反比例函数的图像和性质(3)
- 格式:ppt
- 大小:1.03 MB
- 文档页数:20
反比例函数的图像和性质反比例函数是数学中的一种基本函数类型,其图像和性质具有一定的特点。
本文将从图像和性质两个方面进行论述。
一、图像反比例函数的基本形式为y=k/x,其中k为常数,且k不等于0。
根据函数的定义域和值域,可得反比例函数的图像具有如下特点:1. 对称轴:对于反比例函数y=k/x来说,其对称轴为y轴和x 轴,即函数图像关于y轴和x轴对称。
2. 渐近线:反比例函数的图像会与y轴、x轴以及非对称轴(y=k/x中对称轴为y轴和x轴)形成三条渐近线。
当x趋近于正无穷大或负无穷大时,函数值趋近于0;当y趋近于正无穷大或负无穷大时,函数值趋近于0。
3. 图像形状:反比例函数的图像呈现双曲线的形状,即左右两侧趋近于无穷大而且不相交。
二、性质除了图像特点外,反比例函数还具有以下性质:1. 变化趋势:反比例函数的特殊之处在于当自变量x增大时,因为分母逐渐增大,所以函数值y会逐渐减小;反之,当x减小时,函数值y会逐渐增大。
2. 强调比值关系:反比例函数中,自变量和因变量之间存在着比值关系。
当自变量增大或减小时,因变量的大小相应呈现相反的变化。
3. 零点和定义域:反比例函数在定义域内除了零点x=0外,它的函数值不为零。
定义域一般为除零点的所有实数。
4. 单调性:反比例函数在定义域内通常是单调的,当自变量增大时,因变量会单调减小;当自变量减小时,因变量会单调增大。
5. 特殊情况:当反比例函数中的常数k为正数时,其图像位于第一象限和第三象限;当k为负数时,图像位于第二象限和第四象限。
这决定了函数图像关于原点的对称性。
综上所述,反比例函数的图像呈现双曲线的形状,具有对称轴、渐近线等特点。
同时,反比例函数的性质包括变化趋势、比值关系、零点和定义域、单调性以及特殊情况等。
在实际问题中,反比例函数具有广泛的应用,比如经济学中的供需关系、物理学中的电阻和电流关系等。
通过研究反比例函数的图像和性质,可以更好地理解和应用数学知识。
湘教版九年级上册数学教案1.2 反比例函数的图像与性质(3)教学目标1.能用待定系数法求反比例函数的解析式.2.能用反比例函数的定义和性质解决实际问题重点难点重点:能用待定系数法求反比例函数的解析式.难点:根据反比例函数的图象或表达式来理解反比例函数的性质.教学设计一.预习导学自主学习教材P10-11,并思考下列问题:1.认真完成P10的动脑筋,思考怎样用待定系数法求反比例函数的解析式?2.认真阅读例题2,书上是运用反比例函数的什么知识解决问题的?3.例题3中,用待定系数法时为什么要标明1k 、2k ?二.探究展示(一)合作探究如何解答教材P10的动脑筋?由组长带领组员讨论交流,教师适当引导,然后总结得出:由于反比例函数y=k x中只有一个待定系数K ,因此只需要图像上一点的坐标,把其值代入得到一个关于K 的一元一次方程,求出K 值即可确定函数关系式.知道反比例函数的表达式就可以知道某一点是否在这个函数图象上.由K 值得正负就可以知道函数图象分布的象限及函数值随自变量值的变化情况.(二)展示提升1.反比例函数y=k x的图象如图所示,根据图象,回答下列问题: (1)K 的取值范围是K >0还是K <0?说明理由(2)如果点A (-3,y 1),B (-2,y 2)是该函数图象上的两点,试比较y 1,y 2的大小.设计意图:读图能力训练,加深学生对反比例函数图象性质的理解.2.已知一个正比例函数与一个反比例函数的图象交于点P (-3,4),试求出它们让你的表达式,并在同一坐标系内画出这两个函数的图象.提示:先设两个函数的表达式,且两个函数表示式中的比例系数应用1k 、2k 区分.学生分组讨论交流,交流后小组代表展示,教师进行补充.设计意图:揭示知识间的内在联系,有助于构建较完整的知识网络.三.知识梳理启发学生谈谈本节课的收获.1. 用待定系数法求反比例函数的解析式.2. 用待定系数法求反比例函数的解析式步骤:(1)设出反比例函数的解析式y=k x(k ≠0) (2)把已知条件(一组自变量与函数的对应值)代入解析式,得到关于k 的一元一次方程(3)解这个方程,求出待定系数k(4)将k 的值代入得出反比例函数的解析式.四.当堂检测1.已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )A 、(-a ,-b )B 、 (a ,-b )C 、(-a ,b )D 、(0,0)2.已知反比例函数y=k x的图象经过点M (-2,2) (1)求这个函数的表达式(2)判断点A (-4,1),B (1,4)是否在这个函数图象上(3)这个函数的图象位于哪些象限?函数值y 随自变量x 的增大而如何变化?3.如图, 一次函数y =kx +b 的图象与反比例函数xm y 的图象交于A (-2,1)、B (1,n )两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围五.教学反思本节课通过用待定系数法求反比例函数的解析式让学生理解根据反比例函数的图象或表达式来理解反比例函数的性质,采取小组合作交流、竞争的方式,更能激起学生的求知的欲望.学生通过展示锻炼了口头表达能力,同时培养了学生分析问题和解决问题的能力,增强了小组的凝聚力.。
数学篇数苑纵横例析反比例函数的三个重要特性湖北应城陈琳琳反比例函数是一种重要的函数模型.它的定义、图象、性质以及关系式是中考命题的热点内容.要学好反比例函数的有关知识,就要掌握它的三个重要特性:(1)函数的增减性;(2)图象的对称性;(3)面积的不变性.以下举例分析反比例函数的三个特性在解题中的应用.一、反比例函数的增减性反比例函数y =kx具有如下性质:(1)当k >0时,双曲线的两个分支位于第一、三象限,在每个象限内,y 随x 的增大而减小;(2)当k <0时,双曲线的两个分支位于第二、四象限,在每个象限内,y 随x 的增大而增大.同学们在应用这些性质时,要注意的是“在每个象限内”y 随x 的变化而变化.例1如果点A (-2,y 1),B (-1,y 2),C (3,y 3)都在反比例函数y =k x(k <0)的图象上,那么y 1、y 2与y 3的大小关系是()A.y 1<y 2<y 3B.y 3<y 1<y 2C.y 2<y 1<y 3或y 3<y 1<y 2D.y 1=y 2=y 3分析:先根据反比例函数中k <0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解:∵反比例函数y =kx(k <0)中k <0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大,∵-2<0,-1<0,∴点(-2,y 1),(-1,y 2)位于第二象限,∴y 1>0,y 2>0,∵-2<-1<0,∴0<y 1<y 2.∵3>0,∴点(3,y 3)位于第四象限,点评:在反比例函数中,已知各点的横坐标,比较纵坐标的大小,首先应区分各点是否在同一象限内.在同一象限内,按函数的增减性来比较,不在同一象限内,按坐标系内点的特点来比较.二、反比例函数图象的对称性反比例函数的图象是双曲线,它既是轴对称图形,也是中心对称图形.对称轴是直线y =±x ,关于直线对称的两点坐标值可互换.即点A (a ,b )关于y =x 对称的点为A ′(b ,a ).而关于中心对称的两点,坐标值的符号会发生互换,即互为相反数.因此对于反比例函数上的对称点,可直接根据该对称特性求出.这是反比例函数的一个重要性质.例2如图1所示,点P (4a ,a )是反比例函数图象y =kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为17π,则k 的值为().A.4B.16C.27215D.2725分析:根据反比例函数图象的对称性得到圆的面积=4×17π=68π,再计算出圆的半径=217,然后利用两点间的距离公式得到16a 2+a 2=(217)2,解得a =2或-2(舍去),则P 点坐标为(8,2),然后根据反比例函数图象上点的坐标特征求k .解:∵图中阴影部分的面积为17π,∴圆的面积为4×17π,∴圆的半径为217,∵P (4a ,a )在圆上,∴16a 2+a 2=(217)2,图1数学篇数苑纵横把P (8,2)代入y =k x得k =8×1=16.故选B 项.点评:本题考查了反比例函数图象的对称性:反比例函数的图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y =-x ;②一、三象限的角平分线y =x ;对称中心是:坐标原点.三、反比例函数的面积不变性反比例函数的“面积不变性”实际上就是指y =kx的变式xy =k ,即如果已经给定反比例函数的关系式,那么它图象上所有点的横、纵坐标的积为同一常数.由此不难得到反比例函数的一个重要性质:过图象上任意一点作x 轴和y 轴的垂线,与坐标轴所围矩形的面积为||k .由此,过图象上任意一点作某一坐标轴的垂线,则垂足、已知点及原点三点所组成的三角形的面积为12||k ,这是比例系数k的几何意义.例3如图2,矩形OABC 的两边OA ,OC 在坐标轴上,且OC =2OA ,M ,N 分别为OA ,OC 的中点,BM 与AN 交于点E ,且四边形EMON 的面积为2,(1)△ABE 的面积是.(2)经过点B 的双曲线的解析式为.图2分析:(1)设A (0,2t ),则C (-4t ,0),B (-4t ,2t ),N (-2t ,0),M (0,t ),根据三角形面积公式得S △ABM =S △ANO =2t 2,所以S △ABE =S 四边形EMON =2;(2)利用待定系数法求出直线BM 的解析式为y =-14x +t ,同理可得直线AN 的解析式为y =x +2t ,通过解方程组ìíîïïy =-14x +t ,y =x +2t ,得E (-45t ,65t ),利用三角形面积公式得到12⋅4t ⋅(2t -65t )=2,解得t=或t =,所以B (-25,5),然后利用待定系数法求经过点B 的双曲线的解析式.解:(1)设A (0,2t ),则C (-4t ,0),B (-4t ,2t ),∵M ,N 分别为OA ,OC 的中点,∴N (-2t ,0),M (0,t ),∵S △ABM =12⋅t ⋅4t =2t 2,S △ANO =12⋅2t ⋅2t =2t 2,∴S △ABE =S 四边形EMON =2;(2)设直线BM 的解析式为y =kx +b ,把M (0,t )、B (-4t ,2t )代入得ìíîb =t ,-4t ⋅k +b =2t ,解得ìíîïïk =-14,b =t ,∴直线BM 的解析式为y =-14x +t ,同理可得直线AN 的解析式为y =x +2t ,解方程组ìíîïïy =-14x +t ,y =x +2t ,得ìíîïïx =-45t ,y =65t ,∴E (-45t ,65t ),∴12t -65t )=2,解得t =2或t =舍去),∴B (-25,5),设经过点B 的双曲线的解析式为y =k x,∴k =-25×5=-10,∴经过点B 的双曲线的解析式为y =-10x.故答案为2,y =-10x.点评:反比例函数的面积不变性,就是反比例函数图象的几何意义,也是一种数形结合思想的体现.通常情况下,若点在反比例函数图象上,求有关几何图形的面积和k 值的问题,可以考虑利用反比例函数的面积不变性求解.22。
反比例函数的像与性质反比例函数是数学中常见的一种函数形式,它是指当自变量的取值增加时,函数值会相应地减小,而当自变量的取值减小时,函数值会相应地增大。
本文将探讨反比例函数的图像特征以及其一些常见的性质。
1. 反比例函数的定义反比例函数的一般形式可以表示为y = k/x,其中k是比例系数。
这里需要注意的是,反比例函数中自变量x不能为0,因为除数不能为0。
2. 反比例函数的图像特征反比例函数的图像是一个曲线,具有以下特点:- 原点:反比例函数的图像必然通过原点(0,0)。
- 渐近线:反比例函数的图像与x轴和y轴有两条渐近线。
当自变量x趋于正无穷大或负无穷大时,函数值趋于0;当自变量x趋于0时,函数值趋于正无穷大或负无穷大。
- 反比例函数的图像是关于y轴和x轴的一个对称图形。
3. 反比例函数的性质反比例函数具有一些重要的性质:- 单调性:反比例函数在其定义域内是单调递减的。
当自变量的取值越大,函数值越小,反之亦然。
- 零点:反比例函数在定义域内没有零点,因为除非自变量等于0,否则函数值不可能为0。
- 大小比较:若x1和x2是反比例函数的定义域内的两个不同的值且x1<x2,则f(x1)>f(x2)。
- 图像位置:当比例系数k为正数时,反比例函数的图像在第一象限和第三象限,当k为负数时,图像在第二象限和第四象限。
4. 反比例函数的应用反比例函数在实际生活中有广泛的应用。
例如:- 电阻与电流的关系:欧姆定律指出,电阻与电流之间的关系是反比例的。
较大的电阻会导致较小的电流通过电路,反之亦然。
- 速度与时间的关系:在匀速行驶的情况下,速度与时间之间的关系也是反比例的。
当时间增加,速度减小;当时间减小,速度增加。
- 物体质量与重力加速度的关系:根据牛顿第二定律,物体的质量与其所受的重力加速度成反比。
质量越大,重力加速度越小。
总结:反比例函数是一种重要的函数形式,具有独特的图像特征和性质。
了解反比例函数的图像特征和性质,有助于我们在实际问题中应用数学知识进行分析和解决。
九年级反比例函数的图象与性质九年级反比例函数的图象与性质我们知道反比例函数的图像都是由两支形状相同的曲线组成的,我们称反比例函数的图像为双曲线。
接下来小编整理了九年级反比例函数的图象与性质的相关内容,文章希望大家喜欢!反比例函数的性质(1)反比例函数y=xk(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大。
注意:反比例函数的图象与坐标轴没有交点。
比例系数k的几何意义在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|。
在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的’三角形的面积是|k|2,且保持不变。
用描点法画反比例函数的图象步骤:列表———描点———连线。
(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值。
(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确。
(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线。
(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y 轴相交,只是无限靠近两坐标轴。
反比例函数的图像和性质学习指南(1)进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;(2)能结合函数图象,归纳总结出反比例函数的性质;(3)能应用反比例函数的性质解决相关的问题。
在学一次函数时,我掌握了函数图像的画法:(1)列表,(2)描点,(3)连线。
但是反比例函数自变量在分母上,所以注意:①列表时自变量取值要均匀和对称,②x≠0,③选整数较好计算和描点。
通过观察我可以得出:(1)反比例函数图像由两支曲线组成的,我们把它叫双曲线;(2)当k>0时,两支双曲线分别位于第一、三象限内;在每一象限内,y随x的增大而减小;当k<0时,两支双曲线分别位于第二、四象限内;在每一象限内,y随x的增大而增大;(3)反比例函数的图象无限接近于x,y轴,但永远不能到达x,y轴;(4)反比例函数的图象是轴对称图形,直线y=x和y=—x都是它的对称轴。
反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性。
反比例函数图像:
具体性质:
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。
当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。
在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。
②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和
一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。
而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。
③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K越大的话,反比例函数距离坐标轴就会越来越远。
④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。
反比例函数的图像与性质反比例函数是一种常见的数学函数类型,其图像非常有特点,具有一些独特的性质。
本文将介绍反比例函数的图像及其性质,以帮助读者更好地理解和应用这一函数类型。
一、反比例函数的图像反比例函数的一般形式可以表示为 y = k/x,其中 k 为非零常数。
根据这个函数形式,我们可以研究其图像及其性质。
1. 关于 y 轴和 x 轴的对称性:我们可以观察到反比例函数的图像关于 y 轴和 x 轴均具有对称性。
也就是说,如果一个点 (x, y) 在反比例函数的图像上,那么点 (-x, y)、(x, -y)、(-x, -y) 也会在图像上。
2. 渐近线:对于反比例函数 y = k/x,当 x 趋近于 0 时,y 趋于正无穷大或负无穷大。
也就是说,反比例函数的图像会有两个垂直于 x 轴的渐近线,分别位于第一象限和第三象限。
这两条渐近线可以用方程 x = 0 和 y =0 来表示。
3. 变化趋势:反比例函数的图像随着 x 的增大而逐渐趋向于 x 轴正半轴,随着 x的减小而逐渐趋向于x 轴负半轴。
换句话说,当x 趋近于正无穷大时,y 趋于 0;当 x 趋近于负无穷大时,y 也趋于 0。
这一性质可以通过直观的图像来观察和理解。
二、反比例函数的性质除了图像特点外,反比例函数还具有一些性质,对于解题和实际应用有重要意义。
下面我们将介绍一些常见的性质。
1. 定义域和值域:反比例函数 y = k/x 的定义域为除了 x=0 外的所有实数,值域也为除了 y=0 外的所有实数。
这是因为 0 不能作为分母。
2. 增减性:当 x1<x2 时,对于反比例函数,由于 x1 和 x2 在同一侧相对于 0,所以可以推出 y1 和 y2 在同一侧相对于 0。
也就是说,反比例函数在定义域内的不同点上具有相同的增减性。
3. 零点:反比例函数的零点为x=0,即在坐标系的原点处。
当x 不等于零时,反比例函数的值不会等于零,因此没有其他零点。
课题:6.2.2反比例函数的图象与性质课型:新授课年级:九年级教学目标:1.会画出反比例函数的图象,能根据图象探索并理解反比例函数的主要性质.2.提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想.会运用数形结合的思想方法解决反比例函数的有关问题.教学重点与难点:重点:探索反比例函数的主要性质.难点:理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题.课前准备:多媒体课件、三角板.教学过程:一、感悟导入活动内容:回答下列问题.问题3. 你知道反比例函数的图象还有哪些特点吗?反比例函数还有其它的性质吗?3引入本节课的内容.设计意图:反比例函数的定义以及函数图象的特点,是继续进行本节内容学习的重要知识储备.本环节避免单纯的复习定义以及对知识的简单复述,力图通过具体问题,让学生在解决问题的过程中加深对知识本身的理解,培养学生的空间想象能力和对知识的实际运用能力.二、自主探究活动内容1:探究反比例函数图像的增减性(k>0)观察反比例函数2yx=,4yx=,6yx=的图象,你能发现它们的共同特征吗?(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?处理方式:让学生课前预习并画好函数图像,课上由教师展示,让学生自主观察所画图像,并结合问题探究得出反比例函数性质.学生有可能总结为:当k>0时, y的值随x值的增大而减小.这时教师可以提示:这样不够严谨,应强调“在每一个象限内”这个前提条件.然后动画演示几何画板课件,并总结结论: 当k>0时,图象的两个分支分别在第一、三象限内,在每一象限内,y的值随x的增大而减小.(借助于下图进行说明)设计意图: 学生通过观察比较,总结出三个反比例函数图象的共同特征,在活动中放手让学生去观察,去类比,去感受,去总结,实现学生主动参与,探究新知的目的,培养学生“以图识性、以性画图”的能力;及时的小结有助于理清思路,培养学生的归纳能力和语言表达能力.活动内容2:探究反比例函数图像的增减性(k<0)k>时,反比例函数图象的特征进行了分析,此处可以完全处理方式:前面已经对0k<放手给学生,让学生观察课前预习时画好的函数图像,通过类比,分析、归纳、概括出0时图象的共同特征,教师只需进行适时的点拨.由于上面在总结k>0时的性质时,强调了“在每一象限内”,所以在总结k<0的性质时,学生比较容易想到“在每一象限内”.k<时反比例函数图像特征的探究,培养学生利用数形结合探究问设计意图:通过对0题的意识,发展学生类比分析问题的能力,使学生在知识上更加完善,在能力上逐步提高.<0时,在每一象限内,y的值随x值的增大而增大.设计意图:本环节主要是将知识进行系统的归纳、概括,通过讨论、交流,形成完整、规范的结论,可以培养学生的语言表达能力和对知识的归纳、概括能力.三、巩固新知设计意图:通过几个小题目的练习,及时运用、巩固所学的知识,使学生加深对反比例函数性质的理解.问题3是一道易错题,不仅考察了性质中的“在每一象限内”这一条件,并且还蕴含着分类讨论思想,可以拓展学生思维的广度和深度.课堂上以小组合作讲解的形式,让每个学生都融入到表达与倾听中,可以调动每个学生的主观能动性.四、合作竞学活动内容:探究k的几何意义 (课件展示问题)问题1. 如图1,在反比例函数xy 2=的图象上任取一点P ,过点P 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为多少?图1 图2 问题2. 如图2, 在反比例函数xky =的图象上任取一点P ,过点P 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为多少?图3 图4问题3. 如图3,在反比例函数xky =图象上任取两点P 、Q ,过点P 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为1S ;过点Q 分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为2S ,1S 与2S 有什么关系? 为什么?问题4. 如图4,在反比例函数xky =的图象上任取点P ,过点P 作PF ⊥x 轴于F ,△OPF 的面积又是多少呢? 为什么?处理方式:(1)鼓励学生先独立思考,然后以小组为单位,讨论分析,动手计算,总结小组成果.教师一边巡视,一边加入到各个小组的学生讨论中. 四个问题层层推进,让不同层次的学生都有事可干.(2)充分讨论后可由学生讲解,教师进行方法的总结和点拨.在探究的基础上,对于一般的反比例函数xky =,充分利用小组成员间的合作,探究、归纳出一般性的结论——矩形面积总等于k ,三角形的面积总等于k 21.(3)利用几何画板软件通过拖动改变P 点位置(如下图),直观感受所得结论的正确性.可以发现矩形与三角形的面积是一个定值,加深学生对所得规律的理解.设计意图: 课本中只给出了问题3. 考虑到如果直接探究函数xky =,对于有些学生来说有一定的困难,所以为了突破这一难点,我先给出简单的反比例函数xy 2=,在探究了这个具体函数的基础上,再由特殊到一般,进一步探究xky =,符合学生的认知规律.最后通过几何画板的动画演示,让学生更直观地理解矩形和三角形的面积与比例系数K 的对应关系,向学生渗透数形结合的思想方法.五、反思总结 活动内容:本节课你学到了反比例函数的哪些新知识? 你有哪些感悟和收获? 你还有什么困惑?处理方式:先由学生自由发言,畅谈收获.师引导学生对自己的学习过程进行提炼、反思,从知识上和方法上进行总结.最后课件展示以下表格,通过对比形式,引导学生小结正比例函数、反比例函数的性质.设计意图:小结能使学生养成反思与总结的习惯,培养自我反馈,自主发展的意识.小结还能引导学生关注数学的学习过程,通过交流、反思,倾听其他同学的感悟和收获,可以取长补短,共同提高.六、测试评价师:通过本节课的学习,同学们的收获如何呢?请完成达标检测题.(课件出示) A 组:1.(2014 随州)关于反比例函数xy 4=的图象,下列说法正确的是( ) A .图象经过点(1,1)B . 两个分支分布在第二、四象限C .两个分支关于x 轴成轴对称D . 当x <0时,y 随x 的增大而减小2.(2014 宁夏)已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在函数xy 5=的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B . 0<y 2<y 1C . y 1<y 2<0D . y 2<y 1<03.(2014▪哈尔滨)在反比例函数xk y 1-=的图象的每一条曲线上,y 都随x 的增大而减小,则k 的取值范围是( ) A . k >1 B . k >0C . k ≥1D . k <14.(2014 天津 )已知反比例函数xky =(k 为常数,k ≠0)的图象位于第一、第三象限,写出一个符合条件的k 的值为 .5.(2014•新疆)若点A (1,y 1)和点B (2,y 2)在反比例函数xy 1=图象上,则y 1与y 2的大小关系是:y 1 y 2(填“>”、“<”或“=”).B 组:(学有余力的同学选做)6.(2014▪牡丹江)在同一直角坐标系中,函数y =kx +1与xky -=(k ≠0)的图象大致是( )7.(2014•滨州)如图,菱形OABC 的顶点O 是原点,顶点B 在y 轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C ,则k 的值为 .设计意图:通过几道练习题进一步加深函数性质的理解和灵活应用,巩固本节课的知识点.深刻体会数学思想的多样性和灵活性.设置选做题,贯彻分层教学的理念,让学生在思维最活跃的时候,最大化地提高学生能力.七、布置作业必做题:课本157页,习题6.3第1题、第2题、第3题. 选做题:课本157页,习题6.3第4题.八、课外延伸你知道反比例函数还有其它性质吗?请同学们课下继续探究.可以观看微课《反比例函数的图象与性质》(在我们班级的公共邮箱中下载).结束语努力向前,默默耕耘,机会和成功必属于最坚韧的奋斗者.祝愿同学们:信心百倍,走好九年级的每一步,成就不凡的自己.板书设计:6. 2. 2反比例函数的图象与性质1.图像(k>0)图像(k<0)2. 性质(增减性)当k>0时,在每一象限内,y的值随x值的增大而减小;当k<0时,在每一象限内,y的值随x值的增大而增大.3.探究4.k的几何意义。