预变形2219铝合金应力松弛时效成形统一本构建模及回弹预测
- 格式:pdf
- 大小:3.97 MB
- 文档页数:9
《2219铝合金各向异性塑性本构模型研究》一、引言随着现代工业的快速发展,铝合金因其轻质、高强、耐腐蚀等特性在航空、汽车、船舶等领域得到了广泛应用。
其中,2219铝合金以其优异的综合性能在航空航天领域尤为突出。
然而,铝合金材料在塑性变形过程中存在着复杂的力学行为,特别是其各向异性的塑性本构模型研究更是具有重要价值。
本文将重点对2219铝合金的各向异性塑性本构模型进行深入研究。
二、文献综述近年来,国内外学者对铝合金的塑性变形行为进行了大量研究,主要集中在材料的力学性能、微观组织结构以及本构模型的建立等方面。
其中,各向异性塑性本构模型的研究对于理解铝合金的塑性变形机制、预测材料的行为及优化加工工艺具有重要意义。
已有研究表明,2219铝合金在塑性变形过程中表现出显著的各向异性,其应力-应变响应受到材料取向、晶粒尺寸、温度等因素的影响。
因此,建立精确的各向异性塑性本构模型对于描述2219铝合金的力学行为具有重要意义。
三、材料与方法本研究采用2219铝合金作为研究对象,通过实验和数值模拟相结合的方法,对其各向异性塑性本构模型进行研究。
具体方法包括:1. 实验方法:对2219铝合金进行单轴拉伸实验,获取不同方向上的应力-应变数据;利用电子背散射衍射技术(EBSD)对材料微观组织结构进行分析。
2. 数值模拟方法:基于实验数据,建立2219铝合金的各向异性塑性本构模型;利用有限元软件对模型进行验证和优化。
四、结果与讨论1. 实验结果:通过对2219铝合金进行单轴拉伸实验,我们获得了不同方向上的应力-应变曲线。
此外,利用EBSD技术对材料微观组织结构进行分析,发现材料具有明显的各向异性特征。
2. 本构模型建立:基于实验数据,我们建立了2219铝合金的各向异性塑性本构模型。
该模型考虑了材料取向、晶粒尺寸、温度等因素的影响,能够较好地描述材料的塑性变形行为。
3. 模型验证与优化:利用有限元软件对建立的本构模型进行验证,发现模型能够较好地预测2219铝合金的应力-应变响应。
《2219铝合金各向异性塑性本构模型研究》篇一一、引言随着现代工业的快速发展,铝合金因其轻质、高强、耐腐蚀等特性在航空、汽车、船舶等领域得到了广泛应用。
其中,2219铝合金因其优异的综合性能,在航空航天领域的应用尤为突出。
然而,铝合金在塑性变形过程中表现出显著的各向异性特性,这对其力学性能和加工工艺提出了更高的要求。
因此,对2219铝合金各向异性塑性本构模型的研究具有重要的理论意义和实际应用价值。
二、文献综述近年来,关于铝合金塑性变形行为的研究已成为材料科学领域的热点。
其中,各向异性塑性本构模型的研究对于理解铝合金的力学行为、预测其塑性变形过程、优化加工工艺等方面具有重要意义。
目前,关于2219铝合金的各向异性塑性本构模型研究已经取得了一定的进展,但仍然存在一些亟待解决的问题,如模型参数的准确获取、模型精度和适用性的提高等。
三、2219铝合金各向异性塑性本构模型(一)模型选择与构建针对2219铝合金的各向异性塑性本构模型,本文选择了一种典型的各向异性塑性本构模型——Hill模型进行深入研究。
Hill模型能够较好地描述金属材料的各向异性特性,且在铝合金领域得到了广泛应用。
在Hill模型的基础上,结合2219铝合金的力学性能和塑性变形行为,构建了适用于该合金的各向异性塑性本构模型。
(二)模型参数的确定模型参数的准确获取是建立各向异性塑性本构模型的关键步骤。
本文通过对2219铝合金进行单轴拉伸试验、多轴弯曲试验等,获得了大量的实验数据。
利用这些实验数据,结合数值模拟方法,确定了Hill模型中的各项参数。
四、模型验证与应用(一)模型验证为了验证所建立的2219铝合金各向异性塑性本构模型的准确性,本文将模型预测结果与实验结果进行了对比。
通过对比发现,模型预测结果与实验结果具有较好的一致性,表明所建立的模型能够较好地描述2219铝合金的各向异性塑性变形行为。
(二)模型应用各向异性塑性本构模型的建立不仅有助于理解铝合金的力学行为,还可以为其在实际应用中的优化提供理论依据。
《2219铝合金各向异性塑性本构模型研究》一、引言随着现代工业的快速发展,铝合金因其优良的物理和机械性能,在航空航天、汽车制造、船舶建造等领域得到了广泛应用。
其中,2219铝合金以其高强度、良好的耐热性能和优秀的加工性能,在航空航天领域尤为受到青睐。
然而,铝合金在塑性变形过程中表现出显著的各向异性特性,这对其力学性能和成形过程有着重要影响。
因此,对2219铝合金各向异性塑性本构模型的研究,对于理解其力学行为、优化加工工艺和提高产品性能具有重要意义。
二、2219铝合金的特性和应用2219铝合金是一种高强度、高韧性的铝合金,具有较好的耐热性能和抗腐蚀性能。
其合金元素组成和微观结构决定了其优异的力学性能。
在航空航天领域,2219铝合金被广泛应用于制造飞机蒙皮、发动机零部件等关键结构件。
三、各向异性塑性本构模型概述各向异性塑性本构模型是用来描述材料在塑性变形过程中的应力-应变关系的数学模型。
该模型能够考虑材料在不同方向上的力学性能差异,从而更准确地预测和描述材料的塑性变形行为。
四、2219铝合金各向异性塑性本构模型的研究方法针对2219铝合金的各向异性塑性本构模型研究,主要采用以下方法:1. 实验研究:通过单轴拉伸实验、多轴弯曲实验等,获取2219铝合金在不同方向上的应力-应变数据,分析其各向异性特性。
2. 理论建模:基于实验数据,建立考虑各向异性的塑性本构模型。
该模型应能够反映2219铝合金的弹性、塑性和加工硬化等力学行为。
3. 模型验证:通过与实验数据的对比,验证模型的准确性和可靠性。
同时,对模型参数进行优化,以提高模型的预测精度。
五、研究结果与讨论通过实验研究和理论建模,我们得到了以下结果:1. 2219铝合金在塑性变形过程中表现出显著的各向异性特性。
不同方向上的应力-应变关系存在明显差异。
2. 建立了一个考虑各向异性的塑性本构模型,该模型能够较好地描述2219铝合金的弹性、塑性和加工硬化等力学行为。
基于蠕变时效交互作用机理的2219铝合金统一本构建模李喜财;湛利华【摘要】在不同的时效温度和试验应力条件下,对2219铝合金开展蠕变时效行为研究.随后,分别对蠕变试样进行力学性能测试和透射电镜观察,以获得该合金在蠕变时效过程中的力学性能演变规律和析出相演变规律;进一步查明材料蠕变量、析出相特征尺寸与力学性能的关系.在此基础上,建立基于成形成性耦合作用机理的2219铝合金蠕变时效本构方程,采用粒子群算法(POS)对方程中的材料常数进行拟合,并将蠕变应变和屈服强度的拟合结果与试验结果进行对比.研究结果表明:试验应力、时效温度和时效时间都会对2219铝合金的蠕变行为产生重要影响;通过提高试验应力或时效温度,可以缩短蠕变第二阶段的时间,加速蠕变第三阶段(蠕变破坏阶段)的到来.蠕变应变和屈服强度的拟合结果的相对误差分别为2.70%和0.70%.基于成形成性耦合作用机理的铝合金蠕变时效统一本构方程能够较好地反映蠕变与时效形性演变规律.%The creep aging behavior of AA2219 was studied at different aging temperatures and stresses. Then, series of mechanical property tests and TEM tests were carried out to obtain the evolutions of the mechanical property and precipitate behavior. The relationship of the creep strain, the precipitates size and the mechanical properties were also investigated. Based on the experimental results, a set of unified constitutive model of AA2219 was established based on the interaction of creep and aging mechanisms. The material constants of the established model were fitted by the particle swarm optimization(POS) method. The fitted results and experimental data of creep strain and yield strength were compared. The results show that test stress, aging temperature and agingtime can affect the creep behavior of AA2219 significantly. The duration of the second creep stage is shortened and the arrival of the third creep stage (the damage stage) is brought ahead when the test stress or the aging temperature increase. The relative errors of fitting results of the creep strain and yield strength are 2.70% and 0.70% separately, which shows that the unified constitutive model based on the interaction of creep forming and age hardening can be well used to describe the creep aging behavior.【期刊名称】《中南大学学报(自然科学版)》【年(卷),期】2017(048)011【总页数】7页(P2942-2948)【关键词】2219铝合金;蠕变时效;本构建模【作者】李喜财;湛利华【作者单位】中南大学高性能复杂制造国家重点实验室,湖南长沙,410083;中南大学机电工程学院,湖南长沙,410083;中南大学高性能复杂制造国家重点实验室,湖南长沙,410083;中南大学机电工程学院,湖南长沙,410083【正文语种】中文【中图分类】TG146.21随着现代航空航天事业的飞速发展,航空航天工业对大型构件成形后的力学性能要求不断提高,同时要求减小结构质量,延长服役寿命[1]。
《2219铝合金各向异性塑性本构模型研究》篇一一、引言在材料科学和工程领域,金属合金的塑性行为研究一直是重要课题。
2219铝合金作为一种常用的高强度、高塑性的工程材料,其力学性能和塑性行为的研究对于优化其应用性能具有重要意义。
各向异性塑性本构模型是描述材料在多方向应力作用下的塑性变形行为的重要工具。
本文旨在研究2219铝合金的各向异性塑性本构模型,探讨其在不同条件下的变形行为,以期为工程应用提供理论依据。
二、材料与方法1. 材料选择与准备本研究选择2219铝合金作为研究对象。
选用具有代表性的样品,并按照相关标准进行切割和加工,以确保样品的一致性和准确性。
2. 实验方法(1)进行拉伸实验,获得材料在不同方向上的应力-应变数据。
(2)通过金相显微镜和电子背散射衍射(EBSD)技术,观察和分析材料的微观结构。
(3)建立各向异性塑性本构模型,并利用实验数据进行模型参数的拟合和验证。
三、实验结果与分析1. 应力-应变曲线分析通过拉伸实验获得2219铝合金的应力-应变曲线。
在多个方向上进行的实验表明,该合金具有明显的各向异性特征。
在特定方向上,材料表现出较高的强度和塑性。
2. 微观结构分析利用金相显微镜和EBSD技术,观察到2219铝合金的微观结构具有明显的晶粒取向和相分布特征。
这些特征对材料的塑性变形行为具有重要影响。
3. 各向异性塑性本构模型的建立与验证基于实验数据和理论分析,建立2219铝合金的各向异性塑性本构模型。
该模型能够较好地描述材料在不同方向上的塑性变形行为。
通过与实验数据的对比,验证了模型的准确性和可靠性。
四、讨论1. 各向异性来源分析2219铝合金的各向异性主要来源于其微观结构的晶粒取向和相分布特征。
这些特征导致材料在不同方向上的力学性能存在差异,从而表现出各向异性的塑性变形行为。
2. 模型应用与优化建立的各向异性塑性本构模型可以应用于工程实际中,用于预测和评估2219铝合金在多方向应力作用下的塑性变形行为。
2019,Vol.33,No.9 www.mater⁃ yyp@DOI :10.11896/cldb.18070254基金项目:中国航天联合基金项目(U1637601);高性能复杂制造国家重点实验室自由探索项目(zzyjkt2014⁃02) This work was financially supported by the Joint Funds of the National Natural Science Foundation of China (U1637601)and the Free Exploration Project of High Performance Complex Manufacturing National Key Laboratory (zzyjkt2014⁃02).预拉伸变形对2219铝合金环形件组织与力学性能的影响方 杰1,2,易幼平1,2,3,,黄始全2,3,何海林1,2,郭万富1,21 中南大学轻合金研究院,长沙4100832 中南大学高性能复杂制造国家重点实验室,长沙4100833 中南大学机电工程学院,长沙410083预变形是提高时效硬化型铝合金力学性能的有效手段,其变形量是影响铝合金力学性能的重要因素㊂本工作通过硬度测试㊁扫描电镜(SEM )㊁透射电镜(TEM )观察以及室温拉伸性能试验,研究了不同预拉伸变形量(0%㊁1%㊁3%㊁5%㊁7%)对2219铝合金环锻件组织与力学性能的影响,以获得使合金材料力学性能最优的变形量㊂结果表明:预拉伸变形可以促进时效析出相θ′的析出,随着预拉伸变形量的增加,峰值时效时间缩短,硬度和强度先增加后减小,延伸率逐渐降低㊂当预拉伸变形量为3%时,2219铝合金环锻件综合力学性能最佳,其抗拉强度㊁屈服强度㊁延伸率分别为463.5MPa ㊁349.5MPa 和14.31%㊂关键词 2219铝合金 预拉伸变形 时效 形变热处理 力学性能中图分类号:TG146.21 文献标识码:AInfluence of Pre⁃tensile Deformation on the Microstructure and Mechanical Properties of 2219Aluminum Alloy ForgingsFANG Jie 1,2,YI Youping1,2,3,,HUANG Shiquan 2,3,HE Hailin 1,2,GUO Wanfu 1,21 Research Institute of Light Alloy,Central South University,Changsha 4100832 State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha 4100833 School of Mechanical and Electrical Engineering,Central South University,Changsha 410083Pre⁃deformation is an effective method to improve the mechanical properties of aging hardened aluminum alloy and its deformation is an impor⁃tant factor to affect mechanical properties.The effects of different pre⁃tensile deformation amounts (0%,1%,3%,5%,7%)on the micro⁃structure and mechanical properties of 2219aluminum alloy ring forgings were investigated by hardness test,scanning electron microscopy (SEM),transmission electron microscopy (TEM)observation and the tensile test at room temperature,to obtain the deformation amount when the mechanical properties of alloy materials were optimized.The results show that pre⁃tensile deformation can promote the precipitation of aged precipitated phase θ′.With the increase of pre⁃tensile deformation,the peak aging time is shortened,the hardness and strength increase first and then decrease,and the elongation decreases gradually.When the pre⁃tensile deformation is 3%,the comprehensive mechanical properties of 2219aluminum alloy ring forgings are the best,with its tensile strength,yield strength and elongation are 463.5MPa,349.5MPa and 14.31%,respectively.Key words 2219aluminum alloy,pre⁃tensile deformation,aging,thermo⁃mechanical treatment,mechanical property0 引言2219铝合金是Al⁃Cu⁃Mn 系高强铝合金,其强度高㊁可加工性好㊁耐腐蚀性强㊁焊接性能优良㊁低温韧性良好,被广泛应用于航天航空工业[1⁃2]㊂2219铝合金过渡环作为火箭储箱结构的重要组成部分,受力状态较复杂,其切向㊁径向和轴向的力学性能设计标准高于我国军用标准GJB2057以及美国宇航标准AMS4144F [3]㊂然而,大型2219铝合金环锻件的综合力学性能偏低,影响了其进一步应用㊂因此进一步提高大型2219铝合金环锻件的强度和延伸率等力学性能至关重要㊂形变热处理工艺可以利用塑性变形的形变强化和热处理时的时效析出强化,使材料具有优良的性能,被广泛应用于沉淀型铝合金㊂研究表明,形变热处理过程中,热转变相中的塑性变形会增加晶格缺陷,这对析出相变的动力学有很大影响[4⁃5]㊂在许多工程材料中,析出强化已被广泛应用,其中析出相形态在提高合金力学性能方面起关键作用[6⁃7]㊂Singh 等[8]和Mazzini [9]研究了形变热处理工艺对2014铝合金析出相与力学性能的影响,结果发现,2014铝合金中存在位错缠结,同时其力学性能的变化是微观结构如析出相密度的变化㊁析出物的生长或粗化等引起㊂安利辉等[10]研究了预变形对2219铝合金力学性能的影响,发现预变形可以积累位错,促进时效析出,使析出相垂直生长,分布更加分散,并且当预变形量不同时,析出相的形态有所差异㊂王会敏等[11]研究了2219铝合金小环件(Φ5m)的形变热处理工艺,发现轴向冷压变形可以明显提高合金的力学性能,并降低合金的各向异性,并且变形程度越大,析出相尺寸越大㊂同时还有研究表明,热处理前的预变形对形变热处理过程至关重要[12⁃16]㊂目前,大多数2219铝合金形变热处理工艺中的预变形工艺研究主要集中在冷压和冷轧方面,更多的是得到压应力下合金的力学性能和相应的微观组织分析㊂针对最新直径为9m 的环锻件,其高径比达到了4.5,使用轴向冷压方法容易使环锻件发生变形不均匀的塑变,不能很好地保证圆度[17],而胀形工艺是以拉伸变形的方式使环形锻件均匀变形,使锻件具有更均匀的圆度和组织构态㊂然而,关于预拉伸变形量和预拉伸变形强化机制对2219铝合2603金微观结构的影响研究结果很少,有待进一步探索㊂本工作研究了预拉伸变形量对2219铝合金时效硬化行为及力学性能的影响㊂通过硬度测试得到了峰值时效时间,采用透射电镜分析了峰值时效试样的析出相形貌,揭示了预拉伸变形对时效析出的影响机理,确定了最佳预拉伸变形量和时效制度,实验结果为Φ9m环锻件的胀形工艺提供了基础实验和理论分析支撑㊂1 实验实验用2219铝合金环锻件从Φ9330mm×Φ9030mm×661mm工业环件上切下,合金的化学成分见表1[18]㊂固溶处理温度为(538±2)℃,保温时间为4h㊂将固溶处理后的铝合金样件沿切向切割成常规力学性能拉伸试样(如图1所示),并分别进行0%㊁1%㊁3%㊁5%㊁7%变形量的预拉伸变形,预拉伸变形量公式为[(L2-L1)/L1]×100%,其中L1表示拉伸前标距,L2表示拉伸后标距㊂在时效炉中进行155℃不同时间段(0~50h)的时效后,使用维氏压头载荷为200g㊁加载时间15s进行硬度测量㊂对于每个样本,在样本表面以规则的网格模式取五个点,每个单独测量点间隔3mm,以五个点的硬度值获得平均值,绘制出不同预拉伸变形量下的时效时间⁃维氏硬度曲线㊂表1 2219铝合金的化学成分(质量分数,%)Table1 Chemical composition(wt%)of2219aluminum alloyCu Mn Si Zr Fe Mg Zn Ti Al 5.8 6.80.2 0.40.20.1 0.250.30.020.100.02 0.1Bal.图1 常规力学性能拉伸试样尺寸图Fig.1 Tensile specimen size diagram of normal mechanical properties 根据时效时间⁃维氏硬度曲线得到合金时效脱溶序列的规律,选择相应峰值时效工艺参数㊂使用CSS⁃44100电子万能试验机对合金分别进行拉伸试验,拉伸速度为2mm/min㊂样品被分为五组,分别对应环件T6态㊁1%㊁3%㊁5%㊁7%预拉伸变形量㊂每组包括三个样本,抗拉强度㊁屈服强度和延伸率分别取三个样本的平均值㊂采用Phenom台式扫描电镜(SEM)对各个拉伸断口进行分析,观察断口的微观形貌㊂并使用Titan G260⁃300透射电子显微镜(TEM/STEM)观察合金的微观结构㊂用于透射电子显微镜观察的样品需预磨至70~90μm,冲成Φ3mm的圆片后在10~20V电压下,采用电解双喷减薄来制备,电解液为30%硝酸和70%甲醇的混合溶液㊂2 实验结果2.1 预拉伸变形对时效硬化行为的影响图2显示了2219铝合金环件在不同预拉伸变形量㊁不同时效时间下的维氏硬度(HV)曲线㊂由图2可知,不同变形量样品的硬度随时效时间的变化趋势相同,而且在时效过程中呈现出比较明显的脱溶沉淀过程㊂在硬度到达峰值前,随着时效时间的延长,合金的硬度增加;在合金到达峰值硬度后,随着时效时间的延长,合金的硬度降低㊂在过时效阶段,合金硬度随着时效时间的延长变化不大㊂由于加工硬化,最初的合金硬度值由106HV增加到7%变形量的125.33HV㊂对于155℃的时效样品,合金硬化速度随着预拉伸变形量的增加而增加,并且到达硬度峰值的时间随着变形量的增加而缩短㊂合金在3%预拉伸变形量的峰值硬度(150.23HV)比不变形的合金峰值硬度提高了5.23HV㊂因此,合金到达峰值硬度的时间从37.5h变为27.5h,提前了10h㊂当进一步增加变形量到5%和7%时,峰值硬度略有降低,分别是25h 时的148.23HV和20h时的145.27HV㊂与未变形时效样件相比,预拉伸变形时效样件的时效硬化响应更快,并在第一个脱溶阶段(0~5h)增幅达到了9.3%~18.2%㊂图2 不同预拉伸变形量的2219铝合金环锻件在155℃的时效时间⁃硬度曲线Fig.2 Ageing time⁃hardness curves with different pre⁃deformation of2219 aluminum alloy ring forgings at155℃2.2 预拉伸变形对2219铝合金环形件拉伸性能的影响根据合金在155℃的时效时间⁃硬度曲线(图2),选取不同预拉伸变形量在峰值时效硬度附近的样品进行力学性能试验,结果如图3所示㊂结果表明,随着预拉伸变形量从0% (T6)增加到1%,试样的抗拉强度由441MPa增加到458MPa,屈服强度由275.7MPa增加到328.4MPa,但延伸率由16.07%降到15.31%㊂当变形量增加至3%时,抗拉强度增加到463.5MPa,屈服强度增加到349.5MPa,增幅分别为5.1%和26.8%㊂当预拉伸变形量增加到5%和7%时,延伸率迅速从变形量为3%时的14.31%分别降到14.1%和12.85%,而抗拉强度㊁屈服强度的上升趋势较平缓㊂综合考虑强度和延伸率,3%预拉伸变形量的样品表现出更好的力学性能,且满图3 不同预拉伸变形量时合金的力学性能Fig.3 Mechanical properties of alloys with different pre⁃deformation 3603预拉伸变形对2219铝合金环形件组织与力学性能的影响/方 杰等足工程实际过渡环性能指标的新要求㊂2.3 预拉伸变形对2219铝合金环形件析出行为的影响预拉伸变形对合金的析出相形貌有明显影响㊂在155℃/37.5h(T6态)时效后2219铝合金环锻件的晶粒内部和晶界上的典型透射电镜组织如图4a c 所示㊂由图4a 可知,有少量粗大的析出相(θ′相)沿基体中的{001}Al 平面零星分布,其原因是当环锻件在固溶后淬火时,在基体中会产生少量的缺陷,比如空位和位错㊂在随后的时效处理中,由于这些缺陷的自由能高,弥散相优先在这些位置形核并逐渐长大,而未进行预变形处理的样品基体内部缺陷较少,且缺陷分布随机,从而导致θ′相形核数量不多,并在随后的时效过程中异常长大㊂从图4a 中还可以看出,除了少量的粗大相外,合金基体内还分布着大量弥散细小的析出相㊂由图4c 的衍射斑可以看出,这些较小的析出相为θ″相,尺寸在40~90nm,在θ″相附近存在着应变场和不连续的条纹,根据Papazian [19]㊁Natan 等[20]的理论,这些是θ″相结构的主要特征(图4c 箭头表示)㊂从图4b 中可以看到在晶内和晶界处分散分布着少量的棒状T 相,并在这些粗大的棒状T 相周围观察到了无沉淀析出区,无沉淀析出带(PFZ)出现在晶界曲线上的粗相的周围㊂这可能是由于粗大棒状相在位错塞积处形核,并通过吸收周围的溶质原子长大,从而降低了基体中溶质原子的浓度,使析出相的形核驱动能力下降,从而出现了无沉淀析出区㊂图4 2219铝合金环形锻件在T6态峰值时效的显微组织:(a)TEM 明场图片;(b)高分辨率下晶界无沉淀析出区;(c)样品在近{001}Al 晶带轴获得的对应a 中的析出相的衍射斑Fig.4 Microstructure of 2219aluminum alloy ring forging at the peak aging time of T6state:(a)TEM bright⁃field image;(b)precipitates⁃free zones at a grain boundary under the high resolution;(c)the diffraction spot of the pre⁃cipitated phase obtained at the nearly {001}Al ribbon axis of the sample图5a c 为2219铝合金环形锻件在3%预拉伸变形量峰值时效(155℃,27.5h)的显微组织㊂从图5a 中可以看出,图5 2219铝合金环形锻件在3%变形量峰值时效的显微组织:(a)TEM 明场图片;(b)晶界无沉淀析出区;(c)样品在近{001}Al 晶带轴获得的对应a 中的析出相的衍射斑Fig.5 Microstructure of 2219aluminum alloy ring forging at the peak aging time of 3%deformation:(a)TEM bright⁃field image;(b)precipitates⁃free zones at a grain boundary;(c)the diffraction spot of the precipitated phase obtained at the nearly {001}Al ribbon axis of the sample合金的基体沿{001}Al 平面内比较均匀地分布着大量尺寸为90~170nm 的相互垂直的析出相,平均厚度约为7nm㊂在对应的衍射斑(图5c)中可以看到,θ′相位于{110}Al 位置,这也表明此时的合金强化相主要为θ′相㊂此外,由图5b 可知,在合金晶内和晶界没有发现粗大分散的T 相,这可能说明预拉伸变形有助于时效过程中分散的T 相的溶解㊂同时从图5a 中可知,与未预拉伸变形的样件相比,经过预拉伸变形的试样基体中析出相更加均匀,并且体积分数有所增大㊂图6a c 为2219铝合金环形锻件在7%预拉伸变形量峰值时效(155℃,20h)的显微组织㊂从图6a 中可以看出,7%预拉伸变形量的析出相与3%预拉伸变形量的析出相一样,主要为互相垂直的针状θ′相,析出相的尺寸为100~190nm,个别析出相尺寸更大㊂然而试样的沉淀密度相对于3%预拉伸变形量时有所降低,可能原因是大变形量使试样积累更多位错,促进了时效的析出,峰值时效时间提前,缩短了时效时间,使析出相稀疏并且尺寸粗大不均匀㊂在相应的衍射斑图中,可以看出在{110}Al 处有明显的条纹,并且条纹强度有所增加,表明有大量的θ′相从样品中析出㊂因此,可以确定在7%预拉伸变形量下的主要析出物是θ′相㊂综合以上力学性能的测试结果可以得出,与3%预拉伸变形量时相比,7%预拉伸变形量时θ′相的粗化生长和分布稀疏是导致延伸率下降的主要原因㊂图6 2219铝合金环形锻件在7%变形量峰值时效的显微组织:(a)TEM 明场图片;(b)晶界无沉淀析出区;(c)样品在近{001}Al 晶带轴获得的对应a 中的析出相的衍射斑Fig.6 Microstructure of 2219aluminum alloy ring forging at the peak aging time of 7%deformation:(a)TEM bright⁃field image;(b)precipitates⁃free zones at a grain boundary;(c)the diffraction spot of the precipitated phase obtained on the nearly {001}Al ribbon axis of the sample2.4 不同预拉伸变形量对2219铝合金断口形貌的影响对155℃时效后不同预拉伸变形量的峰值时效拉伸试样进行宏观形貌分析,结果如图7所示㊂从图7中可以看出,拉伸断口既有塑性断裂特征,又有脆性断裂特征㊂在T6状态时,拉伸断口中分布着大量尺寸大而深的韧窝,裂纹源区为韧性穿晶断裂,最大的韧窝尺寸达到6μm㊂当预拉伸变形量为1%时,韧窝变小,变浅㊂当预拉伸变形量继续增大到3%时,断口趋于平整,韧窝继续变小,出现脆性断裂特征,塑性变差㊂当预拉伸变形量继续增大到5%和7%时,断口分层现象弱化,可以观察到二次裂纹,断口的剪切唇区为拉长的网状韧窝,断面平坦,韧窝浅而小,有解理特征,塑性继续变差㊂而由于预拉伸变形引入了大量位错且位错相互缠结,阻碍了位错的继续运动,导致合金的抗拉强度和屈服强度提高㊂同时大量位错会在运动过程中造成位错塞积,诱发微裂4603材料导报(B ),2019,33(9):3062⁃3066纹的产生,降低了材料的塑性变形能力[21]㊂另外,根据透射电镜分析发现,随着预拉伸变形量的增加,析出相变得粗大和均匀,与断口显现的特征一致,也使得2219合金塑性降低㊂这与环样件在峰值时效后随预拉伸变形量的增大,延伸率降低而抗拉强度和屈服强度升高的数据(图3)相符㊂图7 不同预拉伸变形量下环锻件试样断口的组织形貌:(a)T6;(b)1%;(c)3%;(d)5%;(e)7%Fig.7 Fracture morphology of ring forging sample under different pre⁃ten⁃sion deformation:(a)T6;(b)1%;(c)3%;(d)5%;(e)7%3 分析与讨论过饱和2219铝合金是通过固溶淬火获得的,如果在淬火后立即引入人工时效,根据Al⁃Cu 合金的时效脱溶序列[22]:过饱和固溶体 淬火团簇GP(I)-θ″-θ′θ(Al 2Cu)则在时效开始时由于Cu 原子在空位或者位错处聚集,形成尺寸小㊁分布密度大的初始GP 区,结果使合金的硬度提高㊂根据图2和图4可知,未预变形试样在时效过程中的强化主要是析出的分散过渡相θ″相引起,使合金的硬度和强度增加㊂另外,经过预变形工艺处理的合金可以利用形变强化和时效过程中的析出强化,为材料提供优异的性能[23]㊂由图2可知,与未变形试样相比,经过预拉伸变形的试样强度更高,这可能由以下三个原因造成㊂首先,预拉伸变形过程中产生的位错可以为析出相θ′提供更有利的形核点,提高形核率,增加时效过程中析出相的体积分数㊂另外,在基体中弥散分布的细小而浓密的θ′相可以很好地固定位错并抑制杂质相的生长㊂第三,在位错密度增加后,与淬火后过饱和固溶体相关的大量溶质原子通过与预变形过程中的移动位错相互作用,促进了大量的溶质原子团形成,而大规模的溶质原子团也成为析出沉淀相的重要因素[24]㊂这些特征也与TEM 中显示的结果非常吻合㊂从图4㊁图5㊁图6中可以看出,随着预拉伸变形程度的增加,强化相θ′的长度和数量的变化趋势与合金的强度变化相对应㊂此外,根据图2的硬度曲线,经155℃/37.5h 时效处理后,有无预拉伸变形的环锻件分别处于峰时效或者过时效状态㊂在峰时效或过时效时,沉淀相聚集在一起,试样的主要强化机制为位错绕过机制㊂位错绕过机制表示如下:Δσ=kGbf 1/2r ln 2rr 0+σ0(1)式中:Δσ表示屈服强度的增量,k 为材料常数,G 为材料的剪切模量,b 为Al 基体的博格斯矢量的大小,r 0表示围绕在第二相粒子周围的位错的内径,r 和f 分别表示第二相粒子(θ″和θ′相)的等效半径和体积分数㊂由TEM 衍射图可知,θ″相与θ′相的强化效果与其体积分数和一定范围内的尺寸有关㊂因此,明显预拉伸变形件的屈服强度的增量大于未预变形的试件,也因此有了更高的强度,如图3所示㊂另外,从图4b 和图5b 中的晶界特征来看,在粗大的棒状T 相周围发现了无沉淀析出带(PFZ),并随着预拉伸变形的进行,无沉淀析出带变窄㊂Wang 等[25]指出,溶质原子在晶界处溶解得更快,溶解相吸收晶界处的溶质原子,从而在晶界处产生无沉淀析出区㊂在无沉淀析出区中,晶界上的沉淀相量越多,穿晶断裂程度越小,合金的塑性越差㊂这与图7和图3结果一致,即预拉伸变形使2219铝合金环锻件的塑性变差㊂对比不同变形量环样件的力学性能和TEM 图片可知,变形程度对强度影响不大,但是延伸率却有很大差别,这可能是由于增加预拉伸变形量后,基体内部的缺陷也增加,容易产生微裂纹㊂综合考虑抗拉强度㊁屈服强度和延伸率,时效前的预拉伸变形量为3%左右时合金可以取得较好的综合力学性能㊂4 结论(1)时效前对2219铝合金环锻件进行预拉伸变形可以促进时效析出,加速时效过程,缩短峰值时效时间㊂3%预拉伸变形量时合金达到峰值硬度仅需27.5h,比T6态时效处理缩短了10h㊂7%预拉伸变形量时达到峰值硬度仅需20h㊂(2)与未变形件相比,3%预拉伸变形件的时效过程可以促进强化相θ′的析出,并促进了基体中沉淀相更均匀的分布,同时减少了晶界上不连续的粗大沉淀相的数量,有利于提高环锻件的力学性能㊂(3)未变形件的断口韧窝深且韧窝中粒子小,呈现塑性断裂特征,随着预拉伸变形量的增加,韧窝逐渐变浅,韧窝中粒子逐渐长大,使合金塑性逐渐变差,呈现脆性断裂特征㊂(4)当预拉伸变形量为3%时,合金的抗拉强度达到了463.5MPa,屈服强度达到了349.5MPa,延伸率为14.31%,综合力学性能最佳,力学性能满足工程实际性能新要求㊂参考文献1 He H,Yi Y,Huang S,et al.Journal of Materials Science &Technology ,2019,35(1),55.2 Liu C F.Aeronautical Manufacturing Technology ,2003,46(2),22(inChinese).刘春飞.航空制造技术,2003,46(2),22.3 Yao M,Zhang W X,Fu M M,el al.Hot Working Technology ,2017(16),227(in Chinese).5603预拉伸变形对2219铝合金环形件组织与力学性能的影响/方 杰等姚梦,张文学,付敏敏,等.热加工工艺,2017(16),227.4 Singh S,Coel D B.Materials Science,1990,25,3894.5 Zhao G,LI H X,Liu C M,et al.Journal of Northeastern University, 2001,22(6),664(in Chinese).赵刚,李洪晓,刘春明,等.东北大学学报,2001,22(6),664.6 Pattanaik S,Srinivasan V,Bhatia M L.Scripta Metallurgica,1972,6 (3),191.7 Chung D W,Chaturvedi M C.Advanced Performance Materials,1981, 41,27.8 Singh S,Goel D B.Bulletin of Materials Science,1991,14(1),35. 9 Mazzini S G.Scripta Metallurgica Et Materialia,1994,31(9),1127. 10An L H,Cai Y,Liu W,et.al.Science Direct,2012,22(2),370. 11Wang H M,Yi Y Y,Huang S S.Journal of Alloys and Compounds, 2016,685,941.12Gavriljuk V G,Berns H,Escher C,et al.Material Science Forum, 1999,318⁃320(1⁃2),455.13Yan P,Wang G Q,Li J F.Machinery Design and Manufacture,2009 (3),99(in Chinese).闫萍,王国庆,李均峰.机械设计与制造,2009(3),99.14Wang J H,Yi D Q,Su X P,et al.Special Casting and Nonferrous Al⁃loys,2007,27(4),246(in Chinese).王建华,易丹青,苏旭平,等.特种铸造及有色合金,2007,27(4), 246.15Fisher J,James J.Advanced Materials and Processes,2002,160(9), 43.16Li H,Wang Z X,Zheng Z Q.Rare Metal Materials and Engineering,2006(8),1276(in Chinese).李海,王芝秀,郑子樵.稀有金属材料与工程,2006(8),1276.17Li C X,San J C,Xu N,et al.Foundry,2005,54(8),761(in Chi⁃nese).李晨希,伞晶超,徐娜,等.铸造,2005,54(8),761.18Huang Y C,Chen P C,Liu Y.Hot Working Technology,2016,23(6), 1001(in Chinese).黄元春,陈鹏冲,刘宇.热加工工艺,2016,23(6),1001.19Papazian J M.Metallurgical&Materials Transactions A,1981(12),269. 20Natan M,Chihoski R A.Journal of Materials Science,1983,18(11), 3288.21Ma Z,Xu C Y.Influence of cold deformation and aging on microsture and properties of aluminum alloy2219.Master’s Thesis,Harbin Institute of Technology,China,2014(in Chinese).马征,徐成彦.冷变形及时效对2219铝合金组织性能的影响规律.硕士学位论文,哈尔滨工业大学,2014.22Son S K,Takeda M,Mitome M,et al.Materials Letters,2005,59, 629.23Wei X Y,Zheng Z Q,Pan Z R,et al.Rare Metal Materials&Enginee⁃ring,2008,37,1996.24Yoshimura R,Konno T J,Abe E,et al.Acta Materialia,2003,51, 4251.25Wang H B,Han J C,Zhang X H,et al.Material Science and Technolo⁃gy,1998,9(3),56(in Chinese).王华彬,韩杰才,张幸红,等.材料科学与工艺,1998,9(3),56.(责任编辑 向秀洮) Jie Fang,born in1991,master of mechanical engi⁃neering,Research Institute of Light Alloy of CentralSouth University.Mainly engaged in aluminum alloyprocessing and cold deformation process research.方杰,1991年生,中南大学轻合金研究院机械工程专业硕士研究生㊂主要从事铝合金加工及冷变形工艺研究㊂Youping Yi is a professor at the School of Mechanicaland Electrical Engineering of Central South Universityand a doctoral tutor,mainly engaged in the research ofaerospace and aerospace light alloy component formingprocesses and molds,heat treatment processes and e⁃quipment.He has published64papers,39SCI and EIsearches,authorized4national invention patents and2software copyrights.易幼平,中南大学机电工程学院教授,博士研究生导师㊂2000年毕业于中南工业大学机电工程学院,机械专业博士学位㊂2004年加入中南大学机电工程学院工作,主要从事航空航天轻合金构件成形工艺,模具㊁热处理工艺与装备等方向的研究㊂发表论文64篇,SCI㊁EI检索39篇,授权国家发明专利4项,软件著作权2项㊂6603材料导报(B),2019,33(9):3062⁃3066。
《2219铝合金各向异性塑性本构模型研究》一、引言在当今的工程材料领域,铝合金因其轻质、高强度和良好的加工性能而备受关注。
其中,2219铝合金由于其优秀的力学性能和在航空、航天以及汽车等工业的广泛应用,成为研究的重要对象。
考虑到铝合金材料在多轴应力状态下的复杂变形行为,研究其各向异性塑性本构模型具有重要的学术和实用价值。
本文以2219铝合金为研究对象,对其各向异性塑性本构模型进行深入探讨。
二、文献综述铝合金作为一种常见的金属材料,其塑性变形行为一直备受关注。
前人对铝合金的研究主要集中在单晶和粗晶的弹性-塑性变形上,以及关于不同取向下力学行为的探讨。
特别是关于各向异性特性,近年来已有多篇论文发表了其在不同方向的变形和破坏的差异。
但大多数研究中仍存在一些问题,例如对各向异性塑性本构模型的描述不够准确,或者模型过于复杂,难以在实际工程中应用。
因此,对2219铝合金的各向异性塑性本构模型的研究,能够为其在实际工程应用中的设计和制造提供有力的理论依据。
三、实验方法本部分首先介绍对2219铝合金进行各向异性塑性研究的方法。
包括采用合适的试样制备、应力-应变测试的精确实施、以及多轴应力状态下的数据采集等步骤。
具体来说,实验将使用不同的加载方式(如单向拉伸、多轴循环加载等)来研究材料的应力-应变响应。
此外,我们还将使用电子显微镜观察材料在不同应力状态下的微观结构变化,为建立和验证本构模型提供直接的实验依据。
四、各向异性塑性本构模型的建立在建立2219铝合金的各向异性塑性本构模型时,我们首先需要确定模型的类型和参数。
根据前人的研究结果和我们的实验数据,我们选择了一种既能够反映材料各向异性特性又相对简单的本构模型。
该模型基于位错动力学理论,考虑了材料的微观结构(如晶粒取向、晶界等)对塑性变形的影响。
模型的参数将通过实验数据(如应力-应变曲线、显微结构变化等)进行拟合得到。
在模型的建立过程中,我们使用了多种数学工具(如微分方程、有限元方法等)来描述材料的变形行为。
《2219铝合金各向异性塑性本构模型研究》篇一一、引言随着现代工业的快速发展,铝合金因其轻质、高强、耐腐蚀等特性在航空、汽车、船舶等领域得到了广泛应用。
其中,2219铝合金以其优异的综合性能成为一种重要的结构材料。
然而,由于其材料内部晶粒取向的多样性,2219铝合金在塑性变形过程中表现出明显的各向异性。
因此,研究其各向异性塑性本构模型,对于提高材料的成形性能、优化设计以及指导实际生产具有重要意义。
二、文献综述在过去的研究中,许多学者对铝合金的塑性本构模型进行了深入研究。
其中,各向异性塑性本构模型因能更好地描述材料在不同方向上的力学行为而备受关注。
对于2219铝合金,其各向异性主要表现在屈服行为、流动应力和塑性变形机制等方面。
目前,虽然已有一些关于2219铝合金的塑性本构模型研究,但这些模型往往只能描述某一方面的力学行为,无法全面反映其各向异性特性。
因此,进一步研究2219铝合金的各向异性塑性本构模型具有迫切的现实需求。
三、材料与方法本研究采用实验与数值模拟相结合的方法,对2219铝合金的各向异性塑性本构模型进行研究。
首先,通过单轴拉伸实验,获取材料在不同方向上的应力-应变数据。
其次,利用数值模拟软件,建立不同晶粒取向下的有限元模型,对材料的塑性变形过程进行模拟。
最后,结合实验数据与模拟结果,建立反映2219铝合金各向异性特性的塑性本构模型。
四、实验结果与分析(一)单轴拉伸实验结果通过单轴拉伸实验,我们获得了2219铝合金在不同方向上的应力-应变曲线。
从曲线中可以看出,材料在不同方向上的屈服强度、流动应力和塑性变形行为存在明显差异,这表明了其各向异性特性。
(二)数值模拟结果利用数值模拟软件,我们建立了不同晶粒取向下的有限元模型,对材料的塑性变形过程进行了模拟。
模拟结果表明,不同晶粒取向下的材料在塑性变形过程中表现出明显的差异,这进一步验证了材料的各向异性特性。
(三)塑性本构模型建立与分析结合实验数据与模拟结果,我们建立了反映2219铝合金各向异性特性的塑性本构模型。
《2219铝合金各向异性塑性本构模型研究》篇一一、引言随着现代工业的快速发展,铝合金因其轻质、高强、耐腐蚀等特性在航空、汽车、船舶等领域得到了广泛应用。
其中,2219铝合金因其优异的力学性能和加工性能,在航空航天领域得到了广泛关注。
然而,由于材料在加工和服役过程中表现出显著的各向异性塑性行为,对其本构模型的准确描述成为了一个重要的研究课题。
本文旨在研究2219铝合金的各向异性塑性本构模型,为材料在复杂应力状态下的力学行为分析和性能优化提供理论依据。
二、文献综述在过去的研究中,关于铝合金塑性本构模型的研究已经取得了一定的成果。
然而,对于各向异性塑性行为的描述仍存在诸多挑战。
各向异性是指材料在不同方向上具有不同的力学性能,这给材料的加工和使用带来了很大的复杂性。
目前,对于2219铝合金的各向异性塑性本构模型研究尚不充分,需要进一步深入探讨。
三、材料与方法本文采用实验与数值模拟相结合的方法,对2219铝合金的各向异性塑性本构模型进行研究。
首先,通过实验测定材料在不同方向上的力学性能参数,包括屈服强度、延伸率等。
然后,利用有限元软件建立材料的本构模型,通过数值模拟分析材料在复杂应力状态下的力学行为。
四、实验结果与分析4.1 实验结果通过实验测定,我们得到了2219铝合金在不同方向上的力学性能参数,包括屈服强度、延伸率等。
结果表明,材料在不同方向上具有显著的各向异性特征。
4.2 模型建立与分析基于实验结果,我们建立了2219铝合金的各向异性塑性本构模型。
模型中考虑了材料在不同方向上的力学性能差异,能够较好地描述材料在复杂应力状态下的力学行为。
通过数值模拟分析,我们发现模型能够准确地预测材料的塑性变形行为和力学响应。
五、讨论与展望本文研究的2219铝合金各向异性塑性本构模型为材料的力学行为分析和性能优化提供了重要的理论依据。
然而,仍存在一些局限性。
首先,模型中的参数需要通过实验测定,而实验过程中可能存在误差;其次,模型的应用范围和适用条件需要进一步探讨。
《2219铝合金各向异性塑性本构模型研究》篇一一、引言随着现代工业的快速发展,铝合金因其轻质、高强、良好的加工性能和耐腐蚀性等优点,在航空航天、汽车制造、船舶建造等领域得到了广泛应用。
其中,2219铝合金以其优异的综合性能成为一种重要的结构材料。
然而,由于材料本身的复杂性和加工过程中的不均匀性,其塑性变形行为表现出显著的各向异性特点。
为了更准确地描述和预测2219铝合金的塑性变形行为,对其各向异性塑性本构模型的研究显得尤为重要。
二、文献综述在过去的研究中,关于铝合金塑性变形行为的研究已经取得了一定的成果。
研究者们通过实验和理论分析,提出了多种塑性本构模型来描述铝合金的力学行为。
然而,针对2219铝合金各向异性塑性本构模型的研究尚不够完善。
现有的模型往往只能描述某一方面的力学行为,难以全面、准确地描述其各向异性塑性变形行为。
因此,有必要对2219铝合金的各向异性塑性本构模型进行深入研究。
三、研究内容与方法本研究采用实验与理论分析相结合的方法,对2219铝合金的各向异性塑性本构模型进行系统研究。
1. 实验部分:通过单向拉伸实验,测定2219铝合金在不同方向上的力学性能参数,包括屈服强度、抗拉强度、延伸率等。
通过电子显微镜观察材料的微观组织结构,分析材料各向异性的微观机制。
2. 理论分析部分:基于实验结果,建立适合描述2219铝合金各向异性塑性变形行为的本构模型。
采用有限元方法对模型进行验证和优化,使其能够更准确地描述材料的塑性变形行为。
四、模型建立与结果分析1. 模型建立:根据实验结果和理论分析,建立了一个考虑材料各向异性的塑性本构模型。
该模型包括材料的弹性阶段、屈服阶段和塑性流动阶段,能够描述材料在不同方向上的力学行为。
2. 结果分析:通过将模型预测结果与实验结果进行比较,发现该模型能够较好地描述2219铝合金的各向异性塑性变形行为。
此外,该模型还可以预测材料在不同条件下的力学性能,为实际工程应用提供有力的理论支持。
Trans.Nonferrous Met.Soc.China29(2019)1152−1160Constitutive modeling and springback prediction ofstress relaxation age forming of pre-deformed2219aluminum alloy Kai WANG1,2,Li-hua ZHAN1,2,You-liang YANG1,2,Zi-yao MA1,2,Xi-cai LI1,2,Jian LIU1,21.School of Mechanical and Electrical Engineering,Central South University,Changsha410083,China;2.State Key Laboratory of High-Performance Complex Manufacturing,Central South University,Changsha410083,ChinaReceived21July2018;accepted27February2019Abstract:Stress relaxation ageing behavior of pre-deformed AA2219is studied through stress relaxation age experiments and finite element(FE)simulation.The results show that the stress can promote the process of ageing precipitation,and shorten the time to reach the peak strength.Meanwhile,the residual stress and yield strength increase along with the increase in the initial stress.Based on microstructure evolution and ageing strengthening theory,a unified constitutive model is established and incorporated into the FE simulation model through a user subroutine.It is found that the relative error of the radius is3.6%compared with the experimental result and the springback is16.8%.This indicates that the proposed stress relaxation ageing constitutive model provides a good prediction on the springback of such stiffened panel during its ageing process.Key words:2219aluminum alloy;stress relaxation ageing;unified constitutive model;springback1IntroductionAs the aero-space industry develops rapidly,large integral panel components featuring good integrity,high strength and outstanding performance have seen increasingly extensive utilization in vital parts of civil and military air crafts as well as the new generation of launch vehicles[1,2].Creep age forming(CAF) technology,as a new sheet metal forming method,is designated exactly for coordinated manufacturing of large integral panel component with high performance and accurate shape forming[3−5].CAF utilizes the creep and stress relaxation behavior of ageing-strengthened aluminum alloy under the stress field and temperature field to make the integral panel meet the shape requirements.In this process, ageing precipitation makes the alloy achieve good microstructure and mechanical property,realizing control over both shape and property[6−9].Creep is slow but continuous plastic deformation of alloy under constant stress.Stress relaxation is a process in which the deformation of the alloy remains unchanged while the stress decreases spontaneously.The essence of it is that the internal elastic strain of the material gradually transforms into inelastic strain[10−13].Hence,how to accurately characterize the deformation behavior and mechanical properties of materials during the ageing forming process is the primary challenge for the extensive utilization of this technique.To address this challenge,the most effective solution is the constitutive modeling technique based on experiment and forming mechanism.As creep and stress relaxation occur simultaneously,the springback of component ageing formation is predicted through establishing either creep ageing constitutive model or stress relaxation ageing constitutive model.YANG et al[6]established the creep ageing constitutive model of2524aluminum alloy with both tensile and compressive stresses considered.LI et al[7,8]proposed an implicit integral algorithm,and developed FE model of asymmetric creep-ageing behavior of AA2050in CAF.MA et al[9]established a unified constitutive model to predict the stress-level dependency of creep ageing behaviors,which canFoundation item:Project(2017YFB0306300)supported by the National Key Research and Development Program of China;Project(2014CB046602) supported by the National Basic Research Program of China;Project(20120162110003)supported by Specialized Research Fund for theDoctoral Program of Higher Education of China;Project(51235010)supported by the National Natural Science Foundation of China Corresponding author:Li-hua ZHAN;Tel:+86-731-88830254;E-mail:yjs-cast@DOI:10.1016/S1003-6326(19)65023-5Kai WANG,et al/Trans.Nonferrous Met.Soc.China29(2019)1152−11601153simulate the CAF of complex components.HO et al[10] proposed a unified creep ageing constitutive model, which can describe the precipitated phase evolution and the creep ageing behavior of7070aluminum alloy at 150°C.IDEM and PEDDIESON[11]simulated the thermal viscoplastic behavior and stress relaxation effect, and found that nonlinear stress relaxation was the main reason for the decrease of springback.ZHAN et al[12] established the stress relaxation constitutive model under the electric pulse,which took into account the effect of electric pulse on dislocation motion.ZHENG et al[13] developed a set of unified constitutive equation,which can predict the stress relaxation,age hardening response and their interactions at different temperatures. Essentially similar to traditional creep,the stress relaxation of panel component is special compared with constant stress creep ageing in that its precipitation strengthening is influenced by continuous stress change, which causes differences in property and springback. Therefore,it is necessary to study the evolution law of the shape in the stress relaxation ageing process,and establish a model to predict the springback behavior of the components accurately.In this study,the stress relaxation ageing behavior of the pre-deformed AA2219with different stress levels at165°C is studied,and the microstructure evolution during the ageing process is observed by transmission electron microscopy(TEM).Based on stress relaxation theory and ageing strengthening theory,a unified macro−micro coupled stress relaxation constitutive model has been established through stress relaxation ageing experiment and micro-structural statistical analysis.Meanwhile,the constitutive model is incorporated into the FE software MSC.MARC through a subroutine to make prediction about the ageing and springback of the typical stiffened and thin-walled components.By comparing with the creep constitutive model,a better method is explored to provide theoretical and practical guidance for the springback prediction of the actual components.2Experimental2.1MaterialThe experimental material is a20mm-thick pre-formed AA2219hot-rolled plate,provided by China Academy of Space.The plate experienced a7% pre-stretching after solution quenching,and its chemical composition is listed in Table 1.Stress relaxation samples were machined out of the plate in parallel with the rolling direction,as illustrated in Fig.1.2.2Stress relaxation ageing testsThe stress relaxation ageing tests were carried out Table1Chemical composition of2219aluminum alloy(wt.%) Cu Mg Mn Si Fe Zr Zn Ti Al 6.240.020.270.20.30.140.10.065Bal.Fig.1Specimen geometry and size(unit:mm)on the RMT-D10electronic creep/relaxation testing machine.The temperature error and the stress error are controlled within2°C and3N,respectively.Through preliminary exploration[9,12,14],the test temperature was set as165°C,and the initial stress was set as120, 150and180MPa.In order to probe into the theory of hardening precipitates and mechanical property evolution, the ageing duration for stress relaxation test was set as1, 3,5,8and11h.2.3Mechanical property tests and microstructurecharacterizationAfter the stress relaxation ageing experiment,room temperature tensile tests were conducted on a CMT−5504machine,with the operation speed being 2mm/min.The experiment data were the average values of three tests.Since material property is determined by microstructure,TEM observation on JEM−2100F(JEOL, Japan)was adopted to illustrate the precipitation evolution during the stress relaxation ageing process, with the operating voltage being200kV.The TEM specimens were prepared by cutting10mm×10mm×0.5mm(L×W×T)blocks from the gauge section of samples along the stress direction.Then,they were thinned to80μm and punched into discs of3mm in diameter with a punching machine.At last,they were twin-jet-electro-polished with a mixture of30%nitric acid and70%methanol at temperature between−35°C and−25°C,with the voltage being15V.2.4Statistics of precipitatesThe profile of precipitate varied constantly during the ageing process of AA2219.The precipitate was simplified into a singleθ′phase in previous studies[15], which is plate-shaped.The geometrical shape of theθ′phase is expressed by the diameter l and the thickness h[16].In other words,l is the length(diameter)of the precipitated phase,and h is the thickness of the precipitated phase.With digital micrograph software,the TEM images under different ageing conditions wereKai WANG,et al/Trans.Nonferrous Met.Soc.China 29(2019)1152−11601154analyzed.The average length and thickness of the precipitated phases were calculated.2.5Validation of stress relaxation ageing constitutivemodelIn order to validate the accuracy of the constitutive model and the feasibility to incorporate it into FE software for simulation,a commercial FE software MSC.MARC was employed on uniaxial tensile samples for stress relaxation ageing FE analysis.The FE model,illustrated in Fig.2,adopted No.7solid element.Elastic modulus is 67552MPa.Poisson ratio is 0.3and yield strength is 306MPa,while other parameters were set the same as the experiment,namely,165°C/11h/120,150and 180MPa.Left end nodes displacement along the X axis and the symmetric center nodes displacement along the Y axis were fixed,while tensile stress was applied on the right end.When the stress is increased to the target stress,the constant strain is maintained.In order to simulate the stress relaxation ageing behavior of the sample,the constitutive model is programmed by FORTRAN language and embedded in the FE software by a subroutine,CRPLAW.Fig.2Uniaxial tensile stress relaxation FE model3Results and discussion3.1Stress relaxation ageing behaviorFigure 3demonstrates stress relaxation ageing curves and corresponding relaxation rate curves of pre-deformed AA2219at 165°C under initial stress of 120,150,and 180MPa for 11h.According to Fig.3(a),stress relaxation increases while residual stress decreases with prolonging the ageing time.And the residual stress positively correlates with the initial stress.For example,after 11h,residual stresses under stress levels of 120,150,and 180MPa are 8.7,19.6and 30.1MPa,respectively.Generally,stress relaxation curves can be divided into three stages of rapid relaxation stage,transition relaxation stage with reduced relaxation rate and stable relaxation stage [13].From the stress relaxation rate curve of Fig.3(b),it can be found that the stress decreases rapidly at the initial stage,but this process is generally as short as 1−2h.Then,it enters the transition stage and further moves to the stable relaxation stage after 3h.As the experiment material is pre-stretched aluminum alloy,a lot of movable dislocations were introduced via early pre-stretch treatment.At the initialstress relaxation stage,the effective stress is great and there are many movable dislocations,vacancies and relatively low short-range resistance,making stress decrease rapidly;with the activation by temperature and stress,dislocations slipped or climbed,transforming elastic deformation into plastic deformation and reducing the effective stress.In the ageing process,many second-phase particles precipitate,which impede dislocation slipping and climbing,thus reducing the relaxation rate and advancing it to the stable relaxation stage[12].Fig.3Stress relaxation behavior of pre-deformed AA2219at different tested stresses:(a)Stress relaxation curves;(b)Stress relaxation rate curves3.2Stress relaxation ageing propertyFigure 4demonstrates AA2219yield strength evolution at 165°C under different stress levels.It can be found out that,with time passing by,the yield strength undergoes initial increase before approaching to the peak and then it shows a tendency of gradual decrease.For instance,when the initial stress is 180MPa,the yield strength reaches the peak value of 391.9MPa at the ageing time of 8h.Then,it goes down.Under the same ageing condition,the yield strength after the stress relaxation ageing increases along with the initial stress.For example,under different stress levels of 180,150and 120MPa,yield strengths at the ageing time of 8h are 391.88,380.45and 375.99MPa,accordingly.Kai WANG,et al/Trans.Nonferrous Met.Soc.China 29(2019)1152−11601155Fig.4Yield strengths of pre-deformed AA2219under various stresses at 165°CWithin the ageing duration of 11h,the yield strength under the initial stress of 120MPa does not seem to reach its peak;under the initial stress of 150MPa,the yield strength peak comes at around 8h and with further ageing,the yield strength maintains at the peak level;under the initial stress of 180MPa,the yield strength reaches its peak before 8h,indicating that higher stress can promote the precipitation process and shorten the time to reach the peak strength.Furthermore,the yield strength increases rapidly during the first 3h and slows down thereafter.By taking an example of the initial stress of 150MPa,the stress increases to 353MPa from 306MPa in the first 3h,and then it reaches the peak strength of 380.5MPa at 8h.This is mainly due to the fact that the yield strength increases quickly underthe influence of high stress field and temperature field in initial stress relaxation ageing period.With further ageing,the initial stress drops quickly,rendering the alloy ageing under low stress.If the ageing stress diminishes below the threshold stress,it would not be able to promote the precipitation in the GP zone and then the strength increases slowly in the later period.3.3Microstructure evolutionFigure 5presents TEM images and corresponding SAD patterns,showing the microstructure evolution of AA2219after stress relaxation ageing at 165°C under the stress of 150MPa.The electron beam is from [001]Al direction.Figure 5(a)shows a few perpendicular precipitates in the aluminum matrix after 3h of stress relaxation ageing.It can be seen from the upper right corner diffraction pattern that,there are some dim lines indicating the presence of θ′and absence of θ′[17].Figure 5(b)depicts the microstructure under the stress of 150MPa after 5h of stress relaxation pared with the microstructure of 3h ageing,more θ′phases can be seen with a more even distribution.The SAD pattern shows that there are traces of diffraction spots at the center.They are diffraction spots of θ′phases,revealing a little presence of θ′phases in the aluminum matrix and the yield strength is increased by 12MPa.Figure 5(c)displays the microstructure under the stress level of 150MPa for 8h in which there are more diffraction spots of θ′phase while the θ′phases becomes relatively weak,indicating that part of θ′phases convert into θ′.At that point,yield strength reaches its maximum of 380.5MPa.With the extension of ageing time,theTEMFig.5Micrograph images showing microstructures of pre-deformed AA2219after stress relaxation under stress of 150MPa ([001]Al electron beam):(a)3h ageing;(b)5h ageing;(c)8h ageing;(d)11h ageingKai WANG,et al/Trans.Nonferrous Met.Soc.China 29(2019)1152−11601156image at 11h ageing,as depicted in Fig.5(d),shows similar grain interior with that at 8h,which matches the property depicted in Fig.4.3.4Quantitative characterization of precipitationAverage length l and relative volume fraction f v of the precipitate are adopted to depict the profile character.And aspect ratio q is employed to describe the precipitates:v 3π8Nlh f ab=(1)*v v v /f f f =(2)q =l /h(3)where N denotes precipitate numbers in the TEM image,a and b are length and width of the whole zone in the TEM image and *v f is the peak relative volume fraction of the precipitates in the image.With Eqs.(1),(2)and (3),the outcome is depicted in Fig.6.According to the result,average length of AA2219precipitates increases along with the extension of ageing duration while the increasing rate decreases gradually,which is due to the fact that the grain provides relatively large space in the initial stage and the resistance against the increase is relatively small.But,with ageing preceding,increased precipitates influence each other directly and the space gets smaller.Some may even merge with each other.For such reason,the precipitate increasing slows down and shows a tendency towards stabilization.As the relative volume fraction and aspect ratio are both correlative of precipitate length,they follow the same evolution law according to Eqs.(1)−(3).4Unified constitutive modeling of stress relaxation ageing4.1Establishment of modelBased on the microstructural evolution law and ageing strengthening theory [18−21],the macro−micro coupled constitutive equation of stress relaxation ageing is established by integrating the discussion above on stress relaxation ageing behavior.The equations are as follows:y (1)sinh mm B H E A σσσ⎛⎫-=-⋅ ⎪ ⎪⎝⎭(4)1*1m h H HH E σσ⎛⎫=-- ⎪⋅⎝⎭(5)σy =σ0+σss +σppt +σdis (6)1ss ss v (1)n C f σ=-(7)Fig.6Micro-statistical results of 2219aluminum alloy:(a)Average precipitate length;(b)Aspect ratio;(c)Relative volume fraction221/2ppt ppt v m n C l f q σ=⋅⋅⋅(8)3dis dis m C σρ=⋅(9)4s 31v v 0(1)(1)m m n C l f f k q ρ-=-⋅+⋅ (10)6421()(1)m n l C a b l k σρ=⋅+⋅-⋅+⋅ (11)56*232{exp[()]}n n q C k t t t σ=⋅---⋅(12)07451(1)||n C C Eρρσρ=⋅⋅-⋅- (13)Kai WANG,et al/Trans.Nonferrous Met.Soc.China29(2019)1152−11601157where is stress relaxation rate,E is elastic modulus,σis external stress,and H is intermediate variable related to stress and stress relaxation rate.A,B,k0,k1,k2,σ0,C1, C2,C3,C4,C5,m0,m,m1,m2,m3,m4,m5,m6,n0,n1,n2,n3, n4,n5,n6,n7,C ss,C ppt,C dis,t*and H*are material constants.4.2Material constantsParticle swarm optimization(PSO)[22]was adopted to fit the experiment result obtained at165°C. Firstly,the statistical variation of aspect ratio,average length and relative volume fraction are worked out to determine related material constants.Then,the stress relaxation ageing curves of AA2219under corresponding stress and at corresponding temperature are fitted to obtain the material constants.Figure7shows the fitting curve and Table2gives the material constants.4.3Validation of stress relaxation ageing constitutivemodelFigure8shows the result of introducing the constitutive model to the FE simulation.It can be seen that FE simulation excels in predicting experimental data with a sound agreement,indicating that this modelis Fig.7Comparison of experimental data and fitted results of2219aluminum alloy under various stresses at165°C:(a)Average precipitate length;(b)Aspect ratio;(c)Relative volume fraction;(d)Residual stress;(e)Yield stressKai WANG,et al/Trans.Nonferrous Met.Soc.China 29(2019)1152−11601158Table 2Material constants in constitutive equations for 2219Aluminum alloyA B k 0k 1k 2σ00.0330.22710.4180.9960.00655586.52C 4C 5m 0m m 1m 2162.150.8210436 1.170.0180.319n 2n 3n 4n 5n 6n 70.232 2.820.5420.1090.650.608C ss C ppt C dis C 1C 2C 3128.325.4587.590.01650.12243.43m 3m 4m 5m 6n 0n 10.063 1.2520.055 1.7520.5220.723H*t*a b h 0.277 5.74487.2−6×10−4112.5Fig.8Comparisons between experimental results and uniaxial tensile stress relaxation simulationwell capable of predicting stress relaxation ageing behavior and the compiled constitutive subroutine is correct,which lays a good foundation for further FE simulation.5Springback prediction and validation of grid panel component5.1Simulation of grid panel componentA 20mm-thick panel was milled into the grid panel,as depicted in Fig.9(a).The size of it was 435mm ×294mm ×17mm.The skin was 2.6mm thick,and the rib was 17mm high and 5mm wide.Firstly,a 3D geometrical model was established according to size of the grid panel component.Then,shell element type was selected.Fillet,rib and hole features were simplified,as demonstrated in Fig.9(b).The rigid mould was set with a radius of 1160mm.The tensile stress−strain curve of the material was importedto the material property to simulate the elastoplastic nonlinear process during the loading process.To ensure full contact between the panel and the mould,the creep ageing time and pressure were set as 8h and 0.45MPa,respectively.For the purpose to study the influence of different constitutive models on panel ageing behavior,a constitutive model based on creep ageing experiment [14]and the stress relaxation constitutive model proposed in this work were incorporated into the age forming simulation model established by MSC.MARC through a user subroutine.In this way,ageing process of such stiffened panel could be simulated.5.2Ageing forming of grid panel componentThe age forming experiment was conducted in an YT−13−03autoclave.The temperature in the autoclave was set as 165°C with a controlling accuracy of ±1.5°C.Pressure of 0.45MPa,ageing time of 8h,mould material of Q235and radius of 1160mm were adopted.The experiment was divided into 3stages:initial vacuum loading,ageing forming and springback.The specific operation is shown in Fig.10.5.3Springback predictionFor quantitative representation of component formation accuracy,radius method is adopted for calculating the springback:S =(R f −R o )/R o (14)where R o and R f are outer surface radius after loading and after springback,accordingly.The smaller the springback is,the more accurate the formed plate is.After the experiment,grid panel radius after springback was measured by ATOS Compact Scan to compare with the simulated parisons are listed in Table 3.According to Table 3,the relative error of radius simulated by the stress relaxation constitutive model is 3.6%as compared with the experimental result of panel grid after springback,with the springback being 16.8%.The relative error of radius simulated by the creep constitutive model is 14.6%,with the springback being 29.3%.Through the analysis of the simulation process,it is found that different parts of the component are under different stresses and node stress keeps decreasing during the ageing process,which is similar to the ageing process in the experiment.In the early stage,the pressure is applied to the component,and after entering the ageing stage,the panel is closely attached to the mould under the pressure.The total deformation of the component is invariable,and the internal part of the elastic deformation is transformed into permanent plastic deformation leading to continuous reduction of the initial stress.This process is closer to the stress relaxation ageing,implyingKai WANG,et al/Trans.Nonferrous Met.Soc.China 29(2019)1152−11601159Fig.9Grid panel size (a)and simulation model of grid panel component(b)Fig.10Autoclave ageing forming procedureTable 3Comparison of different constitutive model simulation and experimentsMethod Mould radius/mm Radius after springback/mmRelative error of radius/%Springback/%Experiment data 11601308.5−12.8Creep constitutive model [14]1160150014.629.3Stress relaxation constitutive model116013553.616.8that stress relaxation constitutive model predicts more accurately than creep constitutive model.However,since the simulation does not consider external factors of the actual experiment (variation of friction between the component and the mould,thermal expansion effect,temperature field distribution,etc),there is some deviation between the simulation and the experiment result.Nevertheless,the stress relaxation constitutive model is better in predicting the deformation quality of the panel component as compared with the creep ageing constitutive model.6Conclusions(1)During the stress relaxation ageing process,the residual stress after the stress relaxation ageing increases along with the initial stress and the stress relaxation mainly takes place in the first 2h.(2)Before the alloy reaches the peak ageing state,the greater the initial stress is,the greater the yield strength is after the same ageing time.With the increase of initial stress,ageing time for the alloy to reach the peak strength would be shortened,which means that stress can promote ageing strengthening.(3)Based on stress relaxation ageing experiment and microstructure observation,a micro-macro coupled stress relaxation ageing unified constitutive model is established to reflect shape and property evolution,and the accuracy of the model is verified by experiments and simulations.(4)By comparing the simulated result with experiment data,simulation based on stress relaxation ageing constitutive model works out springback of 16.8%,post-formation radius of 1355mm and the relative error of radius of 3.6%.Hence,the stress relaxation ageing constitutive model can provide an accurate estimate of the springback behavior of such stiffened panel during the ageing forming process.References[1]ZHAN Li-hua,YANG You-liang.Research on creep forming technology for large integrated component [J].International Journal of Machine Tools &Manufacture,2016,59(13):16−23.(in Chinese)[2]XU Fu-shun,ZHANG Jin,DENG Yun-lai,ZHANG Xin-ming.Effect of pre-stretching on synchronization of shape and property in creep age forming of 2124aluminum alloy [J].The Chinese Journal of Nonferrous Metals,2017,27(1):1−7.(in Chinese)[3]ZHANG Jin,DENG Yun-lai,LI Si-yu,CHEN Ze-yu,ZHANGKai WANG,et al/Trans.Nonferrous Met.Soc.China29(2019)1152−1160 1160Xin-ming.Creep age forming of2124aluminum alloy with single/double curvature[J].Transactions of Nonferrous Metals Society of China,2013,23:1922−1929.[4]ZHAN Li-hua,ZHANG Jiao,JIA Shu-feng.Strength evolution ruleand its model for stress ageing of2219aluminum alloy[J].Journal of Central South University(Science and Technology),2016,47(7): 2235−2241.(in Chinese)[5]QUAN Li-wei,ZHAO Gang,TIAN Ni,HUANG Ming-li.Effect ofstress on microstructures of creep-aged2524alloy[J].Transactions of Nonferrous Metals Society of China,2013,23:2209−2214. [6]YANG You-liang,ZHAN Li-hua,LI Jie.Constitutive modeling andspringback simulation for2524aluminum alloy in creep age forming [J].Transactions of Nonferrous Metals Society of China,2015,25: 3048−3055.[7]LI Yong,SHI Zhu-sheng,LIN Jian-guo,YANG Y L,RONG Qi,HUANG B M,CHUNG T F,TSAO C S,YANG J R,BALINT D S.A unified constitutive model for asymmetric tension and compressioncreep-ageing behaviour of naturally aged Al−Cu−Li alloy[J].International Journal of Plasticity,2017,89:130−149.[8]LI Yong,SHI Zhu-sheng,LIN Jian-guo,YANG Y L,SAILLARD P,SAID R.FE simulation of asymmetric creep-ageing behaviour of AA2050and its application to creep age forming[J].International Journal of Mechanical Sciences,2018,140:228−240.[9]MA Zi-yao,ZHAN Li-hua,LIU Chun-hui,XU Ling-zhi,XUYong-qian,MA Pei-pei,Li Jian-jun.Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al−Cu alloy: Experiments and modeling[J].International Journal of Plasticity, 2018,110:183−201.[10]HO K C,LIN J,DEAN T A.Constitutive modelling of primary creepfor age forming an aluminium alloy[J].Journal of Materials Processing Tech,2004,153−154(1):122−127.[11]IDEM K,PEDDIESON J.Simulation of the age forming process[J].Journal of Manufacturing Science and Engineering,2005,127(1): 165−172.[12]ZHAN Li-hua,MA Zi-yao,ZHANG Jiao,TAN Jing-sheng,YANGZhan,LI Heng.Stress relaxation ageing behaviour and constitutive modelling of a2219aluminium alloy under the effect of an electric pulse[J].Journal of Alloys and Compounds,2016,679:316−323. [13]ZHENG Jing-hua,LIN Jian-guo,LEE J,PAN Ran,LI Chen,DAVIES C M.A novel constitutive model for multi-step stress relaxation ageing of a pre-strained7xxx series alloy[J].International Journal of Plasticity,2018,106:31−47.[14]YANG You-liang,ZHAN Li-hua,SHEN Ru-lin,LIU Jian,LI Xi-cai,HUANG Ming-hui,HE Di-qiu,CHANG Zhi-long,MA Yun-long, WAN Li.Investigation on the creep-age forming of an integrally-stiffened AA2219alloy plate:Experiment and modeling [J].International Journal of Advanced Manufacturing Technology, 2018,95:2015−2025.[15]GRONG F,MYHR O R.Additivity and isokinetic behaviour inrelation to diffusion controlled growth[J].Acta Materialia,2000,48: 445−452.[16]LIU G,ZHANG G J,DING X D,SUN J,CHEN K H.Modeling thestrengthening response to aging process of heat-treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates[J].Materials Science and Engineering A,2003,344:113−124.[17]QUAN Li-wei,FANG Da-ran.Role of elastic stress on theprecipitate in Al-Cu alloy and the corresponding modeling[J].Rare Metal Materials and Engineering,2016,45(12):3245−3249.(in Chinese)[18]ZHANG Jin,DENG Yun-lai,ZHANG Xin-ming.Constitutivemodeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates[J].Materials Science and Engineering A,2013,563:8−15.[19]MOORE K T,HOWE J M.Characterization ofγplate-shapedprecipitates in an Al−4.2at.%Ag alloy−Growth kinetics,solute field, composition and modeling[J].Acta Materialia,2000,48(16): 4083−4098.[20]XU Fu-shun,ZHANG Jin,DEGN Yun-lai,ZHANG Xin-ming.Precipitation orientation effect of2124aluminum alloy in creep aging[J].Transactions of Nonferrous Metals Society of China,2014, 24:2067−2071.[21]NIE J F.Effects of precipitate shape and orientation on dispersionstrengthening in magnesium alloys[J].Scripta Materialia,2003,48: 1009−1015.[22]YE Yi,YIN Chen-bo,GONG Yue,ZHOU Jun-jing.Position controlof nonlinear hydraulic system using an improved PSO based PID controller[J].Mechanical Systems and Signal Processing,2017,83: 241−259.预变形2219铝合金应力松弛时效成形统一本构建模及回弹预测汪凯1,2,湛利华1,2,杨有良1,2,马子尧1,2,李喜财1,2,刘健1,21.中南大学机电工程学院,长沙410083;2.中南大学高性能复杂制造国家重点实验室,长沙410083摘要:通过应力松弛时效实验和有限元仿真研究预变形2219铝合金应力松弛行为。