弹性力学及塑性力学基础(10A)
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
工程力学中的弹性力学和塑性力学研究工程力学是指研究物体在外力作用下的力学行为及其相互联系的一门学科。
其中,弹性力学和塑性力学是工程力学领域中两个重要的研究分支。
本文将对弹性力学和塑性力学进行详细的介绍和比较。
一、弹性力学弹性力学是研究物体在受到外力作用后能够恢复原来形状和大小的力学行为。
弹性力学的基本假设是物体受力后所产生的应变与外力呈线性关系,即满足胡克定律。
根据弹性力学的研究结果,可以得到应变与外力的关系,从而预测物体在受力下的变形和应力分布。
弹性力学常用的模型包括钢材的线弹性模型和混凝土的双弹性模型。
线弹性模型假设材料具有线性弹性行为,即应力和应变成正比。
双弹性模型则考虑了材料在加载和卸载过程中的不同力学性质,有利于对混凝土等复杂材料的力学行为进行准确描述。
弹性力学研究的主要内容包括力的平衡条件、物体的变形与应力、弯曲、挠度、自由振动等。
在工程实践中,弹性力学的理论可以应用于建筑结构的设计、机械零部件的选择和优化以及工程材料的改进等方面。
二、塑性力学塑性力学是研究物体在外力作用下会发生永久形变的力学行为。
与弹性力学相比,塑性力学关注的是物体的超弹性行为,即超出了弹性临界点后的力学行为。
塑性力学不仅涉及到材料的变形和应力分布,还包括材料在加载后产生的塑性应变和应力的分析。
塑性力学的研究对象通常是那些在外力作用下会发生塑性形变的金属材料,如钢材、铝合金等。
在塑性力学中,常用的本构模型有线性硬化模型和可塑性理论。
线性硬化模型假设材料的塑性变形与外力呈线性关系,可塑性理论则试图通过复杂的本构方程来描述材料的力学行为,在实际工程中得到了广泛应用。
塑性力学的研究内容包括塑性变形的机理、材料的本构关系、应变硬化、材料的屈服、断裂和破坏等。
在工程实践中,塑性力学的理论可以应用于金属结构的设计、铸造和焊接工艺的优化以及塑性加工工艺的控制等方面。
三、弹性力学与塑性力学的比较弹性力学和塑性力学作为工程力学的分支,各自具有不同的特点和应用范围。
塑性力学与弹性力学的区别与联系固体力学就是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。
塑性力学、弹性力学正就是固体力学中的两个重要分支。
弹性力学就是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)与位移的分布,以及与之相关的原理、理论与方法;塑性力学则研究它们在塑性变形阶段的力学响应。
大多数材料都同时具有弹性与塑性性质,当外载较小时,材料呈现为弹性的或基本上就是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。
所谓弹性与塑性,只就是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。
因此,所谓弹性材料或弹性物体就是指在—定条件下主要呈现弹性性态的材料或物体。
塑性材料或塑性物体的含义与此相类。
如上所述。
大多数材料往往都同时具有弹性与塑性性质,特别就是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。
本书主要介绍分析弹塑性材料与结构在外部干扰下力学响应的基本原理、理论与方法。
以及相应的“破坏”准则或失效难则。
塑性力学与弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;与流变学的区别在于,塑性力学考虑的永久变形只与应力与应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。
一、基本假定1、弹性力学:(1)假设物体就是连续的。
就就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
(2)假设物体就是线弹性的。
就就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。
而且,材料服从虎克定律,应力与应变成正比。
弹塑性力学总结弹塑性力学是研究材料在受力后既有一部分弹性变形又有一部分塑性变形的力学学科。
它是力学学科的分支之一,因为它研究的对象是材料,所以也可以看作是材料力学的一个方向。
它的研究对象包括各种传统或新型材料——金属、高分子、陶瓷等。
本文将对弹塑性力学进行总结。
一、弹性力学与塑性力学的区别弹性力学和塑性力学都是力学学科的重要分支。
它们各自关注的是物体在受力后不同的反应。
(1)弹性力学弹性力学研究的是物体在受到力的作用下,发生弹性变形而迅速恢复原状的力学原理。
简单来说,就是物体在受力后可以发生弹性变形,如压缩变形或拉伸变形,但是在撤离力的影响之后能够回复原来的状态。
弹性力学理论主要依赖于胡克定律,胡克定律可以表示为应力与应变之比等于恒定的常数。
(2)塑性力学塑性力学研究的是物体在受到力的作用下,发生塑性变形而无法迅速完全恢复原状的力学原理。
简单来说,就是物体在受力后可以发生塑性变形,但是在恢复撤离力的影响之后,不能完全返回原来的状态,仍有残余塑性变形。
塑性力学理论主要依赖于流动理论,流动理论可以用应变率表示材料变形时受到的应力。
二、弹塑性力学的基本概念(1)应力应力是单位面积上的力,通常用σ表示。
应力有三种类型:拉应力、压应力和剪应力。
(2)应变应变是材料的形变量,通常表示为ε。
应变有三种类型:拉伸应变、压缩应变和剪切应变。
(3)黏塑性黏塑性是材料表现出的一种变形特性,它描述了物质在应力作用下的变形表现。
(4)弹性模量弹性模量是材料在受力作用下相对于其初始长度相应变形程度的比率。
弹性模量是一种力学参数,通常用E表示,单位是帕斯卡(Pa)。
材料的弹性模量越大,其刚度就越高。
(5)屈服点在达到一定的应力时,材料就会开始发生塑性变形。
材料开始发生塑性变形的应力点称为屈服点。
三、弹塑性力学的应用弹塑性力学广泛应用于工程、物理、材料科学和冶金工业等领域。
弹塑性力学理论的应用使我们在实际情况下更好地理解和处理材料的力学性质。
弹塑性力学大作业姓名:张喻捷 学号: 邮箱:一、岩土类材料和金属材料的联系区别、金属是人工形成的晶体材料,而岩土类材料是由颗粒组成的多相体,是 天然形成的,也称为多相体的摩擦型材料。
岩土类材料抗压不抗拉(抗拉压不等 性),而金属材料既可以承受拉力也可以承受压力。
、在一定范围内,岩土类材料抗剪强度和刚度随压应力的增大而增大,这 种特性可称为岩土的压硬性。
岩土的抗剪强度不仅由粘结力产生,而且由内摩擦 角产生。
这是因为岩土由颗粒材料堆积或胶结而成,属于摩擦型材料,因而它的 抗剪强度与内摩擦角及压应力有关,而金属材料不具这种特性,抗剪强度与压应 力无关。
、岩土为多相材料,岩土颗粒中含有孔隙,因而在各向等压作用下,岩土 颗粒中的水、气排出,就能产生塑性体变,出现屈服,而金属材料在等压作用下 是不会产生体变,实际上,金属材料的屈服由剪切应力控制,与静水压力无关。
这种持性可称为岩土的等压屈服特性。
、在压力不太大的情况下,体积应变实际上与静水压力呈线性关系,对于 金属材料,可以认为体积变化基本上是弹性的,除去静水压力后的体积变形可以 完全恢复,没有残余的体积变形,即塑性变形不受静水压力影响。
但对于岩土类 材料,静水压力对屈服应力和塑性变形的大小都有明显的影响,不能忽略。
、岩土的体应变与剪应力有关,即剪应力作用下,岩土材料会产生塑性体 应变 膨胀或收缩 ,即岩土的剪胀性 包含剪缩性 。
反之,岩土的剪应变也与平 均应力有关,在平均压应力作用下引起负剪切变形,导致刚度增大,这也是压硬 性的一种表现,而金属材料不存在这种特性。
、岩土具有双强度特征。
由于岩土存在粘聚力和摩擦力,从而显示岩土具 有双强度特征,而与金属材料显然不同。
两种强度的发挥与消散决定了岩土类材 料的硬化与软化。
、岩土类材料和金属材料的力学单元不同。
金属连续介质材料的微单元, 球应力只产生球应变,偏应力只产生偏应变;而颗粒摩擦材料微单元中,球张量 和偏张量存在交叉影响。
第六章弹塑性力学大作业姓名:张喻捷学号:S201304069 邮箱:zjyfan@一、岩土类材料和金属材料的联系区别1、金属是人工形成的晶体材料,而岩土类材料是由颗粒组成的多相体,是天然形成的,也称为多相体的摩擦型材料。
岩土类材料抗压不抗拉(抗拉压不等性),而金属材料既可以承受拉力也可以承受压力。
2、在一定范围内,岩土类材料抗剪强度和刚度随压应力的增大而增大,这种特性可称为岩土的压硬性。
岩土的抗剪强度不仅由粘结力产生,而且由内摩擦角产生。
这是因为岩土由颗粒材料堆积或胶结而成,属于摩擦型材料,因而它的抗剪强度与内摩擦角及压应力有关,而金属材料不具这种特性,抗剪强度与压应力无关。
3、岩土为多相材料,岩土颗粒中含有孔隙,因而在各向等压作用下,岩土颗粒中的水、气排出,就能产生塑性体变,出现屈服,而金属材料在等压作用下是不会产生体变,实际上,金属材料的屈服由剪切应力控制,与静水压力无关。
这种持性可称为岩土的等压屈服特性。
4、在压力不太大的情况下,体积应变实际上与静水压力呈线性关系,对于金属材料,可以认为体积变化基本上是弹性的,除去静水压力后的体积变形可以完全恢复,没有残余的体积变形,即塑性变形不受静水压力影响。
但对于岩土类材料,静水压力对屈服应力和塑性变形的大小都有明显的影响,不能忽略。
5、岩土的体应变与剪应力有关,即剪应力作用下,岩土材料会产生塑性体应变(膨胀或收缩),即岩土的剪胀性(包含剪缩性)。
反之,岩土的剪应变也与平均应力有关,在平均压应力作用下引起负剪切变形,导致刚度增大,这也是压硬性的一种表现,而金属材料不存在这种特性。
6、岩土具有双强度特征。
由于岩土存在粘聚力和摩擦力,从而显示岩土具有双强度特征,而与金属材料显然不同。
两种强度的发挥与消散决定了岩土类材料的硬化与软化。
7、岩土类材料和金属材料的力学单元不同。
金属连续介质材料的微单元,球应力只产生球应变,偏应力只产生偏应变;而颗粒摩擦材料微单元中,球张量和偏张量存在交叉影响。
弹性力学对于均匀、各向同性材料,可以证明只有两个独立弹性常数,3各常数之间存在关系:2(1)EG μ=+。
广义胡克定律的体积式:体积应变:x y z θεεε=++;体积应力:x y z σσσΘ=++,则:12Eνθ-=Θ。
各向同性体的体积改变定律:3(12)m EK σθθν==-.其中体积模量:3(12)EK ν=-弹性力学解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而处于平衡时,体内各点的应力分量、应变分量的解是唯一的。
塑性力学从物理上看,塑性变形过程属于不可逆过程,并且必然伴随机械能的耗散。
研究塑性力学问题主要采用宏观的方法,即联系介质力学的方法,它不去探究材料塑性变形的内在机理,而是从材料的宏观塑性行为中抽象出力学模型,并建立相应的数学物理方程来予以描述,应力平衡方程和应变位移间的几何关系是与材料性质无关的,因此对弹性力学与塑性力学都一样,弹性力学与塑性力学的差别主要表现在应力与应变的物理关系的不同。
屈服条件以及塑性的本构关系是塑性力学物理方程的具体内容,具有:(1)应力与应变关系(本构关系)呈非线性,其非线性性质与具体材料有关; (2)应力与应变之间没有一一对应的关系,它与加载历史有关;(3)变形体中存在弹性区和塑性区,分析问题时需要找出其分界限。
在弹性区,加载与卸载均服从广义胡克定律;在塑性区,加载过程要使用塑性阶段的应力应变关系,而卸载过程中,则使用广义胡克定律。
这些特点带来了研究、处理问题方法上的不同,塑性力学首先要解决的问题是在实验资料的基础上确立塑性本构关系,进而与平衡和几何关系一起去建立塑性边值问题,再次是根据不同的具体情况寻求数学计算方法求解塑性边值问题。
塑性变形的特点:(1)应力-应变关系的非线性;(2)应力与应变间不存在单值对应关系,同一个应力可以对应不同的应变,反过来也是如此,这种非单值性具体来说是一种路径相关性;(3)由于塑性应变不可恢复,所以外力所做的塑性功具有不可逆性,或耗散性,在一个加载卸载的循环中外力做功恒大于零,这一部分能量被材料的塑性变形所消耗。
塑性力学和弹性力学的区别和联系固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。
塑性力学、弹性力学正是固体力学中的两个重要分支。
弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。
大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。
所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。
因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。
塑性材料或塑性物体的含义与此相类。
如上所述。
大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。
本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。
以及相应的“破坏”准则或失效难则。
塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。
一、基本假定1、弹性力学:(1)假设物体是连续的。
就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。
这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。
(2)假设物体是线弹性的。
就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。
而且,材料服从虎克定律,应力与应变成正比。
(3)假设物体是均匀的。
昆 明 理 工 大 学 试 卷(A )
考试科目: 弹性力学及塑性力学基础 考试日期:2013/01/08 命题教师: 学院:建工学院 专业班级:工程力学101 学生姓名: 学号:
一、写出图示平面问题指定边界的应力边界条件。
(20分)
1. 水下墙体受水压作用,设水的比重为γ ,写出墙面AB 、AC 和BD 的应力边界条件;
2. 悬臂圆弧曲梁在自由端受水平集中力P 作用,写出外侧、内侧及自由端的应力边界条件。
二、说明下列方程或关系式的力学意义,哪分)
ij i j 1. ,,,,()0i j j i j ij k kj i G u u u f λδ+++= 23. 2d d x y M Φ=⎰⎰ 4. 2,1
01ij ij σΘμ
∇+=+
三、试检验函数
O
)43(2223
y h xy h
F
Φ-=
能否做为应力函数?若能,试求出应力分量(不计体力),并求出图示杆件左右两端面力的主矢和主矩,根据左右两端面力的主矢和主矩,判断该杆件是什么类型的梁结构?(本题20分)
四、半平面体表面受有均布水平力q ,试用应力函数2(sin 2)B C Φρϕϕ=+,求应力分量。
(20分)
五、已知某点的应力状态为10010010010002001002000ij σ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
(MPa ), 1. 求主应力和最大切应力
2. 若材料的屈服极限为s 430σ=(MPa ),试用Mises 屈服条件判断该点处于弹性状态还是塑性状态?
3. 因荷载变化致使该点的应力状态变为20010010010001001001000ij
σ⎡⎤
⎢⎥'=⎢⎥⎢⎥⎣⎦
,其三个主应力为1300MPa σ=、20σ=、1100MPa σ=-,试用Mises 屈服函数判断该应力状态变化过程是加载?卸载?还是中性变载?
(每小题各10分,均需写出解题过程)。