四年级奥数专项练习-第35讲:排列(一) 通用版(图片,含答案)_wrapper
- 格式:pdf
- 大小:331.75 KB
- 文档页数:3
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有2112520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
教学目标与教学要求:找规律是解决数学问题的一种手段,而规律的找寻既需要明锐的观察力,又需要严密的逻辑推理能力1、要求学生根据每相邻几个或相隔几个数之间的关系,找出规律,推断所要填的数。
2、要求学生从整体上把握数据之间的关系,从而很快找出规律。
教学过程:1、找出下面各数列的排列规律,并填上合适的数(1)1、4、7、10、()、16、19(2)35、31、27、23、()、()、11找出下面各数的规律,填上合适的数。
1-1、3、6、9、12、()、18、211-2、33、28、23、18、()、(0、31-3、1、5、25、125、()2、先计算出下面一组算式的第一题,然后找出其中的规律,并根据规律直接写出后面几题的得数。
12345679*9= 12345679*18= 12345679*54= 12345679*79=2-1、用规律,直接写出下面算式的结果。
(1)12345679*27=(2)12345679*81=2-2、用规律,写得数。
1+0*9= 2+1*9=3+12*9= 4+123*9=9+12345678*9=2-3、找规律,写得数。
22=2*2=21*4=4222=22*22=211*4=4842222=222*222=2111*4=49284 ··················2222222222=2()*= *= 。
3。
下列算式是按一定规律排列的,其中第6个算式的计算记过是。
3+12,6+10,12+8,24+6,48+4,······4、下列的数表是按一定规律排列的,表中4-1下面的数表是按一定规律排列的,表中4-2在下图的自然数塔形图列中,第16行的第3个自然数是。
1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法;……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .模块一、排列之计算教学目标例题精讲知识要点7-4-1.简单的排列问题【例 1】 计算:⑴ 25P ;⑵ 4377P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 由排列数公式121m n P n n n n m =---+()()()知:⑴ 255420P =⨯=⑵ 477654840P =⨯⨯⨯=,37765210P =⨯⨯=,所以4377840210630P P -=-=.【答案】⑴20 ⑵630【巩固】 计算:⑴ 23P ;⑵ 32610P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴ 23326P =⨯= ⑵ 326106541091209030P P -=⨯⨯-⨯=-=.【答案】⑴6 ⑵30【巩固】 计算:⑴321414P P -; ⑵53633P P -.【考点】简单排列问题 【难度】1星 【题型】解答【解析】 ⑴32141414131214132002P P -=⨯⨯-⨯=;⑵536333(65432)3212154P P -=⨯⨯⨯⨯⨯-⨯⨯=.【答案】⑴2002 ⑵2154模块二、排列之排队问题【例 2】 有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况? (照相时3人站成一排)【考点】简单排列问题 【难度】2星 【题型】解答【解析】 由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.由排列数公式,共可能有:3443224P =⨯⨯=(种)不同的拍照情况.也可以把照相的人看成一个位置,那么共可能有:44432124P =⨯⨯⨯=(种)不同的拍照情况.【答案】24【巩固】 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?【考点】简单排列问题 【难度】2星 【题型】解答【解析】 4个人到照相馆照相,那么4个人要分坐在四个不同的位置上.所以这是一个从4个元素中选4个,排成一列的问题.这时4n =,4m =.由排列数公式知,共有44432124P =⨯⨯⨯=(种)不同的排法.【答案】24【巩固】 9名同学站成两排照相,前排4人,后排5人,共有多少种站法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有99P 种不同站法.而问题中,9个人要站成两排,这时可以这么想,把9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.方法一:由全排列公式,共有99987654321362880P =⨯⨯⨯⨯⨯⨯⨯⨯=(种)不同的排法.方法二:根据乘法原理,先排四前个,再排后五个.45 95987654321362880p p⋅=⨯⨯⨯⨯⨯⨯⨯⨯=【答案】362880【巩固】5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?【考点】简单排列问题【难度】3星【题型】解答【解析】由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且4n=.由全排列公式,共有44432124P=⨯⨯⨯=(种)不同的站法.【答案】24【巩固】丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,5人并排站成一排,奶奶要站在正中间,有多少种不同的站法?【考点】简单排列问题【难度】3星【题型】解答【解析】由于奶奶必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n=4.由全排列公式,共有44432124P=⨯⨯⨯=(种)不同的站法.【答案】24【例 3】5个同学排成一行照相,其中甲在乙右侧的排法共有_______种?【考点】简单排列问题【难度】3星【题型】填空【关键词】学而思杯,4年级,第8题【解析】5个人全排列有5!120=种,其中甲在乙右侧应该正好占一半,也就是60种【答案】60种【例 4】一列往返于北京和上海方向的列车全程停靠14个车站(包括北京和上海),这条铁路线共需要多少种不同的车票.【考点】简单排列问题【难度】3星【题型】解答【解析】2141413182P=⨯=(种).【答案】182【例 5】班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问:有多少种不同的分工方式?【考点】简单排列问题【难度】3星【题型】解答【解析】55120P=(种).【答案】120【例 6】有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?【考点】简单排列问题【难度】3星【题型】解答【解析】这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关,而且与不同旗子所在的位置有关,所以是排列问题,且其中5n=,3m=.由排列数公式知,共可组成3554360P=⨯⨯=(种)不同的信号.【答案】60【巩固】有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的信号?【考点】简单排列问题 【难度】3星 【题型】解答【解析】23326P =⨯=. 【答案】6【巩固】 在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 方法一:这里三面不同颜色的旗子就是三个不同的元素,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,也就是从三个元素中选三个的全排列的问题.由排列数公式,共可以组成333216P =⨯⨯=(种)不同的信号.方法二:首先,先确定最高位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;其次,确定中间位置的旗子,当最高位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3216⨯⨯=(种).【补充说明】这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.【答案】6模块三、排列之数字问题【例 7】 用1、2、3、4、5、6、7、8可以组成多少个没有重复数字的四位数?【考点】简单排列问题 【难度】2星 【题型】解答【解析】 这是一个从8个元素中取4个元素的排列问题,已知8n =,4m =,根据排列数公式,一共可以组成4887651680P =⨯⨯⨯=(个)不同的四位数.【答案】1680【巩固】 由数字1、2、3、4、5、6可以组成多少没有重复数字的三位数?【考点】简单排列问题 【难度】2星 【题型】解答【解析】36120P =. 【答案】120【例 8】 用0、1、2、3、4可以组成多少个没重复数字的三位数?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 (法1)本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1、2、3、4这四个数字中选择一个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有24P 种方法.由乘法原理得,此种三位数的个数是:24448P ⨯=(个).(法2):从0、1、2、3、4中任选三个数字进行排列,再减去其中不合要求的,即首位是0的.从0、1、2、3、4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:32545434348P P -=⨯⨯-⨯=(个).本题不是简单的全排列,有一些其它的限制,这样要么先全排列再剔除不合题意的情况,要么直接在排列的时候考虑这些限制因素.【答案】48【例 9】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【考点】简单排列问题【难度】3星【题型】解答【解析】个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n=,2m=,根据排列数公式,一共可以组成255420P=⨯=(个)符合题意的三位数.【答案】20【巩固】用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?【考点】简单排列问题【难度】3星【题型】解答【解析】由于组成偶数,个位上的数应从2,4,6中选一张,有3种选法;十位和百位上的数可以从剩下的5张中选二张,有255420P=⨯=(种)选法.由乘法原理,一共可以组成32060⨯=(个)不同的偶数..【答案】60【例 10】由0,2,5,6,7,8组成无重复数字的数,四位数有多少个?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:先考虑从六个数字中任取四个数字的排列数为466543360P=⨯⨯⨯=,由于0不能在千位上,而以0为千位数的四位数有3554360P=⨯⨯=,它们的差就是由0,2,5,6,7,8组成无重复数字的四位数的个数,即为:36060300-=个.方法二:完成这件事——组成一个四位数,可分为4个步骤进行,第一步:确定千位数;第二步:确定百位数;第三步:确定十位数;第四步:确定个位数;这四个步骤依次完成了,“组成一个四位数”这件事也就完成了,从而这个四位数也完全确定了,思维过程如下:根据乘法原理,所求的四位数的个数是:5543300⨯⨯⨯=(个).【答案】300【例 11】用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?【考点】简单排列问题【难度】4星【题型】解答【解析】按位数来分类考虑:⑴一位数只有1个3;⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成22212P=⨯=(个)不同的两位数,共可组成248⨯=(个)不同的两位数;⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一组可以组成3 33216P=⨯⨯=(个)不同的三位数,共可组成6424⨯=(个)不同的三位数;⑷四位数:可由1,2,4,5这四个数字组成,有44432124P=⨯⨯⨯=(个)不同的四位数;⑸五位数:可由1,2,3,4,5组成,共有5554321120P=⨯⨯⨯⨯=(个)不同的五位数.由加法原理,一共有182424120177++++=(个)能被3整除的数,即3的倍数.【答案】177【例 12】用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?【考点】简单排列问题【难度】4星【题型】解答【解析】可以分两类来看:⑴把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有4 4432124P=⨯⨯⨯=(种)放法,对应24个不同的五位数;⑵把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P=种选择.由乘法原理,可以组成33654⨯⨯=(个)不同的五位数.由加法原理,可以组成245478+=(个)不同的五位数.【答案】78【巩固】用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?【考点】简单排列问题【难度】4星【题型】解答【解析】从高位到低位逐层分类:⑴千位上排1,2,3或4时,千位有4种选择,而百、十、个位可以从0~9中除千位已确定的数字之外的9个数字中选择,因为数字不重复,也就是从9个元素中取3个的排列问题,所以百、十、个位可有39987504P=⨯⨯=(种)排列方式.由乘法原理,有45042016⨯=(个).⑵千位上排5,百位上排0~4时,千位有1种选择,百位有5种选择,十、个位可以从剩下的八个数字中选择.也就是从8个元素中取2个的排列问题,即288756P=⨯=,由乘法原理,有1556280⨯⨯=(个).⑶千位上排5,百位上排6,十位上排0,1,2,3,4,7时,个位也从剩下的七个数字中选择,有116742⨯⨯⨯=(个).⑷千位上排5,百位上排6,十位上排8时,比5687小的数的个位可以选择0,1,2,3,4共5个.综上所述,比5687小的四位数有20162804252343+++=(个),故5687是第2344个四位数.【答案】2344【例 13】用数字l~8各一个组成8位数,使得任意相邻三个数字组成的三位数都是3的倍数.共有___种组成方法.【考点】简单排列问题【难度】4星【题型】填空【关键词】走美杯,六年级,初赛,第7题【解析】l~8中被三除余1和余2的数各有3个,被3整除的数有两个,根据题目条件可以推导,符合条件的排列,一定符合“被三除所得余数以3位周期”,所以8个数字,第1、4、7位上的数被3除同余,第2、5、8位上的数被3除同余,第3、6位上的数被3除同余,显然第3、6位上的数被3整除,第1、4、7位上的数被3除可以余1也可以余2,第2、5、8位上的数被3除可以余2可以余1,余数的安排上共有2种方法,余数安排定后,还有同余数之间的排列,一共有3!×3!×2!=144种方法.【答案】144种【例 14】 由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在 个.【考点】简单排列问题 【难度】4星 【题型】解答【解析】 比2008小的4位数有2000和2002,比2008小的3位数有23318⨯⨯=(种),比2008小的2位数有236⨯=(种),比2008小的1位数有2(种),所以2008排在第21862129++++=(个). 【答案】29【例 15】 千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有多少个?【考点】简单排列问题 【难度】4星 【题型】解答【解析】 千位数字大于十位数字,千位数字的取值范围为29,对应的十位数字取07,每确定一个千位数字,十位数字就相应确定了,只要从剩下的8个数字中选出2个作百位和个位就行了,因此总共有288P ⨯个这样的四位数.⑵千位数字小于十位数字,千位数字取17,十位数字取39,共有287P ⨯个这样的四位数.所以总共有228887840P P ⨯+⨯=个这样的四位数.【答案】840模块四、排列之策略问题【例 16】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【考点】简单排列问题 【难度】4星 【题型】解答【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种.第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【答案】56【例 17】 幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 在这个问题中,只要把3把椅子看成是3个位置,而6名小朋友作为6个不同元素,则问题就可以转化成从6个元素中取3个,排在3个不同位置的排列问题.由排列数公式,共有:36654120P =⨯⨯=(种)不同的坐法.【答案】120【巩固】 幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?【考点】简单排列问题 【难度】3星 【题型】解答【解析】 与例5不同,这次是椅子多而人少,可以考虑把6把椅子看成是6个元素,而把3名小朋友作为3个位置,则问题转化为从6把椅子中选出3把,排在3名小朋友面前的排列问题.由排列公式,共有:36654120P=⨯⨯=(种)不同的坐法.【答案】120【巩固】10个人走进只有6辆不同颜色碰碰车的游乐场,每辆碰碰车必须且只能坐一个人,那么共有多少种不同的坐法?【考点】简单排列问题【难度】3星【题型】解答【解析】把6辆碰碰车看成是6个位置,而10个人作为10个不同元素,则问题就可以转化成从10个元素中取6个,排在6个不同位置的排列问题.共有6101098765151200P=⨯⨯⨯⨯⨯=(种)不同的坐法.【答案】151200【例 18】一个篮球队有五名队员A,B,C,D,E,由于某种原因,E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法?【考点】简单排列问题【难度】3星【题型】解答【解析】方法一:此题先确定做中锋的人选,除E以外的四个人任意一个都可以,则有4种选择,确定下来以后,其余4个人对应4个位置,有44432124P=⨯⨯⨯=(种)排列.由乘法原理,42496⨯=,故一共有96种不同的站位方法.方法二:五个人分配到五个位置一共有5554321120P=⨯⨯⨯⨯=(种)排列方式,E能做中锋一共有4 4432124P=⨯⨯⨯=(种)排列方式,则E不能做中锋一共有54541202496P P-=-=种不同的站位方法.【答案】96【例 19】小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?【考点】简单排列问题【难度】3星【题型】解答【解析】我们将10块大白兔奶糖从左至右排成一列,如果在其中9个间隙中的某个位置插入“木棍”,则将lO块糖分成了两部分.我们记从左至右,第1部分是第1天吃的,第2部分是第2天吃的,…,如:○○○|○○○○○○○表示第一天吃了3粒,第二天吃了剩下的7粒:○○○○ | ○○○| ○○○表示第一天吃了4粒,第二天吃了3粒,第三天吃了剩下的3粒.不难知晓,每一种插入方法对应一种吃法,而9个间隙,每个间隙可以插人也可以不插入,且相互独立,故共有29=512种不同的插入方法,即512种不同的吃法.【答案】512。
第35讲坐船过河奥数是给那些对奥数有兴趣的孩子搭建的一个舞台,正象我们给那些对英语、对绘画、对音乐、对体育等有兴趣的孩子搭建的舞台一样,让他们自由、快乐地享受童年、享受人生。
其一,奥数包涵了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等等二十几种思维方式,众所周知,思维能力是一个孩子的智力的核心,如果一个孩子在小学期间,思维能力得到了充分的锻炼,有什么比这更重要的呢?奥数能够快速有效、全面提高孩子智商的工具。
奥数学习对开拓思路有着重要作用。
奥数学习好的学生整个理科都会比较优秀,因为数学是理科的基础,物理化学都需要数学这个基础。
正因为这个原因,重点中学喜欢招奥数比较好的学生。
其二,奥数题基本上是比书上知识有所提高的内容,当孩子在做题当中遇到困难,想办法战胜它时,那种来自内心深处的喜悦比吃了十斤蜜枣还甜。
在学习、比赛中,有失败、有成功,让孩子从小就明白:不经历风雨怎能见彩虹的道理,一句话:奥数让孩子学会了面对挫折、战胜困难,学会了永不言败的精神,建立起良好的自信。
可以说既提高孩子的智商又能发展孩子的情商。
【专题简析】在日常生活中,常常要乘车或坐船。
在乘车、坐船活动中有很多数学题,做这些题,如果光凭计算,有时就会产生错误,一定要认真审题,全面各种情况。
解答日常生活中的一些有趣的问题,一定要从生活实际出发,充分运用学过的数学知识,使求出的问题合乎实际情况,有时可以先假设一个结论,然后对照所给的条件,找到符合所有条件的结果。
【例题1】有16人要到河对岸去,河边只有一条船,这只船上只能坐4人。
用这条小船至少要多少次才能把16人全部渡过河去?思路导航:解答这道题要从实际情况去考虑,第一次船上坐4人,到对岸后,必须留下1人在船上驾船返回,实际上只把三个人渡过河去。
16÷4=4,当小船渡过了4次时,渡过的人数是3×4=12(人),还没渡过河的人有16-12=4(人),最后这4人刚好一次渡过河去。
(完整word版)四年级奥数找规律练习题及答案亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~找规律练习题答案1.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。
(1)1,4,3,6,5,( 8 ),( 7 ),10, 9。
(2)1,4,16,64,( 256 ),1024。
(3)14,3,11,3,8,3,( 5 ),( 3 ),2,3。
(4)0,1,3,8,21,( 55 )。
2.找规律,在空格里填上适当的数。
3. 下面括号里和两个数是按一定规律组合,根据规律在括号里填上适当的数。
(1)(8,7),(6,9),(10,5),( 2 ,13)。
(2)(1,3),(5,9),(7,13),(9,17 )。
4. 根据前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
(1)18 15 15 12 (33 )(30 )(2)10 20 8 16 (5 )(10 )5. 找规律,写得数。
(1)1×9 = 991×99=9009991×999=9900099991×9999=9990000999991×99999=9999000009999991×999999 =999990000009结尾处,小编送给大家一段话。
米南德曾说过,“学会学习的人,是非常幸福的人”。
在每个精彩的人生中,学习都是永恒的主题。
作为一名专业文员教职,我更加懂得不断学习的重要性,“人生在勤,不索何获”,只有不断学习才能成就更好的自己。
各行各业从业人员只有不断的学习,掌握最新的相关知识,才能跟上企业发展的步伐,才能开拓创新适应市场的需求。
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
(完整word版)四年级奥数找规律练习题及答案亲爱的读者:本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。
下面是本文详细内容。
最后最您生活愉快 ~O(∩_∩)O ~找规律练习题答案1.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。
(1)1,4,3,6,5,( 8 ),( 7 ),10, 9。
(2)1,4,16,64,( 256 ),1024。
(3)14,3,11,3,8,3,( 5 ),( 3 ),2,3。
(4)0,1,3,8,21,( 55 )。
2.找规律,在空格里填上适当的数。
3. 下面括号里和两个数是按一定规律组合,根据规律在括号里填上适当的数。
(1)(8,7),(6,9),(10,5),( 2 ,13)。
(2)(1,3),(5,9),(7,13),(9,17 )。
4. 根据前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
(1)18 15 15 12 (33 )(30 )(2)10 20 8 16 (5 )(10 )5. 找规律,写得数。
(1)1×9 = 991×99=9009991×999=9900099991×9999=9990000999991×99999=9999000009999991×999999 =999990000009结尾处,小编送给大家一段话。
米南德曾说过,“学会学习的人,是非常幸福的人”。
在每个精彩的人生中,学习都是永恒的主题。
作为一名专业文员教职,我更加懂得不断学习的重要性,“人生在勤,不索何获”,只有不断学习才能成就更好的自己。
各行各业从业人员只有不断的学习,掌握最新的相关知识,才能跟上企业发展的步伐,才能开拓创新适应市场的需求。
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。