分式的概念、性质及简单运算(预习)
- 格式:doc
- 大小:381.00 KB
- 文档页数:15
第一讲 分式的概念、性质及运算(一)分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容. 解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理.分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具.分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有:1.化整为零,分组通分; 2,步步为营,分步通分;3.减轻负担,先约分再通分; 4.裂项相消后通分等。
典型例题1.若a d d c cb b a ===,则dc b ad c b a +-+-+-的值是 0或-2 . 点拨:引入参数,利用参数寻找a 、b 、c 、d 的关系.设a d d c c b b a ====k,则d ak =,2c dk ak ==,3b ck ak ==,4a bk ak ==,有41k =,1k =±.当1k =时,a b c d ===,原式= 0;当1k =-时,原式= 2-.2.已知=⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+≠=++y x z z x y z y x xyz z y x 11111100,则, -3 . 原式=3x x y y z z x y z y z x z x y x y z++++++++- =3x y z x y z x y z x y z++++++++-= 3- 3.已知032=-+x x ,那么1332---x x x = . 点拨:由条件得323x x x =-.原式= 3- 4.已知432z y x ==,z y x z y x +--+22求的值. 解:设432z y x ===k ,则x =2k ,y =3k ,z =4k .∴原式=545443224322==+-⨯-⨯+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法.5.已知31=+xx ,的值求1242++x x x . 分析: 1)1(111222224-+=++=++x x xx x x x ,可先求值式的倒数,再求求值式的值. 解:∵ 1)1(12224-+=++x x xx x 8132=-=, ∴ 811242=++x x x . 6.已知13ab a b =+,14bc b c =+,15ac a c =+,求代数式abc ab bc ca++的值. 解: 由13ab a b =+,得3a b ab +=,即113a b+=……① 同理可得 114b c +=……②, 115a c+=……③①+②+③得22212a b c ++=, ∴1116a b c ++=, ∴6bc ac ab abc++=. ∴abc ab bc ca ++=16. 点拨:巧妙地取倒数是解答此题的关键.由此看来, 对于复杂的分式求值题应考虑从多个角度变形已知条件,当然,这离不开细致的观察、比较和日常方法的积累.7. 化简:2221113256712x x x x x x ++++++++ 分析: 三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.解原式=111(2)(1)(3)(2)(4)(3)x x x x x x ++++++++ = 111111()()()122334x x x x x x -+-+-++++++ =1114x x -++= 2354x x ++ 说明 本题利用111()(1)1x n x n x n x n =-++++++将每个分式展开,这样前后两个分式就有可以相互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.8.化简:222223253452851223a a a a a a a a a a a a ++-----+--+++-- 分析:直接通分算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.解原式=222211236112a a a a a a a a +++++--+-++ 22362412626123a a a a a a a a -+----+--+-- =11(21)(3)12a a a a ⎡⎤⎡⎤++--+⎢⎥⎢⎥++⎣⎦⎣⎦ 11(32)(22)23a a a a ⎡⎤⎡⎤-+-+--⎢⎥⎢⎥--⎣⎦⎣⎦=1111()()1223a a a a -+-++-- =84(1)(2)(2)(3)a a a a a -+++-- 说明 本题的关键是正确地将假分式写成整式与真分式之和的形式.9. 化简:222222a b c b c a c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+ .(a ,b ,c 互不相等) 分析:本题的关键是搞清楚分式22a b c a ab ac bc ----+的变形,其他两项类似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解原式=()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-++------ =111111a c a b b a b c c b c a+++++------=0说明 本例也是采取“拆项相消”法,所不同的是利用11A B AB A B +=+ 10. 若1abc =,求111a b c ab a bc b ca c ++++++++的值。
八下期末复习讲义——分式的基本性质及运算一、知识梳理1、一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么代数式A B叫做 。
2、分式的 时,分式有意义;分式的 时,分式的值为0。
3、用具体的数值代替分式中的字母,按照分式的运算关系计算,所得的结果就是 。
4、分式的基本性质:分式的分子和分母都乘(或除以) 的整式,分式的值 。
5、根据分式的基本性质,把一个分式的分子和分母分别除以它们的 ,叫做分式的约分。
6、根据分式的基本性质,把几个异分母的分式化成同分母的分式,叫做分式的 。
7、同分母的分式相加减,分母 ,把分子 ;异分母的分式相加减,先 , 再 。
8、分式乘分式,用 的积做积的分子,用 的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相 。
9、分式的加、减、乘、除混合运算的顺序是:先 ,后 ,如果有括号,先进行括号内的运算。
二、基础练习1、下列各式中,24,2),(31,23,2,312---+-x x b a y x m x π,分式有 。
2、当x 时,分式31-+x x 有意义;当x 时,分式32-x x 无意义; 当x 时,分式392--x x 的值为零。
3、填空:(1)b a ab b a 2)( =+; (2)21()a a a c ++= ; (3)()()222x y x y x y+=≠-; 4、若分式1232-a a 的值为负数,则a 的取值范围为 。
5、请你写一个关于x 的分式,使此分式当3=x 时,它的值为2。
6、当2a =-时,求分式43a a +的值;7、约分:12122++-a a a8、计算:(3、4两小题写出最简公分母)(1)4233m m +-- (2)1122a a -+-(3)22222x x xx x +-⋅- (4)2222222x y x xy y x y x y -++⋅+-三、课后练习基础部分A :1、填空:()b ab a =; 231()3xy x y =;2、化简112---a a ,其结果为( ) A .1+a B. 1-a C .a -1 D.1--a 3、化简1xx y x ÷⋅,其结果为( ) A. 1 B.xy C.x y D.yx4、通分:)2)(1(++a a a ,31a +;5、计算:(1)22494n m nm ---2294m n m n +-; (2)2211x x x +÷-6、化简求值:22121-÷--a a a ,其中1a =。
八年级华师大版数学(下)第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。
2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使BA =0的条件是:A=0,B ≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式 单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式的整式,分式的值不变。
用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。
2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
知识点:1、能理解因式分解的概念并能正确判别。
2、会用提取公因式,运用公式法分解因式。
重点:1、运用提取公因式法分解因式。
2、运用公式法分解因式。
难点:综合运用提公因式法,公式法分解因式,体会因式分解的作用。
分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b c a a a a±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac •=,b c b d bd a d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式(a+b)(a -b)= a 2- b 2 ;(a±b)2= a 2±2ab+b 2(一)分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2)1(35-+-x x 为负; (3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x (2)1)1(32++-x x(3)x 111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:M B M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:ba b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x y x 41313221+- (2)b a b a +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx y x --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+.【例4】已知:21=-x x ,求221x x +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)y x y x 5.008.02.003.0+- (2)b a b a 10141534.0-+2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求a ab b b ab a ---+232的值.4.若0106222=+-++b b a a ,求ba b a 532+-的值.5.如果21<<x ,试化简x x --2|2|x x x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分.(1)c b a c a b ab c 225,3,2--; (2)a b b b a a 22,--;(3)22,21,1222--+--x x x x x x x ; (4)aa -+21,2题型二:约分【例2】约分:(1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-; (2)22233)()()3(x y x y y x y x a +-÷-⋅+; (3)m n m n m n m n n m ---+-+22; (4)112---a a a ; (5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232z y x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x N x M x x ,试求N M ,的值.练习:1.计算 (1))1(232)1(21)1(252+-++--++a a a a a a ; (2)ab ab b b a a ----222;(3)ba b b a ++-22; (4))4)(4(b a ab b a b a ab b a +-+-+-;(5)2121111x x x ++++-; (6))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x .2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(y x x y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x B x A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x m x 有增根,求m 的值. 【例5】若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a .题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dc x b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c .题型五:列分式方程解应用题练习:1.解下列方程:(1)021211=-++-x x x x ;(2)3423-=--x x x ; (3)22322=--+x x x ;(4)171372222--+=--+x x x x x x (5)2123524245--+=--x x x x (6)41215111+++=+++x x x x (7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xb b x a a ≠+=+.3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x二、化归法例2.解方程:012112=---x x三、左边通分法例3:解方程:87178=----x x x四、分子对等法例4.解方程:)(11b a x b b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程x m x x -=--221无解,求m 的值。
第三章分式一、基础知识梳理(本章主要与分数、四则运算、幂、方程式、分解因式等结合学习) 1、分式的概念: 一般地,如果A 、B 表示两个整式,并且除式B 中含有字母,那么式子 叫分式。
解析:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;分式A/B 有意义,则B=0(2)分式的分母的值不能等于零.若分母的值为零,则分式无意义;反之,若分式A/B 无意义,则B=0(3)当分子等于零而分母不等于零时,分式的值才是零.反之,若分式A/B=0,则A=0,且B ≠0 分式的相关概念:分式的约分:指把一个分式的分子与分母的公因式约去。
分式约分的根据是 分式的基本性质分式约分的主要步骤是:(1)把分式的分子与分母化为积的形式;(2)约去分子与分母的公因式 约分的关键是确定公因式。
确定公因式分三步:⑴确定因式(如果分母是多项式要首先分解因式):选择所有因式中出现的相同因式;⑵确定指数:选择相同因式中指数最低的次数;⑶确定系数:求各个系数的最大公约数。
最简分式:一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.分式的通分:指把几个异分母的分式分别化成与原来的分式 相等 的 同分母 的分式.分式通分的根据是分式的基本性质通常取各分母的所有因式的 最高次幂的积作公分母,这样的公分母,叫做最简公分母.确定最简公分母分三步:⑴确定因式(如果分母是多项式要首先因式分解):选择各个分母中出现的所有因式;⑵确定指数:选择各个因式中指数最高的次数;⑶确定系数:求各个系数的最小公倍数。
2、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 特别提示:(1)在解题过程中,分母不为0是作为隐含条件给出的.若是分式,则说明分母中的字母一定能满足使分母不为0;(2)在运用分式的基本性质时,一定要重点强调C≠0这个条件,没有给出的,要讨论是否等于0.分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如:(1)BA B A B A B A --=--=--=(2)b a b a b a -=-=-;(3)b aba -=---. 但要注意下面的错误:y x y x yx y x ++-=++-=-1是错误的,应该是y x yx y x y x y x y x +--=+--=++-)(. 3、分式的运算:分式的乘法法则:分式乘分式,用分子的积作积的分子,用分母的积作积的分母。
学好分式三步走:1.分式的概念,分式何时有意义,何时值为零2.分式的基本性质,约分,通分3.分式的加、减、乘、除、乘方运算1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫分子,B 叫分母且B ≠0 。
②分式有意义(或分式存在)的条件:分式的分母不等于零即 B ≠0 。
③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。
即当A =0且B ≠0时,0AB =。
【例1】 ⑴若分式25x -有意义,则x 的取值范围是( )⑵分式211x x --的值为0,则x 的值为( )2.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。
()0A A M A MM B B M B M ÷==÷×≠×②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。
分子分母中没有公因式的分式叫做最简分式。
③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式。
为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。
【例2】 ⑴化简222a b a ab -+的结果为( )分 式⑵化简2244xy y x x --+的结果为( )3.分式的加、减、乘、除、乘方运算分式的乘法 a c a c b d b d⋅⋅=⋅ 分式的除法 a c a d a d b d b c b c ⋅÷=⋅=⋅分式的乘方 nnn a a b b ⎛⎫= ⎪⎝⎭同分母分式相加减 a b a bc c c ±±=异分母分式相加减 acadbc ad bcb d bd bd bd ±±=±=0指数幂 01(0)a a =≠ 负整数指数幂 1p p a a -= (a ≠0,且p 为正整数)【例3】 化简22226211296x x x x x x x x -++++÷--+-思想方法吐血大总结:1.分式是否有意义、何时值为零以及基本性质都和分数相近。
1.填空题:(1)当x= 时,分式135-+x x 无意义。
(2)当x= 时,分式123-+x x 的值为零;当分式23+-x x =0时,x= 。
(3)()()333++x x x =x 3成立的条件是 。
(7)当x 时,分式121+-x x 有意义。
2.选择题:(1)下列说法正确的是( )A .形如BA 的式子叫分式B .分母不等于零,分式有意义C .分式的值等于零,分式无意义D .分式等于零,分式的值就等于零(2)已知有理式:x 4、4a 、y x -1、43x 、21x 2、a 1+4,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个(3)使分式ax 45-有意义的x 的值是 ( )A .4aB .-4aC .±4aD .非±4a 的一切实数(4)使分式mx m x 41622--的值为零的x 的值是 ( ) A .4m B .-4m C .±4m D .非±4m 的一切实数3.解答下列各题:(1)当x 取什么数时,分式1132-+x x 有意义? (2)当x 为何值时,分式x x x 32212-++无意义? (3)若分式1642-+x x 无意义,求x 的值。
4.已知分式()()()()22253435232-----+x x x x (1)当x 为何值时,分式无意义?(2)当x 为何值时,分式的值为零?(3)当x 为何值时,分式的值为-1?5.当x 为何值时,下列分式的值为正?(1)432+-x x (2)232-+x x 6.(1)填充分子,使等式成立;()222(2)a a a -=++ (2).填充分母,使等式成立:()2223434254x x x x -+-=--- (3)化简:233812a b c a bc =_______。
6.(1)()2a b ab a b += (2)()21a aa c++=(a ≠0) (3)()22233x x x -=-+-(4)()2232565a a a a a ++=+++7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么? (2)22112x y x y x y x y++==---对吗?为什么? 8.把分式x x y+(x≠0,y≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变9.下列等式正确的是 ( )A .22b b a a = B .1a b a b-+=-- C .0a b a b +=+ D .0.10.330.22a b a b a b a b--=++ 10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
初⼆数学基础知识点归纳数学是考试的重点考察科⽬,数学知识的积累和解题⽅法的掌握,需要科学有效的复习⽅法,同时需要持之以恒的坚持。
下⾯是⼩编给⼤家整理的⼀些初⼆数学的知识点,希望对⼤家有所帮助。
初⼆数学下册知识点归纳第⼀章分式1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式⽅程及其解法第⼆章反⽐例函数1反⽐例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两⽀的增减性相同;2反⽐例函数在实际问题中的应⽤第三章勾股定理1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形1平⾏四边形性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形;两组对⾓分别相等的四边形是平⾏四边形;对⾓线互相平分的四边形是平⾏四边形;⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形(1)矩形性质:矩形的四个⾓都是直⾓;矩形的对⾓线相等;矩形具有平⾏四边形的所有性质判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形;推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
(2)菱形性质:菱形的四条边都相等;菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓;菱形具有平⾏四边形的⼀切性质判定:有⼀组邻边相等的平⾏四边形是菱形;对⾓线互相垂直的平⾏四边形是菱形;四边相等的四边形是菱形。
初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。
2. 培养学生运用分式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。
(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。
4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。
2. 难点:分式的运算法则的应用,分式在实际问题中的解决。
四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。
2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。
(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。
(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。
3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。
4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。
5. 总结:对本节课的内容进行总结,强调重点和难点。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。
2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。
3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。
六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。
同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。
分式的概念及根本性质分式的运算一. 知识精讲及例题分析〔一〕知识梳理1. 分式的概念形如AB〔A、B是整式,且B中含有字母,B≠0〕的式子叫做分式。
其中A叫分式的分子,B叫分式的分母。
注:〔1〕分式的分母中必须含有字母〔2〕分式的分母的值不能为零,否则分式无意义2. 有理式的分类3. 分式的根本性质分式的分子与分母都乘以〔或除以〕同一个不等于零的整式,分式的值不变。
A BA MB M=⨯⨯,ABA MB M=÷÷〔M为整式,且M≠0〕4. 分式的约分与通分〔1〕约分:把一个分式的分子与分母的公因式约去,叫分式的约分。
步骤:①分式的分子、分母都是单项式时②分子、分母是多项式时〔2〕通分:把n个异分母的分式分别化为与原来的分式相等的同分母的分式,为进行分式加减奠定根底。
通分的关键是精确求出各个分式中分母的最简公分母,即各分母全部因式的X次幂的积。
求最简公分母的步骤:①各分母是单项式时②各分母是多项式时5. 分式的运算〔1〕乘除运算〔2〕分式的乘方〔3〕分式的加减运算〔4〕分式的混合运算【典型例题】例1. 以下有理式中,哪些是整式,哪些是分式。
ab a 2,1x,a3,--xx y,x+1π,14()x y-,1ya b()+,12a-例2. 以下分式何时有意义〔1〕xx-+12〔2〕11||x-〔3〕412xx-〔4〕xx x22+例3. 以下分式何时值为零以下各式中x为何值时,分式的值为零?〔1〕433xx+〔2〕xx-12〔3〕212--+||()()xx x1. 填空。
〔1〕x x xy y +=≠10()() 〔2〕3222xy x xx -=-()〔3〕x y x y x y x y -+=--≠()()22〔4〕a ab ab a b2-=-()2. 不改变分式的值,将以下分式的分子、分母中的系数化为整数。
〔1〕0300205...x yx y+-〔2〕13141223x yx y -+ 例5. 约分〔1〕-215635210a b ca b d〔2〕31263ab a b a b a ()()-- 〔3〕x x x 22444-+-〔4〕()()()()32322532222a a a a a a a a ---+-+ 例6. 通分:〔1〕345612222a b b c ac ,,- 〔2〕x x x x x x++---22223842,,例7. 分式运算1. 计算:〔1〕-⨯-a b c cd ab 22365(); 〔2〕a a a a a a 2327844324+--⨯-+ 〔3〕x xy y xy y xy y x xy y 22222222++-÷+-+ 〔4〕()ab b a b a b -÷-+2222. 计算:〔1〕()()()-⋅-⋅-a b a b 8761; 〔2〕()()()-⋅-÷--x yy x y x 22234 3. 计算:1111212x x x --+-+ 4. 计算:111a a +-- 5. 计算:()a a a aa a a +-+-÷+-+141233222 6. 计算:14413212222-++÷-⋅++-x x x x x x x () 7. 计算:11122x yx y x y -÷++-() 例8. 能力提高题1. 已知x x 2310-+=,求x x221+的值。
北师大版数学八年级下册《分式及分式的相关概念》教案一. 教材分析北师大版数学八年级下册《分式及分式的相关概念》这一章节是在学生已经掌握了有理数、实数等基础知识的基础上进行讲解的。
分式是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。
本章主要介绍了分式的定义、分式的基本性质、分式的运算以及分式的应用等内容。
通过这一章节的学习,使学生掌握分式的相关知识,提高他们解决实际问题的能力。
二. 学情分析学生在学习这一章节时,已经具备了初步的数学逻辑思维能力,但部分学生在理解和应用分式方面存在一定的困难。
主要问题有以下几点:1. 对分式的定义理解不深刻,容易与分数混淆;2. 对分式的基本性质掌握不牢固,不能灵活运用;3. 分式的运算过程中,部分学生对运算规则理解不透彻,导致计算错误;4. 应用分式解决实际问题时,不知道如何运用所学知识。
三. 教学目标1.理解分式的定义,掌握分式的基本性质;2.学会分式的运算方法,能熟练进行分式计算;3.能够运用分式解决实际问题,提高解决问题的能力;4.培养学生的逻辑思维能力,提高他们的数学素养。
四. 教学重难点1.分式的定义和基本性质;2.分式的运算规则;3.分式在实际问题中的应用。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生独立思考、合作交流,从而达到理解掌握分式的相关知识。
六. 教学准备1.准备相关的教学课件和教学素材;2.安排学生进行预习,了解分式的基本概念;3.准备一些实际问题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入分式的概念,如:已知苹果和橘子的数量,求苹果和橘子的比例。
让学生思考如何用数学表达式表示这个问题,从而引出分式的定义。
2.呈现(10分钟)讲解分式的定义,强调分式的基本性质,如:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变。
通过举例说明,让学生理解分式的基本性质。
华师大版数学八年级下册第16章《分式》(第1课时)单元复习教学设计一. 教材分析华师大版数学八年级下册第16章《分式》是学生在掌握了实数、代数式、方程等基础知识后的进一步学习。
本章主要介绍了分式的概念、分式的运算、分式方程的解法等。
本章内容在学生的数学知识体系中起到承上启下的作用,为后续学习函数、几何等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的代数基础,对实数、代数式、方程等概念有一定的了解。
但学生在学习过程中,对于分式的理解容易出现模糊不清、概念混淆等问题。
此外,学生对于分式的运算和分式方程的解法,也需要通过实例讲解和练习来进一步巩固。
三. 教学目标1.理解分式的概念,掌握分式的基本性质。
2.学会分式的运算,包括分式的加减乘除。
3.掌握分式方程的解法,并能应用于实际问题中。
四. 教学重难点1.分式的概念和基本性质的理解。
2.分式的运算方法。
3.分式方程的解法及应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过问题引导学生思考,案例讲解分式的概念和运算方法,小组合作探讨分式方程的解法,提高学生的学习兴趣和参与度。
六. 教学准备1.教学PPT,包括分式的概念、运算方法和分式方程的解法等内容。
2.练习题,包括分式的运算和分式方程的应用问题。
3.教学视频或动画,用于讲解分式的概念和运算方法。
七. 教学过程1.导入(5分钟)通过一个实际问题引入分式的概念,如计算“某商品打八折后的价格是120元,求原价”。
让学生思考如何用数学表达式表示原价和打折后的价格,从而引出分式的概念。
2.呈现(15分钟)讲解分式的概念,通过PPT展示分式的定义和基本性质。
结合实例讲解分式的运算方法,包括分式的加减乘除。
同时,展示教学视频或动画,帮助学生更好地理解分式的概念和运算方法。
3.操练(10分钟)让学生分组练习分式的运算,包括分式的加减乘除。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)讲解分式方程的解法,通过PPT展示分式方程的解法步骤。
分式的基本概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
【例1】 在下列代数式中,哪些是分式?哪些是整式?1t ,(2)3x x +,2211x x x -+-,24x x +,52a ,2m ,21321x x x +--,3πx -,323a a a +【巩固】代数式22221131321223x x x a b a b ab m n xy x x y +--++++,,,,,,,中分式有( )A .6个B .4个C .3个D .2个【例2】 下列各式:(1)2x y ,(2)223x y ,(3)38a +,(4)4x y -,(5)214y x -,(6)()3231a ab b a -+,(7)44x x --中,整式有 ,分式有 (填序号).与分式有关的条件①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=0B A )④分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><0B A )⑥分式值为1:分子分母值相等(A=B )分式的概念、性质及运算知识讲解【例3】x为何值时,分式2141xx++无意义?【巩固】求下列分式有意义的条件:(1)1x(2)33x+(3)2a ba b+--(4)21nm+(5)22x yx y++【巩固】(2011房山二模)若分式121xx+-有意义,则x____________.【例4】x为何值时,分式2132x x-+有意义?【巩固】x为何值时,分式2128x x--无意义?【巩固】使分式11)(1) x x+-(有意义的x值是().0A x≠.1B x≠.1C x≠-.1D x≠±【巩固】当x取什么值时,分式23 4x x --有意义?【例5】x为何值时,分式211xx-+有意义?【巩固】当x= 时,分式26(1)(3)x xx x----无意义.【巩固】当时,分式221634xx x-+-有意义.【例6】当x为何值时,下列分式的值为0?(1)1xx+(2)213xx-+(3)288xx+【例7】若分式41xx+-的值为0,则x的值为.【巩固】若分241++xx的值为零,则x的值为___________.【巩固】若分式242aa-+的值为0,则a的值为__________.【巩固】(2011昌平一模)若分式42xx-+的值为0,则x的值为.【例8】当x为何值时,下列分式的值为0?(1)211xx-+(2)2231x xx+--(3)2242xx x-+【例9】若分式223(1)(2)x xx x--++的值为0,则x的值为.【巩固】(2011大兴二模)若分式242xx--的值为0,则x的值为.【巩固】若分式225x-的值为0,则x的值为.【巩固】如果分式2321x x x -+-的值是零,那么x 的取值是 .分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
初中分式认识教案1. 让学生理解分式的定义,掌握分式的基本性质,了解分式与整式的区别和联系。
2. 培养学生运用分式解决实际问题的能力,提高学生的数学素养。
3. 培养学生合作交流、积极思考的良好学习习惯。
二、教学内容1. 分式的定义:分式是两个整式的比,分母不能为零。
2. 分式的基本性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
3. 分式与整式的区别和联系:整式是分式的特殊形式,分式是整式的推广。
三、教学重点与难点1. 重点:分式的定义,分式的基本性质。
2. 难点:分式与整式的区别和联系。
四、教学方法1. 采用自主探究、合作交流的学习方式,让学生在实践中掌握分式的定义和性质。
2. 利用多媒体课件,直观展示分式的生成过程,提高学生的学习兴趣。
3. 结合生活实例,引导学生运用分式解决实际问题。
五、教学过程1. 导入:复习整式的知识,引导学生思考整式在实际生活中的应用。
2. 新课导入:介绍分式的定义,让学生理解分式是两个整式的比,分母不能为零。
3. 讲解分式的基本性质,让学生通过实例感受分式的性质。
4. 分析分式与整式的区别和联系,引导学生理解分式是整式的推广。
5. 练习巩固:布置一些分式的基本运算题目,让学生独立完成,检验学习效果。
6. 拓展应用:给出一些实际问题,引导学生运用分式解决。
7. 课堂小结:回顾本节课所学内容,让学生总结分式的定义、性质及应用。
8. 布置作业:布置一些有关分式的练习题,巩固所学知识。
六、教学反思1. 课后认真反思本节课的教学效果,了解学生的掌握情况。
2. 对教学方法进行调整,以提高学生的学习兴趣和效果。
3. 关注学生在实际问题中的运用能力,提高学生的数学素养。
4. 针对学生的差异,给予个别辅导,帮助学生克服学习困难。
通过以上教学设计,希望能帮助学生更好地理解分式,提高学生的数学素养。
在实际教学中,教师应根据学生的实际情况灵活调整教学方法,关注学生的个体差异,使每位学生都能在数学学习中取得良好的成绩。
初中数学分式的综合运算、化简及比较大小考试要求:重难点:1.会进行简单的分式加减乘除综合运算;2.利用分式的基本性质进行分式化简求值;3.会用作差法比较分式大小.知识点:分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,用公式表示为.异分母分式相加减,先通分,变为同分母的分式再加减,.分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.结果以最简形式存在.例题精讲:模块一 分式的加减运算☞分式分母相同或互为相反数 【例1】 计算:111a a a +=++ .【难度】1星【解析】根据分式的加减运算法则可知,分式的分母相同,分子相加减,即11+1111a a a a a +==+++ 【答案】1【巩固】计算:9333a b a bab ab++-【难度】1星a b a bc c c +±=a c ad bc ad bcb d bd bd bd ±±=±=【解析】9393623333a b a b a b a b b ab ab ab ab a +++---=== 【答案】2a【巩固】计算:2222135333x x x x xx x x +--+-++++ 【难度】2星【解析】22221352623333x x x x x x x x x x +--++-+==++++【答案】2【巩固】计算:22222621616x x x x x+-++-- 【难度】2星【解析】22222262282(4)2=161616(4)(44x x x x x x x x x x x +-+--+==----++)【答案】24x +☞分式分母不相同 【例2】 计算:21211x x --- 【难度】2星【解析】分母不同,能分解因式先分解因式再通分。
212(1)211=11(1)(1)(1)(1)(1)(1)1x x x x x x x x x x x +--=-=---+-+-++ 【答案】11x +【巩固】计算:22b aa ab b ab+--. 【难度】2星【解析】2222()()()()()()b a b a b a b a b a a ba ab b ab a a b b b a ab a b ab a b ab -+-++=+===-------【答案】a bab+-【巩固】计算:2216322a a a a a --++-- 【难度】3星【解析】2221616(1)(2)6(2)322(1)(2)(2)(1)(1)(2)(2)910(1)(10)10(1)(2)(2)(1)(2)(2)(2)(2)a a a a a a a a a a a a a a a a a a a a a a a a a a a a a -----+-=-=++--++-+++---+--===++-++-+-【答案】10(2)(2)a a a -+-【总结】在进行分式的加减运算时,先观察分母是否相同,当分母相同时分子直接相加减,当分母互为相反数时,通过改变分式的符号,把它们变为分母相同的分式。
中考总复习:分式与二次根式—知识讲解(提高)【考纲要求】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。
±错误!未找到引用源。
=错误!未找到引用源。
同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算.(2)乘法运算两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.(4)乘方运算(分式乘方)分式的乘方,把分子分母分别乘方.2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分需明确的问题:(1)对于一个分式来说,约分就是要把分子与分母都除以同一个因式,使约分前后分式的值相等;(2)约分的关键是确定分式的分子和分母的公因式,其思考过程与分解因式中提取公因式时确定公因式的思考过程相似;在此,公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.通分注意事项:(1)通分的关键是确定最简公分母;最简公分母应为各分母系数的最小公倍数与所有因式的最高次幂的积.(2)不要把通分与去分母混淆,本是通分,却成了去分母,把分式中的分母丢掉.(3)确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积.要点诠释:分式运算的常用技巧(1)顺序可加法:有些异分母式可加,最简公分母很复杂,如果采用先通分再可加的方法很繁琐.如果先把两个分式相加减,把所得结果与第三个分式可加减,顺序运算下去,极为简便.(2)整体通分法:当整式与分式相加减时,一般情况下,常常把分母为1的整式看做一个整体进行通分,依此方法计算,运算简便.(3)巧用裂项法:对于分子相同、分母是相邻两个连续整数的积的分式相加减,分式的项数是比较多的,无法进行通分,因此,常用分式111(1)1n n n n=-++进行裂项.(4)分组运算法: 当有三个以上的异分母分式相加减时,可考虑分组,原则是使各组运算后的结果能出现分子为常数,且值相同或为倍数关系,这样才能使运算简便.(5)化简分式法:有些分式的分子、分母都异常时如果先通分,运算量很大.应先把每一个分别化简,再相加减.(6)倒数法求值(取倒数法).(7)活用分式变形求值.(8)设k求值法(参数法)(9)整体代换法.(10)消元代入法.考点三、分式方程及其应用1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.4.分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.另外,还要注意从多角度思考、分析、解决问题,注意检验、解释结果的合理性.要点诠释:解分式方程注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤:(1)审——仔细审题,找出等量关系;(2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.考点四、二次根式的主要性质 1.0(0)a a ≥≥; 2.()2(0)a a a =≥; 3.2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:(00)ab a b a b =⋅≥≥,; 5. 商的算术平方根的性质:(00)a a a b b b=≥>,. 6.若0a b >≥,则a b >. 要点诠释:与的异同点:(1)不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数.但与都是非负数,即,.因而它的运算的结果是有差别的,,而(2)相同点:当被开方数都是非负数,即时,=;时,无意义, 而. 考点五、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意知道每一步运算的算理;(3)乘法公式的推广:123123123(0000)n n n a a a a a a a a a a a a ⋅⋅⋅⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算 先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质;3.二次根式的混合运算 (1)对二次根式的混合运算首先要明确运算的顺序,即先乘方、开方,再乘除,最后算加减,如有括号,应先算括号里面的;(2)二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.要点诠释:怎样快速准确地进行二次根式的混合运算.1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.(1)加法与乘法的混合运算,可分解为两个步骤完成,一是进行乘法运算,二是进行加法运算,使难点分散,易于理解和掌握.在运算过程中,对于各个根式不一定要先化简,可以先乘除,进行约分,达到化简的目的,但最后结果一定要化简. 例如82627⎛⎫+⨯ ⎪ ⎪⎝⎭,没有必要先对827进行化简,使计算繁琐,可以先根据乘法分配律进行乘法运算,884266262327273⎛⎫+⨯=⨯+⨯=+ ⎪ ⎪⎝⎭,通过约分达到化简目的; (2)多项式的乘法法则及乘法公式在二次根式的混合运算中同样适用. 如:()()()()223232321+-=-=,利用了平方差公式.所以,在进行二次根式的混合运算时,借助乘法公式,会使运算简化. 4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式; (3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式.【典型例题】类型一、分式的意义1.若分式211x x -+的值为0,则x 的值等于 . 【答案】1;【解析】由分式的值为零的条件得2x ﹣1=0,x +1≠0,由2x ﹣1=0,得x =﹣1或x =1,由x +1≠0,得x ≠﹣1,∴x =1,故答案为1.【总结升华】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.举一反三: 【变式1】如果分式23273x x --的值为0,则x 的值应为 . 【答案】由分式的值为零的条件得3x 2-27=0且x-3≠0,由3x 2-27=0,得3(x+3)(x-3)=0,∴x=-3或x=3,由x-3≠0,得x≠3. 综上,得x=-3,分式23273x x --的值为0.故答案为:-3. 【变式2】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 . 【答案】若分式m x x +-212不论x 取何实数总有意义,则分母22x x m -+≠0, 设22y x x m =-+,当△<0即可,440,1m m -<>.答案m >1.类型二、分式的性质2.已知,b c c a a b a b c +++==求()()()abc a b b c c a +++的值. 【答案与解析】设b c c a a b k a b c+++===, 所以,,b c ak c a bk a b ck +=+=+=所以,b c c a a b ak bk ck +++++=++所以2()(),()(2)0,a b c k a b c a b c k ++=++++-=即2k =或()0,a b c ++=当2k =,所求代数式33118abc abck k ===, 当0a b c ++=,所求代数式1=-. 即所求代数式等于18或1-. 【总结升华】当已知条件以此等式出现时,可用设k 法求解.举一反三:【变式】已知111111111,,,6915a b b c a c +=+=+=求abc ab bc ac ++的值. 【答案】因为 111111111,,,6915a b b c a c +=+=+= 各式可加得1111112,6915a b c ⎛⎫++⨯=++⎪⎝⎭ 所以11131180a b c ++=, 所以()1180.111()()31abc abc abc ab bc ac ab bc ac abc c a b÷===++++÷++类型三、分式的运算3.已知1,x y z y z z x x y++=+++且0x y z ++≠,求222x y z y z x z x y +++++的值. 【答案与解析】因为0x y z ++≠,所以原等式两边同时乘以x y z ++,得:()(().x x y z y x y z z x y z x y z y z z x x y++++++++=+++++)即222()()(),x x y z y y z x z z x y x y z y z y z z x z x x y x y++++++++=++++++++ 所以222(),x y z x y z x y z y z z x x y+++++=+++++ 所以2220.x y z y z z x x y++=+++ 【总结升华】 条件分式的求值,如需把已知条件或所示条件分式变形,必须依据题目自身的特点,这样才能到事半功倍的效果,条件分式的求值问题体现了整体的数学思想和转化的数学思想.举一反三:【变式1】已知,,,x y z a b c y z x z x y ===+++且abc o ≠,求111a b c a b c +++++的值. 【答案】 由已知得1,y z a x+= 所以111,y z x y z a x x ++++=+=即1a x y z a x +++=, 所以1a x a x y z=+++, 同理,,11b y c z b x y z c x y z==++++++ 所以1111a b c x y z x y z a b c x y z x y z x y z x y z++++=++==+++++++++++. 【变式2】已知x +y=-4,xy=-12,求+++11x y 11++y x 的值. 【答案】原式)1)(1()1()1(22+++++=y x x y =1121222++++++++y x xy x x y y 1)(2)(22)(2++++++-+=y x xy y x xy y x 将x +y =-4,xy =-12代入上式, ∴原式⋅-=+--+-⨯++-=153414122)4(224)4(2类型四、分式方程及应用4.a 何值时,关于x 的方程223242ax x x x +=--+会产生增根? 【答案与解析】 方程两边都乘以(2)(2)x x +-,得2(2)3(2).x ax x ++=-整理得(1)10a x -=-.当a = 1 时,方程无解.当1a ≠时,101x a =--. 如果方程有增根,那么(2)(2)0x x +-=,即2x =或2x =-.当2x =时,1021a -=-,所以4a =-; 当2x =-时,1021a -=--,所以a = 6 . 所以当4a =-或a = 6原方程会产生增根.【总结升华】 因为所给方程的增根只能是2x =或2x =-,所以应先解所给的关于x 的分式方程,求出其根,然后求a 的值.5.甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【答案与解析】(1)设乙单独整理x 分钟完工,根据题意得:120204020=++x解得x =80,经检验x =80是原分式方程的解.答:乙单独整理80分钟完工.(2)设甲整理y 分钟完工,根据题意,得1408030≥+y 解得:y ≥25答:甲至少整理25分钟完工.【总结升华】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.(1)将总的工作量看作单位1,根据本工作分两段时间完成列出分式方程解之即可;(2)设甲整理y 分钟完工,根据整理时间不超过30分钟,列出一次不等式解之即可.举一反三:【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .00253010(18060x x -=+)B .00253010(180x x -=+)C .00302510(18060x x -=+)D .00302510(180x x -=+)【答案】设走路线一时的平均速度为x 千米/小时,00253010(18060x x -=+)故选A .类型五、二次根式的定义及性质6.要使式子aa 2+有意义,则a 的取值范围为 . 【答案】a≥-2且a≠0.【解析】根据题意得:a+2≥0且a≠0,解得:a≥-2且a≠0.故答案为:a≥-2且a≠0.【总结升华】本题考查的考点为:分式有意义,分母不为0;二次根式的被开方数是非负数.可以求出x 的范围.类型六、二次根式的运算7.(2015春•泗阳县期末)已知m 是的小数部分. (1)求m 2+2m+1的值;(2)求的值. 【答案与解析】 解:依题意得21m =-, 则121m=+ (1)原式=(m+1)2=2;(2)原式=|1m m -|=|﹣1﹣(21+)|=2.【总结升华】此题考查二次根式的化简求值,掌握完全平方公式和无理数的估算是解决问题的关键.举一反三:【变式】(2015•苏州模拟)计算:.【答案与解析】解:原式=﹣+2=4﹣+2=4+.。
情境引入千里江陵几日还?李白《早发白帝城》:“朝辞白帝彩云间,千里江陵一日还.”郦道元《水经注·三峡》:“有时朝发白帝,暮至江陵,其间千二百里,虽乘奔御风,不以疾也.”“千里江陵”能否“一日还”?(1) 如果半日行船530千米,船速约为多少千米/时?(2)如果行船速度为v 千米/时,半日(12小时)行船距离是多少千米? (3)如果行船距离s 千米,船速v 千米/时,用时多少小时? (4)如果距离530千米,船速千米/时,水速10千米/时,则顺水行船需多少小时?(5)如果距离s千米,船速千米/时,水速千米/时,则逆水行船需多少小时?分析 :列式:以上的式子有什么共同点?它们与分数有什么相同点和不同点?知识引入分式的概念、性质及简单运算分式的定义形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.例1下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -.分式有意义分式有意义:分母不为0(0B ≠)例2当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分式的值为零分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )例3当x 为何值时,下列分式的值为0?(1)1x x+ (2)213x x -+ (3)288xx +新知学习【巩固】1.列代数式表示下列数量关系,并指出哪些是整式?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 2312-+x x 无意义?3. 当x 为何值时,分式 xx x --21 的值为0?分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示是:MB M A B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。
例4填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++= (4)()222x y x y x xy y +=--+例5若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?(1)x y x y +- (2)xy x y- (3)22x y x y -+拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即BB A B B --=--=--=A A A例6不改变分式的值,使下列分式的分子、分母均不含“-”号.(1)23b a --- (2)14b - (3)35m n-- (4)273yx -【巩固】不改变分式的值,使下列分式的分子、分母均不含“-”号.(1)32m n - (2)3a b- (3)35yx --分式的约分与通分与分数类似,根据分式的基本性质,可以对分式进行约分和通分.分式的约分什么叫做分式的约分?约分的根据是什么? 下列各式是否正确?为什么? 总结(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.例7 约分(1)4322016xy y x -; (2)44422+--x x x【巩固】约分23348a b b -= .【巩固】约分:(1)3______3mnm= (2)227______28x z xy z -= (3)233______26a a a-=-(4)22222______m mn n m n -+=-【巩固】约分:(1)32324______30x y x y -=;(2)262______31x xx +=+分式的通分回顾分数的通分把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。
分数通分的方法及步骤是什么?先求出几个异分母分数的分母的最小公倍数,作为它们的公分母,把原来的各分数化成用这个公分母做分母的分数。
分式的通分和分数的通分是一样的:通分的关键是确定几个分式的最简公分母。
最简公分母:各分式分母中的系数是最小公倍数与所有的字母(或因式)的最高次幂的积,叫做最简公分母。
找最简公分母的步骤:(1).取各分式的分母中系数最小公倍数; (2).各分式的分母中所有字母或因式都要取到; (3).相同字母(或因式)的幂取指数最大的;(4).所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。
例8通分(1)b a 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xyx +21【巩固】把下列各式通分.(1)222234,,345a ab a b- (2)2212,32x y x xy y --+分式的运算分式的乘除分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:db c a d c b a ∙∙=∙分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为cc ∙∙=∙=÷bd a d b a d c b a例9计算:(1)xb ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷.例10计算:493222--⋅+-x x x x .【巩固】计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++-【巩固】计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()y x axy 28512-÷ (4)b a ab ab b a 234222-⋅- (5))4(12x x xx -÷-- (6)3222)(35)(42x y x x y x --⋅-分式乘除法的混合运算分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要化成最简的.例11 计算:(1))4(3)98(23232b xb a xy y x ab -÷-⋅ (2)x x x x x x x --+⋅+÷+--3)2)(3()3(444622【巩固】计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-【巩固】计算(1))6(4382642z yx y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(分式的乘方计算下列各题:(1)2)(ba =⋅b ab a =( ) (2) 3)(b a =⋅b a ⋅b a b a=( ) (3)4)(ba =⋅b a ⋅b a b a ba⋅=( ) 提问:由以上计算的结果你能推出nba )((n 为正整数)的结果吗?分式的乘方:把分子、分母分别乘方。
式子:n n nb a b a =⎪⎭⎫⎝⎛例12判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 例13计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-【巩固】计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a ba cb ac ÷÷ (4) )()()(2232b a a b a ab b a -⋅--⋅-分式的加减回忆 同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。
概括分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为cba cb ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为bdbc ad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
例14计算:111a a a +=++ .【巩固】计算:9333a b a bab ab++-例15计算:1624432---x x .【巩固】(1)2222223223yx yx y x y x y x y x --+-+--+ (2)96261312--+-+-x x x x【巩固】计算(1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563【巩固】计算(1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323a b ba b a b a b a a b ----+---(3) 122+++-+-b a a b a b a b (4) 22643461461x y xy x y x -----分式的混合运算例16计算(1)x xx x x x x x -÷+----+4)44122(22 (2)2224442yx x y x y x y x y y x x +÷--+⋅-【巩固】 (1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a【巩固】计算(1) )1)(1(yx x y x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+(3) zxyz xy xy z y x ++⋅++)111(【巩固】计算24)2121(aa a ÷--+,并求出当=a -1的值.【练习1】当x 取何值时,分式5(2)(3)x x x ---有意义?【练习2】当x = 时,分式121x x --无意义.【练习3】当x = 时,分式211x x --的值为零?【练习4】当x = 时,分式26(1)(3)x x x x ----的值为零.【练习5】约分:22412____710x x x x --=++【练习6】约分:2239x xx --【练习7】通分:2223,,35a c bc a b【练习8】把下列各式通分.(1)223,156x x x +-- (2)2212,22x y x xy y ---基础演练【练习9】计算:(1)⎪⎭⎫ ⎝⎛-⋅-22563ab cd c b a , (2)xx yx y y x x +÷-222 .【练习10】计算:22222()x xy y x yxy x xy x-+--÷⋅【练习11】计算:9333a b a bab ab++-【练习12】计算:2222135333x x x x xx x x +--+-++++【练习13】计算:22222621616x x x x x +-++--【练习14】计算:21211x x ---1、下面的说法正确的是( )A .35是分式B .22513x x -+是分式 C . 2125x x -+是分式 D. 2132x +是分式2、当x 取什么值时,分式234x x --有意义?课后作业3、若分式2362x xx --的值为0,则x 的值为4、当x = ,分式363x x--的值为零.5、不改变分式的值,是下列分式的分子、分母均不含“-”号,且系数为整数.(1)23b a --- (2)2(2)x y - (3)11314a b - (4)0.60.70.20.3x y x y -+6、计算2211()a b a b ab--÷7、计算:22282()24a a a a a a+-+÷--8、化简2242()4422x x xx x x x --+÷-++-,其结果是( ) A .82x -- B 82x - C 82x -+ D 82x +9、化简后直接代入求值 【例1】 先化简再求值:2111x x x---,其中2x =10、先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-11、先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.12、已知:220x -=,求代数式222(1)11x x x x -+-+的值.。