are taken fromadjacent sites on the wafer (asillustrated in Figure 14). This[1] Agilent Application Note 956-4, “Schottky Diode Voltage Doubler.”[2] Raymond W. Waugh, “Designing Large-Signal Detectors for Handsets and Base Stations,” Wireless Systems Design, Vol. 2, No. 7, July 1997, pp 42 – 48.7assures that the characteristics of the two diodes are more highly matched than would be possible through individual testing and hand matching.Figure 13. Differential Detector.Figure 14. Fabrication of Agilent Diode Pairs.In high power applications,coupling of RF energy from the detector diode to the reference diode can introduce error in the differential detector. TheHSMS-282K diode pair, in the six lead SOT-363 package, has a copper bar between the diodes that adds 10 dB of additional isolation between them. As this part is manufactured in theSOT-363 package it also provides the benefit of being 40% smaller than larger SOT-143 devices. The HSMS-282K is illustrated inFigure 15—note that the ground connections must be made as close to the package as possible to minimize stray inductance toground.Figure 15. High Power Differen-tial Detector.The concept of the voltage doubler can be applied to the differential detector, permitting twice the output voltage for a given input power (as well as improving input impedance and suppressing second harmonics).However, care must be taken to assure that the two reference diodes closely match the two detector diodes. One possible configuration is given in Fig-ure 16, using two HSMS-2825.Board space can be savedthrough the use of the HSMS-282P open bridge quad, as shown in Figure 17.Figure 16. Voltage DoublerDifferential Detector.Figure 17. Voltage Doubler Differential Detector.While the differential detector works well over temperature,another design approach [3] works well for large signal detectors.See Figure 18 for the schematic and a physical layout of the circuit. In this design, the two 4.7K Ω resistors and diode D2 act as a variable power divider,assuring constant output voltage over temperature and improving output linearity.Figure 18. Temperature Compen-sated Detector.In certain applications, such as a dual-band cellphone handset operating at both 900 and1800MHz, the second harmonics generated in the power control output detector when the handset is working at 900 MHz can cause problems. A filter at the output can reduce unwanted emissions at 1800 MHz in this case, but a[3] Hans Eriksson and Raymond W. Waugh, “A Temperature Compensated Linear DiodeDetector,” to be published.8lower cost solution is available [4].Illustrated schematically inFigure 19, this circuit uses diode D2 and its associated passive components to cancel all even order harmonics at the detector ’s RF input. Diodes D3 and D4provide temperature compensa-tion as described above. All four diodes are contained in a single HSMS- 282R package, as illus-trated in the layout shown in Figure 20.C1 = C2 ≈ 100 pFR1 = R2 = R3 = R4 = 4.7 K ΩD1 & D2 & D3 & D4 = HSMS-282RFigure 19. Schematic of Sup-pressed Harmonic Detector.Figure 20. Layout of Suppressed Harmonic Detector.Note that the forgoing discussion refers to the output voltage being extracted at point V+ withrespect to ground. If a differential output is taken at V+ with respect to V-, the circuit acts as a voltage doubler.Mixer applicationsThe HSMS-282x family, with its wide variety of packaging, can be used to make excellent mixers at frequencies up to 6 GHz.The HSMS-2827 ring quad of matched diodes (in the SOT-143package) has been designed for double balanced mixers. Thesmaller (SOT-363) HSMS-282R ring quad can similarly be used, if the quad is closed with externalconnections as shown in Figure 21.Figure 21. Double Balanced Mixer.Both of these networks require a crossover or a three dimensional circuit. A planar mixer can be made using the SOT-143 cross-over quad, HSMS-2829, as shown in Figure 22. In this product, a special lead frame permits the crossover to be placed inside the plastic package itself, eliminating the need for via holes (or other measures) in the RF portion of the circuit itself.Figure 22. Planar Double Bal-anced Mixer.A review of Figure 21 may lead to the question as to why theHSMS-282R ring quad is open on the ends. Distortion in double balanced mixers can be reduced if LO drive is increased, up to the point where the Schottky diodes are driven into saturation. Above this point, increased LO drive will not result in improvements in distortion. The use of expensive high barrier diodes (such as thosefabricated on GaAs) can take advantage of higher LO drive power, but a lower cost solution is to use a eight (or twelve) diode ring quad. The open design of the HSMS-282R permits this to easily be done, as shown in Figure 23.Figure 23. Low Distortion Double Balanced Mixer.This same technique can be used in the single-balanced mixer.Figure 24 shows such a mixer,with two diodes in each spot normally occupied by one. This mixer, with a sufficiently high LO drive level, will display low distortion.Figure 24. Low Distortion Bal-anced Mixer.[4] Alan Rixon and Raymond W. Waugh, “A Suppressed Harmonic Power Detector for DualBand ‘Phones,” to be published.9Sampling ApplicationsThe six lead HSMS-282P can be used in a sampling circuit, as shown in Figure 25. As was the case with the six lead HSMS-282R in the mixer, the open bridge quad is closed with traces on the circuit board. The quad was not closed internally so that it could be used in other applications, such as illustrated in Figure 17.Figure 25. Sampling Circuit. Thermal ConsiderationsThe obvious advantage of the SOT-323 and SOT-363 over the SOT-23 and SOT-142 is combina-tion of smaller size and extra leads. However, the copper leadframe in the SOT-3x3 has a thermal conductivity four times higher than the Alloy 42 leadframe of the SOT-23 and SOT-143, which enables the smaller packages to dissipate more power.The maximum junction tempera-ture for these three families of Schottky diodes is 150°C under all operating conditions. The following equation applies to the thermal analysis of diodes:Tj = (V f I f + P RF) θjc + T a (1) whereT j = junction temperatureT a = diode case temperature θjc = thermal resistanceV f I f = DC power dissipatedP RF = RF power dissipated Note that θjc, the thermal resis-tance from diode junction to thefoot of the leads, is the sum oftwo component resistances,θjc = θpkg + θchip (2)Package thermal resistance forthe SOT-3x3 package is approxi-mately 100°C/W, and the chipthermal resistance for theHSMS-282x family of diodes isapproximately 40°C/W. Thedesigner will have to add in thethermal resistance from diodecase to ambient—a poor choiceof circuit board material or heatsink design can make this numbervery high.Equation (1) would be straightfor-ward to solve but for the fact thatdiode forward voltage is a func-tion of temperature as well asforward current. The equation forV f is:11600 (V f– I f R s)nT (3)I f = I S e – 1where n = ideality factorT = temperature in °KR s = diode series resistanceand I S (diode saturation current)is given by2 1 1n– 4060(T– 298)I s = I0 (T e298 (4)Equation (4) is substituted intoequation (3), and equations (1)and (3) are solved simultaneouslyto obtain the value of junctiontemperature for given values ofdiode case temperature, DCpower dissipation and RF powerdissipation.Diode BurnoutAny Schottky junction, be it an RFdiode or the gate of a MESFET, isrelatively delicate and can beburned out with excessive RFpower. Many crystal videoreceivers used in RFID (tag)applications find themselves inpoorly controlled environmentswhere high power sources may bepresent. Examples are the areasaround airport and FAA radars,nearby ham radio operators, thevicinity of a broadcast bandtransmitter, etc. In suchenvironments, the Schottkydiodes of the receiver can beprotected by a device known as alimiter diode.[5] Formerlyavailable only in radar warningreceivers and other high costelectronic warfare applications,these diodes have been adapted tocommercial and consumercircuits.Agilent offers a complete line ofsurface mountable PIN limiterdiodes. Most notably, our HSMP-4820 (SOT-23) can act as a veryfast (nanosecond) power-sensitiveswitch when placed between theantenna and the Schottky diode,shorting out the RF circuittemporarily and reflecting theexcessive RF energy back out theantenna.[5] Agilent Application Note 1050, “LowCost, Surface Mount Power Limiters.”10Assembly InstructionsSOT-3x3 PCB FootprintRecommended PCB pad layouts for the miniature SOT-3x3 (SC-70)packages are shown in Figures 26and 27 (dimensions are in inches).These layouts provide ampleallowance for package placement by automated assembly equipment without adding parasitics that could impair the performance.Figure 26. PCB Pad Layout, SOT-323(dimensions in inches).Figure 27. PCB Pad Layout, SOT-363(dimensions in inches).Figure 28. Surface Mount Assembly Profile.SMT AssemblyReliable assembly of surface mount components is a complex process that involves manymaterial, process, and equipment factors, including: method of heating (e.g., IR or vapor phase reflow, wave soldering, etc.)circuit board material, conductor thickness and pattern, type of solder alloy, and the thermalconductivity and thermal mass of components. Components with a low mass, such as the SOTpackages, will reach solder reflow temperatures faster than those with a greater mass.Agilent ’s diodes have beenqualified to the time-temperature profile shown in Figure 28. This profile is representative of an IR reflow type of surface mount assembly process.After ramping up from room temperature, the circuit board with components attached to it (held in place with solder paste)passes through one or morepreheat zones. The preheat zones increase the temperature of the board and components to prevent thermal shock and begin evaporat-ing solvents from the solder paste.The reflow zone briefly elevates the temperature sufficiently to produce a reflow of the solder.The rates of change of tempera-ture for the ramp-up and cool-down zones are chosen to be low enough to not cause deformation of the board or damage to compo-nents due to thermal shock. The maximum temperature in the reflow zone (T MAX ) should not exceed 235°C.These parameters are typical for a surface mount assembly process for Agilent diodes. As a general guideline, the circuit board and components should be exposed only to the minimum tempera-tures and times necessary to achieve a uniform reflow of solder.TIME (seconds)T E M P E R A T U R E (°C )0501001502002506012018024030011Package DimensionsPart Number Ordering InformationNo. of Part Number Devices Container HSMS-282x-TR2*1000013" Reel HSMS-282x-TR1*30007" Reel HSMS-282x-BLK *100antistatic bagx = 0, 2, 3, 4, 5, 7, 8, 9, B, C, E, F, K, L, M, N, P or R For lead-free option, the part number will have the character "G" at the end, eg. HSMS-282x-TR2G for a 10,000 lead-free reel.Outline 23 (SOT-23)Outline 143 (SOT-143)SIDE VIEWEND VIEWDIMENSIONS ARE IN MILLIMETERS (INCHES)DIMENSIONS ARE IN MILLIMETERS (INCHES)PACKAGE MARKING CODE (XX)Outline SOT-363 (SC-70 6 Lead)Outline SOT-323 (SC-70 3 Lead)0.25 (0.010)0.15 (0.006)0.30 (0.012)0.10 (0.004)0.425 (0.017)DIMENSIONS ARE IN MILLIMETERS (INCHES)0.30 (0.012)0.10 (0.004)0.425 (0.017)DIMENSIONS ARE IN MILLIMETERS (INCHES)12Device OrientationUSER FEEDFor Outline SOT-143Note: "AB" represents package marking code. "C" represents date code.END VIEWTOP VIEW For Outlines SOT-23, -323Note: "AB" represents package marking code. "C" represents date code.END VIEWTOP VIEW END VIEWTOP VIEW Note: "AB" represents package marking code. "C" represents date code.For Outline SOT-36313Tape Dimensions and Product OrientationFor Outline SOT-23DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETER A 0B 0K 0P D 1 3.15 ± 0.102.77 ± 0.101.22 ± 0.104.00 ± 0.101.00 + 0.050.124 ± 0.0040.109 ± 0.0040.048 ± 0.0040.157 ± 0.0040.039 ± 0.002CAVITYDIAMETER PITCH POSITION D P 0E 1.50 + 0.104.00 ± 0.101.75 ± 0.100.059 + 0.0040.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTH THICKNESSW t18.00 + 0.30 – 0.100.229 ± 0.0130.315 + 0.012 – 0.0040.009 ± 0.0005CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)F P 23.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCE BETWEEN CENTERLINEFor Outline SOT-1431DESCRIPTIONSYMBOL SIZE (mm)SIZE (INCHES)LENGTH WIDTH DEPTH PITCHBOTTOM HOLE DIAMETER A 0B 0K 0P D 1 3.19 ± 0.102.80 ± 0.101.31 ± 0.104.00 ± 0.101.00 + 0.250.126 ± 0.0040.110 ± 0.0040.052 ± 0.0040.157 ± 0.0040.039 + 0.010CAVITYDIAMETER PITCH POSITION D P 0E 1.50 + 0.104.00 ± 0.101.75 ± 0.100.059 + 0.0040.157 ± 0.0040.069 ± 0.004PERFORATIONWIDTH THICKNESSW t18.00 + 0.30 – 0.100.254 ± 0.0130.315+ 0.012 – 0.0040.0100 ± 0.0005CARRIER TAPE CAVITY TO PERFORATION (WIDTH DIRECTION)CAVITY TO PERFORATION (LENGTH DIRECTION)F P 23.50 ± 0.052.00 ± 0.050.138 ± 0.0020.079 ± 0.002DISTANCE。