直线和圆培优
- 格式:doc
- 大小:247.50 KB
- 文档页数:5
直线与圆培优讲义-CAL-FENGHAI.-(YICAI)-Company One1培优讲义一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==;二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200B A CBy Ax d +++=③平行直线间距离:2221B A C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
专题20 直线与圆的位置关系(1)阅读与思考圆心到直线的距离与圆的半径的大小量化确定直线与圆的相离、相切、相交三种位置关系.直线与圆相切是研究直线与圆的位置关系的重点.与切线相关的知识,包括弦切角、切线的性质和判断、切线长定理、切割线定理等.证明一直线是圆的切线是平面几何问题中一种常见的题型,证明的基本方法有: 1.利用定义,判断直线和圆只有一个公共点;2.当已知一条直线和圆有一个公共点时,就把圆心和这个公共点连接起来,再证明这条半径和直线垂直;3.当直线和圆的公共点没有确定时,就过圆心作直线的垂线,再证明圆心到直线的距离等于半径. 熟悉如下基本图形和以上基本结论.例题与求解【例1】如图,已知AB 为⊙O 的直径,CB 切⊙O 于点B ,CD 切⊙O 于点D ,交BA 的延长线于E .若AB =3,DE =2,则BC 的长为( ) (青岛市中考试题)A .2B .3C .3.5D .4例1题图 例2题图解题思路:本例包含了切线相关的丰富性质,从C 点看可应用切线长定理,从E 点看可应用切割线定理,又EC 为⊙O 的切线,可应用切线性质,故解题思路广阔.【例2】如图,⊙O 是△ABC 的外接圆,已知∠ACB =45°,∠ABC =120°,⊙O 的半径为1. (1) 求弦AC ,AB 的长;(2) 若P 为CB 的延长线上一点,试确定P 点的位置,使P A 与⊙O 相切,并证明你的结论.(哈尔滨市中考试题)解题思路:第(2)题是考查探索能力的开放性几何题,只要探求得PB 与BC ,或PC 与BC 的关系,或求得PB 或PC 的长,点P 的位置即可确定.E【例3】已知△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点.过点P 作BC 的平行线交BT 于点E ,交直线AC 于点F .(1) 当点P 在线段AB 上时(如图),求证:P A •PB =PE •PF ;(2) 当点P 为线段BA 的延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由. (北京市中考试题)解题思路:本例是“运动型”的开放性问题,要求点在运动变化中,判断原结论是否成立,通过观察、比较、归纳、分析等系列活动,逐步确定应有的结论.【例4】已知:如图1,把矩形纸片ABCD 折叠,使得顶点A 与边DC 上的动点P 重合(P 不与点D ,C 重合),MN 为折痕,点M ,N 分别在边BC ,AD 上.连接AP ,MP ,AM ,AP 与MN 相较于点F ,⊙O 过点M ,C ,P .(1) 请你在图1中作出⊙O (不写作法,保留作图痕迹);(2)AF AN 与APAD是否相等?请说明理由; (3) 随着点P 的运动,若⊙O 与AM 相切于点M 时,⊙O 又与AD 相切于点H .设AB 为4,请你通过计算,画出这时的图形(图2、图3供参考).(宜昌市中考试题)解题思路:对于(3),只依靠AB 的长不能画出图形,需求出关键的量,因为∠C =90°,⊙O 过点M ,C ,P ,故将画出矩形的条件转化为求出CP (或MP )的长.当矩形确定后,依据线段CP 的长,就可确定P 点的位置.TTC MNNN【例5】如图,已知△ABC 内接于⊙O ,AD ,BD 为⊙O 的切线,作DE ∥BC ,交AC 于点E ,连接EO 并延长交BC 于点F .求证:BF =FC . (太原市竞赛试题)解题思路:要证明BF =FC ,只需证FO ⊥BC 即可,连接OA ,OB ,OD ,将问题转化为证明∠DAO =∠EFC .【例6】如图,在等腰△ABC 中,已知AB =AC ,∠C 的平分线与AB 交于点P ,M 是△ABC 的内切⊙I 与边BC 的切点,作MD ∥AC ,交⊙I 于点D ,求证:PD 是⊙I 的切线. (全国初中数学联赛试题)解题思路:设⊙I 切AB 于点S ,连接IM ,IS ,ID ,直接证明∠PDI =90°困难,不妨证明∠PDI =∠PSI ,即证明△PIS ≌△PID .能力训练A 级1. P A ,PB 切⊙O 于A ,B ,∠APB =78°,点C 是⊙O 上异于A ,B 的任意一点,则∠ACB =__________.2.如图,以△ABC 的边AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线交AC 于点E .要使DE ⊥AC ,则△ABC 的边必须满足的条件是__________. (武汉市中考试题)第2题图 第3题图3. 如图,P A 切⊙O 于点A ,C 是AB 上任意一点,∠P AB =62°,则∠C 的度数是__________.(荆门市中考试题)P4.直角梯形ABCD 中,AD ∥BC ,∠B =90°,AD +BC <DC .若腰DC 上有一点P ,使AP ⊥BP ,则这样的点( )A .不存在B .只有一个C .只有两个D .有无数个5.如图,已知AB 是⊙O 的直径,CD ,CB 是⊙O 的切线,D ,B 为切点,OC 交⊙O 于点E ,AE 的延长线交BC 于点F ,连接AD ,BD ,给出以下四个结论:①AD ∥OC ;②E 为△CDB 的内心;③FC =FE .其中正确的结论是 ( )A .①②B .②③C .①③D .①②③6.如图,ABCD 为⊙O 的内接四边形,AC 平分∠BAD 并与BD 相交于E 点,CF 切⊙O 于点C 并与AD 的延长线相交于点F .图中的四个三角形①△CAF ,②△ABC ,③△ABD ,④△BEC ,其中一定相似的是( ) (连云港市中考试题)A .①②③B .②③④C .①③④D .①②④第5题图 第6题图 第7题图7.如图,△ABC 内接于⊙O ,AE 切⊙O 于点A ,BC ∥AE . (1) 求证:△ABC 是等腰三角形;(2) 设AB =10cm ,BC =8cm ,点P 是射线AE 上的点,若以A ,P ,C 为顶点的三角形与△ABC 相似,问这样的点有几个? (南昌市中考试题)8.如图,Rt △ABC 中,∠C =90°,以AC 为直径的⊙O 交斜边AB 于点E ,OD ∥AB . 求证:(1) ED 是⊙O 的切线;(2) 2DE 2=BE •OD .ACB9.如图,在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的边,且a ,b 是关于x 的一元二次方程x 2+4(c +2)=(c+4)x 的两个根. 点D 在AB 上,以BD 为直径的⊙O 切AC 于点E .(1) 求证:△ABC 是直角三角形;(2) 若tan A =34时,求AE 的长. (内蒙古中考试题)10.如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 边于点D ,E 是边BC 中点,连接DE .(1) 求证:直线DE 是⊙O 的切线;(2) 连接OC 交DE 于点F ,若OF =CF ,求tan ∠ACO 的值. (武汉市中考试题)11.如图,⊙O 的半径r =25,四边形ABCD 内接于⊙O ,AC ⊥BD 于点H ,P 为CA 延长线上一点,且∠PDA =∠ABD .(1) 试判断PD 与⊙O 的位置关系,并说明理由;(2) 若tan ∠ADB =34,P A =43-33AH ,求BD 的长;(3) 在(2)的条件下,求四边形ABCD 的面积. (成都市中考试题)ABC BECB 级1.如图,AB 是⊙O 的直径,CD 是弦,过点C 的切线与AD 的延长线交于点E .若∠DAB =56°, ∠ABC =64°,则∠CED =__________.2.如图,⊙O 与矩形ABCD 的边AD ,AB ,BC 分别相切于点E ,F ,G ,P 是EG 上的一点,则∠EPF =__________. (广州市中考试题)第1题图 第2题图 第3题图3.如图,直线AB ,AC 与⊙O 分别相切于点B ,C 两点,P 为圆上一点,P 到AB ,AC 的距离分别为4cm ,6cm ,那么P 到BC 的距离为__________cm. (全国初中数学联赛试题)4.如图,在Rt △ABC 中,∠A =90°,⊙O 分别与AB ,AC 相切于点E ,F ,圆心O 在BC 上,若AB =a ,AC =b ,则⊙O 的半径等于( )A .abB .a +b 2C .aba +bD .a +b ab5.如图,在⊙O 的内接△ABC 中,∠ABC =30°,AC 的延长线与过点B 的⊙O 的切线相交于点D .若⊙O 的半径OC =1,BD ∥OC ,则CD 的长为( )A .1+33 B .233 C .33D . 2第4题图 第5题图 第6题图6.如图,⊙O 的内接△ABC 的外角∠ACE 的平分线交⊙O 于点D .DF ⊥AC ,垂足为F ,DE ⊥BC ,垂足为E .给出以下四个结论:①CE =CF ;②∠ACB =∠EDF ;③DE 是⊙O 的切线;④AD =BD .其中正确的结论是( ) (苏州市中考试题)A .①②③B .②③④C .①③④D .①②④7.如图,已知AC 切⊙O 于点C ,CP 为⊙O 的直径,AB 切⊙O 于点D ,与CP 的延长线交于点B .若AC =PC .求证:(1) BD =2BP ;(2) PC =3BP . (天津市中考试题)8.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AB =12cm ,AD =8cm ,BC =22cm ,AB 为⊙O 的直径.动点P 从点A 开始沿AD 边向点D 以1cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以2cm/s 的速度运动. P ,Q 分别从点A ,C 同时出发,当其中一个动点到达端点时,另一个动点也随之停止.设运动时间为t (s).(1) 当t 为何值时,四边形PQCD 为平行四边形?(2) 当t 为何值时,PQ 与⊙O 相切? (呼和浩特市中考试题)9.如图,已知在△ABC 中,∠ABC =90°,O 是AB 上一点,以O 为圆心,OB 为半径的半圆与AB 交于点E ,与AC 切于点D ,AD =2,AE =1.求证:S △AOD ,S △BCD 是方程10x 2-51x +54=0的两个根. (河南省中考试题)10.如图,点O 在∠APB 的平分线上,⊙O 与P A 相切于点C . (1) 求证:直线PB 与⊙O 相切;(2) PO 的延长线与⊙O 交于点E ,若⊙O 的半径为3,PC =4,求弦CE 的长.(武汉市中考试题)CCABDE11.如图,直线y =43x +4交x 轴于点B ,交y 轴于点A ,⊙O ′过A ,O 两点.(1) 如图1,若⊙O ′交AB 于点C ,当O ′在OA 上时,求弦AC 的长; (2) 如图2,当⊙O ′与直线l 相切于点A 时,求圆心O ′的坐标;(3) 当O ′A 平分△AOB 的外角时,请画出图形,并求⊙O ′的半径的长.12.如图,AB 是⊙O 的直径,AB =d ,过点A 作⊙O 的切线并在其上取一点C ,使AC =AB ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E . 求AE 的长. (四川省竞赛试题)C专题20 直线与圆的位置关系(1)例1、B 提示:连接OD ,则~ODE CBE ∆∆例2、(1)AC =AB = (2)提示:若PA 是⊙O 的切线,则PA ⊥AO ,又BO ⊥AO ,得PA ∥BD ,PB ADBC DC∴=,9030AOD OAC ∠=︒∠=︒,, 120AOC ∠=︒,22AD OD DC ∴==,2PB BC ∴=,即当2PB BC =时,PA 是 ⊙O 的切线例3、 提示(1)证明~PFA PBE ∆∆ (2)当P 为BA 延长线上一点时,第(1)题的结论仍成立例4、(1)略 (2)AF AP AN AD ≠,理由如下:假设AF APAN AD≠,则MN ∥CD 。
高考培优秋季 数学 “直线与圆”学生姓名 授课日期 教师姓名授课时长知识定位目标1:根据条件求直线的方程、圆的方程,学会把条件中的“点与线,线与线、直线与圆的位置关系”转化成适当的代数关系。
目标2:进一步体会几何特征代数化和代数结构几何化。
目标3:直线与圆的位置关系的判断。
目标4:直线与圆的位置关系的综合应用。
知识诊断【试题来源】 【题目】已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.(Ⅰ)当l 经过圆心C 时,求直线l 的方程;(Ⅱ)当弦AB 被点P 平分时,写出直线l 的方程; (Ⅲ)当直线l 的倾斜角为45º时,求弦AB 的长. 【难度系数】2【试题来源】 【题目】已知方程04222=+--+m y x y x .(Ⅰ)若此方程表示圆,求m 的取值范围;(Ⅱ)若(Ⅰ)中的圆与直线042=-+y x 相交于M ,N 两点,且OM ⊥ON (O 为坐标原点)求m 的值;(Ⅲ)在(Ⅱ)的条件下,求以MN 为直径的圆的方程. 【难度系数】2知识梳理1.点到直线的距离及两平行直线间的距离:①点00(,)P x y 到直线0Ax By C ++=的距离 ②两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为1222C C d A B-=+.2.点00(,)A x y 关于直线0Ax By C ++=对称的点的坐标为(,)x y '',则:00000221x x y y A B C y y A x x B ''++⎧⋅+⋅+=⎪⎪⎨'-⎛⎫⎪⋅-=- ⎪'⎪-⎝⎭⎩ 即⎧⎨⎩ 解得:x y '=⎧⎨'=⎩可记住点00(,)A x y 关于直线y x m =±+的对称点的规律!3.直线:0l Ax By C ++=和圆()()222C :x a y b r -+-=(0)r >有相交、相离、相切.可从代数和几何两个方面来判断: ①代数方法(判断直线与圆方程联立所得方程组的解的情况):0∆>⇔相交;0∆<⇔相离;0∆=⇔相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d r <⇔相交;d r >⇔相离;d r =⇔相切。
人教版九年级数学24.2 点和圆、直线和圆的位置关系培优训练一、选择题(本大题共8道小题)1. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定2. 2019·武汉江岸区期中点P到直线l的距离为3,以点P为圆心,以下列长度为半径画圆,能使直线l与⊙P相交的是()A.1 B.2 C.3 D.43. 2020·武汉模拟在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以点A为圆心,4.8为半径的圆与直线BC的公共点的个数为()A.0 B.1 C.2 D.不能确定4. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个5.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°6. 如图,在△MBC中,∠MBC=90°,∠C=60°,MB=2 3,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A. 2B. 3 C.2 D.37. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.88. 一把直尺、含60°角的三角尺和光盘如图所示摆放,A为60°角与直尺的交点,AB=3,则光盘的直径是()A.3 B.3 3 C.6 D.6 3二、填空题(本大题共8道小题)9. 直角三角形的两条直角边分别是5和12,则它的内切圆半径为.10. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.11. 设⊙O 的半径为3,点O 到直线l 的距离为d ,若直线l 与⊙O 至少有一个公共点,则d 的取值范围是________.12. 如图,AB是⊙O 的直径,⊙O 交BC 于点D ,DE ⊥AC ,垂足为E ,要使DE是⊙O 的切线,则图中的线段应满足的条件是____________.13. 如图,在△ABC 中,∠A =60°,BC =5 cm.能够将△ABC 完全覆盖的最小圆形纸片的直径是________cm.14. 已知l 1∥l 2,l 1,l 2之间的距离是3 cm ,圆心O 到直线l 1的距离是1 cm ,如果圆O 与直线l 1,l 2有三个公共点,那么圆O 的半径为________cm.15. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).三、解答题(本大题共4道小题)17. 在△ABC中,AB=AC=10,BC=16,⊙A的半径为7,判断⊙A与直线BC 的位置关系,并说明理由.18. 如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.19. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.20. 如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB. (1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.人教版 九年级数学 24.2 点和圆、直线和圆的位置关系 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】B2. 【答案】D3. 【答案】B4. 【答案】C[解析] 如图,连接AB ,BC ,作AB ,BC 的垂直平分线,可得点A ,B ,C 所在的圆的圆心为O ′(2,0).只有当∠O ′BF =∠O ′BD +∠DBF =90°时,BF 与圆相切, 此时△BO ′D ≌△FBE ,EF =DB =2, 此时点F 的坐标为(5,1).作过点B ,F 的直线,直线BF 经过格点(1,3),(7,0),此两点亦符合要求. 即与点B 的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.5.【答案】B 【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠C OP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图6. 【答案】C[解析] 在Rt△BCM中,∠MBC=90°,∠C=60°,∴∠BMC=30°,∴BC=12MC,即MC=2BC.由勾股定理,得MC2=BC2+MB2.∵MB=2 3,∴(2BC)2=BC2+12,∴BC=2.∵AB为⊙O的直径,且AB⊥BC,∴BC为⊙O 的切线.又∵CD也为⊙O的切线,∴CD=BC=2.7. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.8. 【答案】D[解析] 设光盘的圆心为O,连接OA,OB,则OB⊥AB,∠OAB=12×(180°-60°)=60°.∵AB=3,∴OA=6,OB=3 3,∴光盘的直径是6 3.故选 D.二、填空题(本大题共8道小题)9. 【答案】2[解析]直角三角形的斜边==13,所以它的内切圆半径==2.10. 【答案】219°[解析]连接AB ,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.11. 【答案】0≤d≤312. 【答案】BD =CD或AB =AC (答案不唯一)[解析] (1)连接OD .要使DE 是⊙O 的切线,结合DE ⊥AC ,只需OD ∥AC ,根据O 是AB 的中点,只需BD =CD 即可;(2)根据(1)中探求的条件,要使BD =CD ,则连接AD ,由于∠ADB =90°,只需AB =AC ,根据等腰三角形的三线合一即可.13. 【答案】10 33 如图,能够将△ABC 完全覆盖的最小圆形纸片是△ABC 的外接圆⊙O.连接OB ,OC ,则∠BOC =2∠A =120°.过点O 作OD ⊥BC 于点D ,则∠BOD =12∠BOC =60°.∴∠OBD =30°,∴OB =2OD.由垂径定理,得BD =12BC =52 cm ,在Rt △BOD 中,由勾股定理,得OB2=OD2+BD2,即(2OD)2=OD2+(52)2,解得OD =56 3 cm.∴OB =5 33cm ,∴能够将△ABC 完全覆盖的最小圆形纸片的直径是10 33 cm.14. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.15. 【答案】112.5[解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD=2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.16. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.三、解答题(本大题共4道小题)17. 【答案】解:⊙A 与直线BC 相交. 理由:过点A 作AD ⊥BC 于点D , 则BD =CD =8. ∵AB =AC =10, ∴AD =6. ∵6<7,∴⊙A 与直线BC 相交.18. 【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°. ∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°, ∴∠BAC =90°-∠BAP =30°.(2)过点O 作OD ⊥AB 于点D ,如图所示,则AD =BD =12AB.由(1)得△APB 是等边三角形,∴AB=PA=1,∴AD=1 2.在Rt△AOD中,∵∠BAC=30°,∴OD=12OA.由勾股定理,得OA2=OD2+AD2,即(2OD)2=OD2+(1 2)2,∴OD=36,即点O到弦AB的距离为36.19. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.20. 【答案】解:(1)证明:如图,连接OC.∵OA=OB,AC=CB,∴OC⊥AB.又∵点C在⊙O上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M. ∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN=9,∴CD=DM2+CM2=92+32=310.。
直线与圆培优讲义(优选.)培优讲义一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==;二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200B A CBy Ax d +++=③平行直线间距离:2221B A C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121y y x x ++ 靠近A 的三分点坐标 )32,32(2121y y x x ++ 靠近B 的三分点坐标 中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线与圆高考题精选培优引言在高考数学中,直线与圆是一个非常重要的知识点,涉及到的知识点较多,且题目多样化。
本文将为大家精选了一些高考题,旨在帮助大家理解直线与圆的相关概念和解题技巧,加深对该知识点的理解。
1. 直线与圆的基本概念在开始解答高考题之前,我们需要先了解直线与圆的基本概念。
直线:直线是一个无限延伸的平面几何对象,其上的点满足相邻两点间的距离是恒定的。
圆:圆是一个平面几何对象,由一个平面上距离中心恒定为r的点组成,其中r称为圆的半径。
对于直线和圆的相关性质和定理,请参考数学教材和相关学习资料。
2. 高考题精选解析题目一已知点A(-2,3)和点B(4,-1)分别在直线l上,且l与圆C的交点为M(-1,2)和N(3,0)。
求直线l的方程和圆C的方程。
解析:首先求直线l的方程。
由题目可知,直线l过点A(-2,3)和点B(4,-1),我们可以使用两点式求直线的方程。
直线l的斜率为:m = (y2 - y1) / (x2 - x1) = (-1 - 3) / (4 - -2) = -1然后我们可以使用点斜式求直线l的方程。
直线l通过点A(-2,3),斜率为-1,直线的方程为:y - y1 = m(x - x1) => y - 3 = -1(x - -2) => y - 3 = -x - 2 => y = -x + 1接下来,我们求圆C的方程。
已知圆C的两个交点为M(-1,2)和N(3,0),我们可以使用两点式求圆的方程。
圆C的半径为r,中心点为O(x0, y0),则圆的方程为:(x - x0)^2 + (y - y0)^2 = r^2代入两个交点的坐标,我们有:(-1 - x0)^2 + (2 - y0)^2 = r^2 和 (3 - x0)^2 + (0 - y0)^2 = r^2通过联立方程,我们可以求解圆的方程。
具体的求解过程省略。
题目二已知圆O的半径为4,点A(3,0)为圆上的一点,直线l过点A且与圆O相切。
直线与圆的方程培优试题题目一给定一个圆的方程为:(x - a)^2 + (y - b)^2 = r^2,求出过点(x0, y0)且与该圆相切的直线的方程。
解析我们知道,直线与圆相切的条件是:直线上的一点到圆心的距离等于圆的半径。
因此,我们需要找到一条直线,使得直线上的某个点(x, y)到圆心(a, b)的距离等于半径r。
设直线的方程为y = kx + c,将其代入圆的方程中,得到:(x - a)^2 + (kx + c - b)^2 = r^2展开并整理得到:(x^2 - 2ax + a^2) + (k^2x^2 + c^2 + b^2 - 2kcx - 2kb)x + (2bkc - 2bc) = r^2由于直线与圆相切,所以该方程有唯一解。
根据相等斜率定理,我们知道,直线与圆相切意味着两者的切点处的斜率相等。
因此,我们可以通过解方程组来求解该问题。
将上述方程与圆的方程联立,可得到一个二元一次方程组:2bk - 2a = 02bkc - 2bc - r^2 + a^2 + b^2 - c^2 = 0解方程组得到:k = (a - c) / bc = r^2 / (b - k)因此,过点(x0, y0)且与给定圆相切的直线的方程为:y = ((x0 - a) / b) * x + (r^2 / (b - ((x0 - a) / b)))题目二给定一个直线的方程为:y = kx + c,求该直线与圆(x - a)^2 + (y - b)^2 = r^2的交点坐标。
解析我们需要找到直线与圆的交点,也就是说,找到直线和圆的方程组的解。
将直线的方程代入圆的方程中,得到:(x - a)^2 + (kx + c - b)^2 = r^2展开并整理得到:(x^2 - 2ax + a^2) + (k^2x^2 + c^2 + b^2 - 2kcx - 2kb)x + (2bkc - 2bc) = r^2合并同类项得到:(1 + k^2)x^2 + (-2a - 2ck - 2kb)x + (a^2 + c^2 + b^2 - 2kcx - 2bc -r^2) = 0这是一个二次方程,我们可以使用二次方程的求根公式来求解。
第二章直线与圆的位置关系 复习、选择题(共20小题)1.已知圆的半径是£,如果圆心到直线的距离是,那么直线和圆的位置关系是A.相交B.相切C.相离D.内含2.如图,一中,■八 ,:=1,—「•'•,点和在■•上,以「为直径作-与厂相切于点上-,贝」二的长为4.设-的半径为丄,圆心门到直线的距离「' -小,且亠使得关于、的方 程有实数根,则直线•与-的位置关系为:■A.相离或相切B.相切或相交C.相离或相交D.无法确定5. 已知-的半径为=直线,上有一点满足,则直线:与 的位 置关系是 A.相切B.相离C.相离或相切D.相切或相交6. 已知•的半径「一,设圆心卩到一条直线的距离为』,圆上到这条直线 的距离为:的点的个数为-,给出下列命题: ① 若、,则却“;②若” --,则儿■1 ;③若|」…,则-;④若丿:,则小;;⑤若八】,则川-.其中正确命题的个数是A 「B. 1C. 'D.-D.;3.在平面直角坐标系中,半径为 位置关系是A.相离B.相交的圆的圆心在C.相切「計,则这个圆与■■轴的D.无法确定n7.如图,在 .中,为直径,&为弦,「:为切线,连接厂心◎,贝S f ■-的度数为A. B.C.;D. ioo fl8.如图,点厂在 ■夕卜,分别与 相切于-,两点,•B. 150*C. I9.如图,■是的切线,K 为切点,:的延长线交 •于<■丿,连接A.B. f10. 如图,在矩形“中,以4,…一:分别与 …三点,过点小作'的切线交1于点•'「,切点为、:, 长为相切于 则八「的—.注等于.A.-B.:C.11. 如图,正六边形 …A …:丁内接于 ,若直线「与•相切于点",则与小圆相交,则弦长:二的取值范围是13.如图,」为-的直径,-■■■■切■于点「,过点交••于点",连接.若",贝S■-的度数是■■■ ■.■ - ;_ :,则」等于A. B. C.-12.如图,以点门为圆心的两个同心圆,半径分别为 三和1■,若大圆的弦' R 作U r 于点Is ,A. C.D. 14.如图, ?与 相切于点曲,―的延长线交■于点「连接 ,若LPAB = DB. A.0 > SA. ■■■B.C.-15. 在矩形中,.;-:• ,「:• ——4 ,有一个半径为1的硬币与边.:.? , 相切,硬币从如图所示的位置开始,在矩形内沿着边:「・,「:,「•:滚动到开始的位置为止,硬币自身滚动的圈数大约是.:.A. \圈B.:圈C. 圈D. 4圈16. 在等腰直角三角形小:中,、-■ --1 ,点门为丁的中点,以心为圆心作oo 交-■■于点二,与相切,切点分别为八,止,则C.:,--的半径和me 的度数分别为17. 在平面直角坐标系中,以点「为圆心,]为半径的圆必定•:•A.与-轴相离、与:轴相切B.与■•轴、|轴都相离C.与■轴相切、与■轴相离D.与、轴、;轴都相切18. 已知门的半径一设圆心门到一条直线的距离为圆上到这条直线的距离为"的点的个数为小,给出下列命题:①若J ',则小* i ;②若S则| ;③若「—,则"「;④若"L,则“ -】;⑤若- 1,则":1 . 其中正确命题的个数是A. 1B.-19. 如图,在矩形 心:川中m — 4,以—为直径作半圆",过点.1 作半圆卩的切线交于点切点为I 贝y …的长为、填空题(共10小题)21. ____________________________________ 如图,•「是「的直径,点「在;、的延长线上,宀 与••相切,切点 为门.如果一一:,那么「等于 .22.已知:如图,三个半圆依次相外切,它们的圆心都在■轴的正半轴上并与直线' —■相切,设半圆I 、半圆L 、半圆㈡的半径分别是\ ,A. \20. 如图,半径为-的“内有一点C.D."i,-- ■■ 点屮在。
2.1 直线与圆的位置关系一、选择题(共13小题)1. 已知的半径为,直线上有一点到圆心距离等于,则直线与的位置关系为A. 相交B. 相离C. 相切D. 相交或相切2. 如图,中,,,,,分别是,的中点,则以为直径的圆与的位置关系是A. 相交B. 相切C. 相离D. 无法确定3. 在一个圆中,给出下列命题,其中正确的是A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径4. 如图,矩形的长为,宽为,为矩形中心,的半径为,于,.若绕点顺时针旋转,在旋转过程中,与矩形的边只有一个公共点的情况共出现A. 次B. 次C. 次D. 次5. 如图,中,,,,以点为圆心的圆与相切,则的半径为A. B. C. D.6. 如图,是的直径,是的切线,切点为,与的延长线交于点,,给出下面个结论:①;②;③.其中正确结论的个数是A. B. C. D.7. 如图,的半径是,点是弦延长线上的一点,连接,若,,则弦的长为A. B. C. D.8. 如图所示,的内切圆与两直角边、分别相切于点、,过劣弧(不包括端点、)上任一点作的切线与、分别交于点、,若的半径为,则的周长为A. B. C. D.9. 如图所示,是外一点,是的切线,,,则的周长为A. B. C. D.10. 如图,是的直径,弦于点,直线与相切于点,则下列结论中不一定正确的是A. B.C. D.11. 如图,是的直径,,是上的点,,过点作的切线交的延长线于,则的值为12. 如图,在平面直角坐标系中,点在第一象限,与轴相切于点,与轴交于,两点,则点的坐标是A. B. C. D.13. 以点为圆心,为半径画圆,与坐标轴恰好有三个交点,则应满足A. 或B.C.D.二、填空题(共7小题)14. 如图,,是的切线,,为切点,是的直径,若,则度.15. 在边长为,,的三角形白铁皮上剪下一个最大圆,则此圆的半径为.16. 如图,在中,,,以点为圆心,以为半径作,当时,与相切.17. 如图,,分别切于点,,若,则的大小为度.18. 边长为的正三角形的内切圆半径为.19. 如图,在平面直角坐标系中,直线过点,,的半径为(为坐标原点),点在直线上,过点作的一条切线,为切点,则切线长的最小值为.20. 如图,点,,分别在正三角形的三边上,且也是正三角形,若的边长为,的边长为,则的内切圆半径为.三、解答题(共6小题)21. 的半径为,弦,已知,,求与之间的距离.22. 在中,,,若以为圆心,半径为的圆与相切,则是多少?23. 如图,的直径,点是延长线上的动点,过点作的切线,切点为,连接.若的平分线交于点,你认为∠的大小是否发生变化?若变化,请说明理由;若不变,求出∠的度数.24. 如图,在中,,以为直径的交于点,过点作于点.求证:是的切线.25. 已知:如图,点是正方形中边上的一动点,连接,作交于,再以为圆心作,连接.(1)求证:与相切;(2)求的度数.26. 如图,是的切线,为切点,圆心在上,,为的中点.(1)求证:.(2)试判断四边形的形状,并说明理由.答案1. D2. A 【解析】过点作于点,交于点.,,,分别是,的中点,,,,,以为直径的圆半径为,,以为直径的圆与的位置关系是相交.3. C 【解析】圆心到两条直线的距离都等于圆的半径,两直线有可能垂直;圆心到两条直线的距离都小于圆的半径,两直线与圆可能有个或个交点;两条弦所在直线不平行,两条弦在圆内可能有交点,也可能没交点;两条弦平行,两条弦之间的距离可能等于半径,也可能小于或大于半径.4. B 【解析】如图,与矩形的边只有一个公共点的情况一共出现次.5. B【解析】答案:B6. A 【解析】如图,连接,是的切线,..,.是等边三角形.,..,②成立;,③成立;,,①成立;综上所述,①②③均成立.7. A 【解析】过作于点,连接.,,,,,.8. C 【解析】连接,.是的内切圆,,.、都是的切线,且、是切点,.同理可得.9. C 【解析】如图所示,连接.是的切线,,,,的周长为.10. C11. A12. D 【解析】连接,则.过作于点,则.,,.在中,根据勾股定理求得,点的坐标是.13. A 【解析】如图是圆心为,半径分别为和时的圆与坐标轴有三个交点时的情况.14.15.【解析】由勾股定理的逆定理可得,边长为,,的三角形是直角三角形,其内切圆半径().16.【解析】过点作垂直于于点.,当时,相切.,.17.【解析】提示:连接,,通过,求出的度数,从而求出的度数.【解析】由题意画图:连接,作垂足为,,.,,.19.【解析】连接,.为的切线,..当最小时,有最小值.当时有最小值,此时.【解析】如图,由于,都为正三角形,,,,,.在和中,.同理可证:.,即.设是的内心,作于,于,于,则,,,则.平分,.设,则,根据勾股定理,得,解得.故的内切圆半径为.21. 若弦与的圆心的同侧,易得弦的弦心距离,弦的弦心距为,两条弦之间的距离为;若弦与的圆心的异侧,易得弦的弦心距离,弦的弦心距为,两条弦之间的距离为;综上所述,弦与之间的距离为或.22. 由题意画图,当与相切时,切点为,连接.与相切于点,.,,..23. 解:的大小不发生变化,连接是的切线,是的平分线,在中,即的大小不发生变化.24. 连接.,.,..,.又是半径,切于.25. (1)过点作,垂足为..四边形是正方形,..,,..为的半径,为的半径.,与相切.(2),.四边形是正方形,.是切线.与相切..,,..26. (1)是的切线,,.,,,.(2)四边形为菱形.理由如下:连接交于点.是的中点,垂直平分.在中,,,.四边形为平行四边形.,四边形为菱形.。
1.线性规划例1:设,x y 满足24,1,22,x y x y x y +≥⎧⎪-≥⎨⎪-≤⎩则z x y =+ ( )A .有最小值2,最大值3B .有最小值2,无最大值C .有最大值3,无最小值D .既无最小值,也无最大值例2:若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是________2.点关于直线对称。
例:已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方程为()A .2(2)x ++2(2)y -=1B .2(2)x -+2(2)y +=1C .2(2)x ++2(2)y +=1D .2(2)x -+2(2)y -=1 温馨提示:直线关于直线的对称:转化为点关于直线的对称。
3.直线与圆相离。
例:设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .4.直线与圆线切。
例1:圆心在原点上与直线20x y +-=相切的圆的方程为 。
例2:已知圆C 与两坐标轴都相切,圆心C 到直线y x =-求圆C 的方程.5.直线与圆相交。
例1: 已知过点()3,3--M 的直线l 被圆021422=-++y y x 所截得的弦长为54,求直线l 的方程。
例2:在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,. (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA OB + 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.例2:已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=。
(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?例3:在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (I )求圆C 的方程;(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.解:6.圆与圆例1:圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是( ). A .相离 B .相交 C .外切 D .内切例2:已知圆,0882:221=-+++y x y x C 圆,0244:222=---+y x y x C( ⅰ)判断两圆的位置关系?(ⅱ)若两圆相交,①求过两圆公共弦的直线方程;②求两圆公共弦长。
高二数学培优直线与圆综合一、填空题1.对于直线l 上任意一点),(y x A ,点)3,24(y x y x B ++仍在直线l 上,则直线l 的方程为 .2.若方程0lg 6=++-+m y x y x 表示一条直线,则实数m 的取值范是 .3.直线2:-=x y l ,点)1,1(-A 和点)1,1(B ,在直线l 上的点P ,使得APB ∠最大,则P 点的坐标为 .4.1122(,),(,)M x y N x y 不同两点,直线:0++=l ax by c ,1122ε++=++ax by c ax by c,以下命题中正确的序号为_________。
(1)不论ε为何值时,点N 都不在直线l 上;(2)若ε=1,则直线MN 与直线l 平行;(3)若1ε=-,则直线l 经过MN 的中点;(4)1ε>,则点M 、N 在直线l 的同色且直线l 与线段MN 的延长线相交。
5.(1)22(4cos 32)(3sin 132)t t θθ+-+++的最小值为 。
(2的最小值为 .6.已知长方形的四个顶点)1,0(),1,2(),0,2(),0,0(D C B A ,一质点从AB 的中点0P 沿与AB 夹角为θ的方向射到BC 上的点1P 后,依次反射到AB DA CD ,,上的点432,,P P P .若4P 与0P 重合,则θtan = .7.已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A 、4- B1C、6- D8.(1)已知圆122=+y x 和直线m x y +=2相交于B A ,且OB OA ,与x 轴正方向所成的角是α和β,则=+)sin(βα .(2)直线a y x 1=+与圆a ay x 21222+-=+有公共点),(n m ,且mn t =,则t 的取值范围是二、解答题1.已知圆C :x 2+y 2+2x -3=0.(1)求圆的圆心C 的坐标和半径长;(2)直线l 经过坐标原点且不与y 轴重合,l 与圆C 相交于A (x 1,y 1)、B (x 2,y 2)两点,求证:2111x x +为定值;(3)斜率为1的直线m 与圆C 相交于D 、E 两点,求直线m 的方程,使△CDE 的面积最大.2.已知点G (5,4),圆C 1:(x -1)2+(x -4)2=25,过点G 的动直线l 与圆C 1相交于E 、F 两点,线段EF 的中点为C .(1)求点C 的轨迹C 2的方程;(2)若过点A (1,0)的直线l 1与C 2相交于P 、Q 两点,线段PQ 的中点为M ;又l 1与l 2:x +2y +2=0的交点为N ,求证|AM|•|AN|为定值.3.已知点C (1,0),点A ,B 是⊙O :x2+y2=9上任意两个不同的点,且满足0=⋅,设M 为弦AB 的中点.求点M 的轨迹T 的方程;4.已知平面直角坐标系上一动点(,)P x y 到点(2,0)A -的距离是点P 到点(1,0)B 的距离的2倍。
第四节直线与圆、圆与圆的位置关系【教材回扣】1.直线与圆的位置关系设圆O的半径为r(r>0),圆心到直线l的距离为d,则直线与圆的位置关系可用下表表示:相离相切相交Δ______0Δ______0Δ______0若P(x0,y0)在圆x2+y2=r2(r>0)上,则以P为切点的切线方程为F7______________.3.圆与圆的位置关系设两圆的半径分别为R,r(R>r),两圆圆心间的距离为d,则两圆的位置关系可用下表表示:相离外切相交内切内含____________________________________【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.“k=2”是“直线x+y+k=0与圆x2+y2=2相切”的必要不充分条件.() 2.若直线平分圆的周长,则直线一定过圆心.()3.若两圆相切,则有且只有一条公切线.()4.从两圆的方程中消掉二次项后得到二元一次方程是两圆的公共弦所在的直线方程.()题组二教材改编1.直线l:3x-y-6=0被圆C:x2+y2-2x-4y=0截得的弦AB的长为()A.102B.10C.265D.22652.已知直线4x+3y-35=0与圆心在原点的圆C相切,则圆C的方程为() A.x2+y2=1 B.x2+y2=5C.x2+y2=7 D.x2+y2=493.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0的公共弦的长为________.题组三易错自纠1.若直线l:x-y+m=0与圆C:x2+y2-4x-2y+1=0恒有公共点,则m的取值范围是()A.[-2,2] B.[-22,22]C.[-2-1,2-1] D.[-22-1,22-1]2.(多选题)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是()A.0<m<1 B.-1<m<0C.m<1 D.-3<m<13.已知圆C:x2+y2=9,过点P(3,1)作圆C的切线,则切线方程为________.题型一直线与圆的位置关系的判断[例1](1)直线l:mx-y+1-m=0与圆C:x2+(y-1)2=5的位置关系是()A.相交B.相切C.相离D.不确定(2)若圆x2+y2=r2(r>0)上恒有4个点到直线x-y-2=0的距离为1,则实数r的取值范围是()A.(2+1,+∞) B.(2-1,2+1)C.(0,2-1) D.(0,2+1)[听课记录]类题通法判断直线与圆的位置关系的一般方法1.几何法:圆心到直线的距离与圆半径比较大小,即可判断直线与圆的位置关系.这种方法的特点是计算量较小.2.代数法:将直线方程与圆方程联立方程组,再将二次方程组转化为一元二次方程,该方程解的情况即对应直线与圆的位置关系.这种方法具有一般性,适合于判断直线与圆锥曲线的位置关系.巩固训练1:(1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定(2)若无论实数a取何值时,直线ax+y+a+1=0与圆x2+y2-2x-2y+b=0都相交,则实数b的取值范围为________.题型二圆的切线与弦长问题高频考点角度|圆的切线问题[例2](1)[2020·浙江卷](一题两空)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x-4)2+y2=1均相切,则k=________,b=________.(2)从直线l:x+y=1上一点P向圆C:x2+y2+4x+4y+7=0引切线,则切线长的最小值为________.[听课记录]类题通法1.求过圆上的一点(x0,y0)的切线方程的方法先求切点与圆心连线的斜率k,若k不存在,则结合图形可直接写出切线方程为y=y0;若k=0,则结合图形可直接写出切线方程为x=x0;若k存在且k≠0,则由垂直关系知切线的斜率为-1k,由点斜式可写出切线方程.2.求过圆外一点(x0,y0)的圆的切线方程的2种方法(1)几何法:当斜率存在时,设为k,则切线方程为y-y0=k(x-x0)即kx-y+y0-kx0=0.由圆心到直线的距离等于半径,即可求出k的值,进而写出切线方程.(2)当斜率存在时,设为k,则切线方程y-y0=k(x-x0),即y=kx-kx0+y0,代入圆的方程,得到一个关于x的一元二次方程,由Δ=0,求得k,切线方程即可求出.[提醒]当点(x0,y0)在圆外时,一定要注意斜率不存在的情况.巩固训练2:(1)(多选题)过点P(2,4)引圆(x-1)2+(y-1)2=1的切线,则切线的方程为()A.x=-2 B.x=2C.4x-3y+4=0 D.4x+3y-4=0(2)直线l是圆x2+y2=4在(-1,3)处的切线,点P是圆x2-4x+y2+3=0上的动点,则点P到直线l的距离的最小值等于________.角度|圆的弦长问题[例3](1)(多选题)[2021·山东德州模拟]直线y=kx-1与圆C:(x+3)2+(y-3)2=36相交于A,B两点,则AB的长度可能为()A.6 B.8C.12 D.16(2)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.5 2 B.102C.15 2 D.202(3)[2020·天津卷]已知直线x-3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点,若|AB|=6,则r的值为________.[听课记录]类题通法有关弦长问题的2种求法1.几何法:直线被圆截得的半弦长l2,弦心距d和圆的半径r构成直角三角形,即r2=(l2)2+d2.2.代数法:联立直线方程和圆的方程,消元转化为关于x的一元二次方程,由根与系数的关系即可求得弦长|AB|=1+k2·|x1-x2|=1+k2(x1+x2)2-4x1x2或|AB|=1+1k2·|y1-y2|=1+1k2·(y1+y2)2-4y1y2.巩固训练3:(1)[2020·全国卷Ⅰ]已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1 B.2C.3 D.4(2)(多选题)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A.4x-3y+9=0 B.x=0C.3x+4y-12=0 D.3x+4y+12=0(3)已知圆C:(x-1)2+(y-2)2=2截y轴所得线段与截直线y=2x+b所得线段的长度相等,则b=________.题型三圆与圆的位置关系[例4]已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:(1)m取何值时两圆外切?(2)m取何值时两圆内切,此时公切线方程是什么?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.[听课记录]类题通法(1)判断两圆位置关系的方法常用几何法,即用两圆圆心距与两圆半径和及差的绝对值的大小关系判断,一般不用代数法.重视两圆内切的情况,作图观察.(2)两圆相交时,公共弦所在直线方程的求法两圆的公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.(3)两圆公共弦长的求法求两圆公共弦长,常选其中一圆,由弦心距d,半弦长l2,半径r构成直角三角形,利用勾股定理求解.巩固训练4:(1)已知圆C1:x2+y2+2x+3y+1=0,圆C2:x2+y2+4x-3y-36=0,则圆C1和圆C2的位置关系为()A.相切B.内含C.外离D.相交(2)[2021·山东潍坊模拟]已知圆O:x2+y2=1,圆M:(x-a)2+(y-a+3)2=1.若圆M上存在点P,过点P作圆O的两条切线,切点为A,B,使得∠APB=60°,则实数a的取值范围是________.(3)若圆x2+y2=a2与圆x2+y2+ay-6=0的公共弦长为23,则a=________.[预测1] 核心素养——直观现象 过点P(x 0,y 0)作圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y -1)2=1的切线,切点分别为A ,B.若|PA|=|PB|,则x 20+y 20的最小值为( )A .52B .54C .54 D .5 [预测2] 新题型——多选题已知圆M 与直线x +y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列结论正确的是( )A .圆M 的圆心在定直线x -y -2=0上B .圆M 的面积的最大值为50πC .圆M 的半径的最小值为1D .满足条件的所有圆M 的半径之积为10第四节 直线与圆、圆与圆的位置关系 课前基础巩固[教材回扣]< = > > = <x 0x +y 0y =r 2 d >R +r d =R +r R -r <d <R +r d =R -r 0≤d <R -r [题组练透] 题组一1.× 2.√ 3.× 4.× 题组二1.解析:由已知可知圆C 的圆心为(1,2),半径为5,圆心到直线的距离为d =|3×1-2-6|32+12=102.∴|AB |=2r 2-d 2=252-⎝⎛⎭⎫1022=10. 故选B. 答案:B2.解析:由题意知:圆心到直线4x +3y -35=0的距离d 等于半径r .即d =3542+32=7=r ,故所求圆的方程为x 2+y 2=49. 故选D.答案:D3.解析:联立方程组⎩⎪⎨⎪⎧x 2+y 2-4=0x 2+y 2-4x +4y -12=0, 得x -y +2=0.已知圆x 2+y 2-4=0的圆心(0,0),半径r 为2,且圆心(0,0)到直线x -y +2=0的距离d =22=2, 则公共弦长为2r 2-d 2=24-2=2 2.答案:22 题组三1.解析:已知圆的圆心坐标为(2,1),半径r =2. 则圆心到直线l 的距离为d =|2-1+m |2≤r =2. 解得-22-1≤m ≤22-1. 故选D. 答案:D2.解析:已知圆的圆心坐标为(1,0),半径r =2, 则圆心到直线的距离d =|1+m |2<2,解得-3<m <1,则-3<m <1的一个充分不必要条件是0<m <1或-1<m <0. 故选AB. 答案:AB3.解析:由题意知P 在圆外,当切线斜率不存在时,切线方程为x =3,满足题意;当切线斜率存在时,设斜率为k ,所以切线方程为y -1=k (x -3),即kx -y +1-3k =0,所以|k ×0-0+1-3k |k 2+1=3,解得k =-43,所以切线方程为4x +3y -15=0.综上,切线方程为x =3或4x +3y -15=0.答案:x =3或4x +3y -15=0课堂题型讲解题型一例1 解析:(1)法一 (代数法)由⎩⎪⎨⎪⎧mx -y +1-m =0,x 2+(y -1)2=5,消去y 得(1+m 2)x 2-2m 2x +m 2-5=0. 因为Δ=16m 2+20>0, 所以直线l 与圆相交.法二 (几何法)由题意知,圆心(0,1)到直线l 的距离d =|-m |m 2+1<1<5,故直线l 与圆相交.法三 易得直线l 过定点(1,1).把点(1,1)代入圆的方程有1+0< 5.∴点(1,1)在圆的内部,故直线l 与圆C 相交.(2)计算得圆心到直线l 的距离为22=2>1,如图,直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离2+1.故选A.答案:(1)A (2)A巩固训练1 解析:(1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O到直线ax +by =1的距离d =1a 2+b2<1.所以直线与圆相交.故选B.(2)∵x 2+y 2-2x -2y +b =0表示圆, ∴8-4b >0,即b <2.∵直线ax +y +a +1=0过定点(-1,-1), ∴点(-1,-1)在圆x 2+y 2-2x -2y +b =0的内部, ∴6+b <0,解得b <-6,∴b 的取值范围是(-∞,-6). 答案:(1)B (2)(-∞,-6) 题型二例2 解析:(1)解法一 因为直线y =kx +b (k >0)与圆x 2+y 2=1,圆(x -4)2+y 2=1都相切,所以|b |1+k 2=|4k +b |1+k 2=1,得k =33,b =-233. 解法二 因为直线y =kx +b (k >0)与圆x 2+y 2=1,圆(x -4)2+y 2=1都相切,所以直线y =kx +b 必过两圆心连线的中点(2,0),所以2k +b =0.设直线y =kx +b 的倾斜角为θ,则sin θ=12,又k >0,所以θ=π6,所以k =tan π6=33,b =-2k =-233. (2)如图:圆C :x 2+y 2+4x +4y +7=0的标准方程为:(x +2)2+(y +2)2=1.圆心C (-2,-2),半径r =1.∴圆心到直线l :x +y -1=0的距离|CP |=|-2-2-1|2=522,则切线长的最小值为:|CP |2-|CQ |2=252-1=462.答案:(1)33 -233 (2)462巩固训练2 解析:(1)根据题意,圆(x -1)2+(y -1)2=1的圆心为(1,1),半径r =1.过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,若切线的斜率不存在,此时切线的方程为x =2,符合题意;若切线的斜率存在,设此时切线的斜率为k ,则其方程为y -4=k (x -2),即kx -y -2k +4=0,则有|3-k |k 2+1=1,解得k =43,则切线的方程为4x -3y +4=0.综上可得,切线的方程为x =2或4x -3y +4=0.故选BC.(2)圆x 2+y 2=4在点(-1,3)处的切线为l :-x +3y =4,即l :x -3y +4=0,点P 是圆(x -2)2+y 2=1上的动点,圆心(2,0)到直线l :x -3y +4=0的距离d =|2-0+4|1+3=3,∴点P 到直线l 的距离的最小值等于d -1=3-1=2.答案:(1)BC (2)2例3 解析:(1)圆C 的圆心坐标为(-3,3),半径为6,所以弦长AB 的最大值为圆C 的直径12.又直线y =kx -1过点P (0,-1),当直线CP 与直线y =kx -1垂直时,弦长AB 最短,此时|AB |=262-|CP |2=262-52=211,所以211≤|AB |≤12,故选BC.(2)圆的标准方程为(x -1)2+(y -3)2=10,则圆心(1,3),半径r =10,由题意知AC ⊥BD ,且|AC |=210,|BD |=210-5=25,所以四边形ABCD 的面积为S =12|AC |·|BD |=12×210×25=10 2.故选B.(3)由题意得,圆心(0,0)到直线x -3y +8=0的距离d =82=4,因此r 2=d 2+|AB |22=25,又r >0,∴r =5.答案:(1)BC (2)B (3)5巩固训练3 解析:(1)将圆的方程x 2+y 2-6x =0化为标准方程(x -3)2+y 2=9,设圆心为C ,则C (3,0),半径r =3.设点(1,2)为点A ,过点A (1,2)的直线为l ,因为(1-3)2+22<9,所以点A (1,2)在圆C 的内部,则直线l 与圆C 必相交,设交点分别为B ,D .易知当直线l ⊥AC 时,直线l 被该圆所截得的弦的长度最小,设此时圆心C 到直线l 的距离为d ,则d =|AC |=(3-1)2+(0-2)2=22,所以|BD |min =2r 2-d 2=232-(22)2=2,即弦的长度的最小值为2,故选B.(2)将圆的方程化为标准形式为:(x -1)2+(y -1)2=4,所以圆心为C (1,1),圆的半径r =2,当直线l 的斜率不存在时,直线l 的方程为x =0,圆心到直线l 的距离为d =1,所以|AB |=24-1=23,符合题意;当直线l 的斜率存在时,设直线l 的方程为y =kx +3,易知圆心C (1,1)到直线y =kx +3的距离d =|k -1+3|k 2+1=|k +2|k 2+1,因为d 2+|AB |22=r 2,所以(k +2)2k 2+1+3=4,解得k =-34,所以直线l 的方程为y =-34x +3.即3x +4y -12=0.综上,直线l 的方程为3x +4y -12=0或x =0,故选BC.(3)记圆C 与y 轴的两个交点分别是A ,B ,由圆心C 到y 轴的距离为1,|CA |=|CB |=2可知,圆心C (1,2)到直线2x -y +b =0的距离也等于1才符合题意,于是|2×1-2+b |5=1,解得b =± 5.答案:(1)B (2)BC (3)±5 题型三例4 解析:两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6), 半径分别为11和61-m .(1)当两圆外切时, (5-1)2+(6-3)2 =11+61-m .解得m =25+1011.(2)当两圆内切时,因定圆的半径11小于两圆圆心间距离,故只有61-m -11=5.解得m =25-1011.因为k MN =6-35-1=34,所以两圆公切线的斜率是-43.设切线方程为y =-43x +b ,则有43×1+3-b 432+1=11.解得b =133±5113.容易验证,当b =133+5113,直线与后一圆相交,舍去.故所求公切线方程为y =-43x +133-5311,即4x +3y +511-13=0.(3)两圆的公共弦所在直线的方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0.由圆的半径、弦长、弦心距间的关系,得公共弦的长为 2×(11)2-|4+3×3-23|42+322=27.巩固训练4 解析:(1)圆C 1:x 2+y 2+2x +3y +1=0,即(x +1)2+y +322=94,∴C 1-1,-32,圆C 1的半径r 1=32.圆C 2:x 2+y 2+4x -3y -36=0,即(x +2)2+y -322=1694, ∴C 2-2,32,圆C 2的半径r 2=132.∴两圆的圆心距|C 1C 2|=(-2+1)2+32+322=10.又∵r 1+r 2=32+132=8,r 2-r 1=132-32=5,∴|C 1C 2|=10<r 2-r 1=5,故两圆内含.故选B.(2)由题意易得∠APO =12∠APB =30°,|OP |=|OA |sin ∠APO =1sin 30°=2,∴点P 在以O 为圆心,2为半径的圆上,∴此圆与圆M 有公共点,∴2-1≤|OM |≤2+1,即1≤|OM |2≤9.∵|OM |2=a 2+(a -3)2=2a 2-6a +9,∴1≤2a 2-6a +9≤9,即⎩⎪⎨⎪⎧2a 2-6a +8≥0,2a 2-6a ≤0,解得0≤a ≤3,∴a 的取值范围是[0,3]. (3)两圆作差得公共弦所在直线方程为a 2+ay -6=0.原点到a 2+ay -6=0的距离为d =6a-a .∵公共弦长为2 3.∴a 2=(3)2+6a-a 2,∴a 2=4,a =±2.答案:(1)B (2)[0,3] (3)±2高考命题预测预测1 解析:如图所示,由圆的切线的性质,得|P A |2=|PC 1|2-1,|PB |2=|PC 2|2-1.又|P A |=|PB |,所以|PC 1|=|PC 2|,所以点P 在线段C 1C 2的垂直平分线上.因为C 1C 2的垂直平分线为y =-21(x -1)+12,即y =-2x +52,点P (x 0,y 0)在y =-2x +52上,所以点P 的坐标满足y 0=-2x 0+52,所以x 20+y 20=x 20+-2x 0+522=5(x 0-1)2+54≥54,所以x 20+y 20的最小值为54.故选B. 答案:B预测2 解析:∵圆M 与直线x +y +2=0相切于点A (0,-2),∴直线AM 与直线x +y +2=0垂直,∴直线AM 的斜率为1,则点M 在直线y =x -2,即x -y -2=0上,A 正确;设M (a ,a -2),∴圆M 的半径r =|AM |=a 2+(a -2+2)2=2|a |,∴圆M 被x 轴截得的弦长为2r 2-(a -2)2=2a 2+4a -4=2,解得a =-5或a =1,当a =-5时,圆M 的面积最大,为πr 2=50π,B 正确;当a =1时,圆M 的半径最小,为2,C 错误;满足条件的所有圆M 的半径之积为52×2=10,D 正确.故选ABD.答案:ABD。
直线和圆的方程
1.从原点向圆01422=--+y y x 作两条切线,则这两条切线的夹角的大小为
2.直线01)23(=++-y x 的倾斜角为
3.已知点
θπ
θθθθ时,,当的距离是到直线,(2
0411cos sin )cos 1≤<=+y x 值是 4.圆04022222=-+=-+y y x x y x 和圆的位置关系是 5.直线020=++=++by x m y ax 与直线平行的充要条件是 6.直线x y y x l -==+-关于032:对称的直线方程 7.由曲线42
2
=+=y x x y 与所围成的图形的最小面积是
8.过点),(切于)且与圆,(2105621422B y x y x A =+-++-的圆的方程是 9.直线4)3()1(2322=++-=-y x y x 被圆所截,截得的弦长是
10.以点)3,4(-M 为圆心的圆与直线052=-+y x 相离,则圆M 的半径的取值范围是 11.已知直线l 过点C (1,2)且以点A (-2,-3)、B (3,0)为端点的线段相交,则直线的斜
率的取值范围是 12.过点(1,2),且与坐标轴上截距互为相反数的直线l 的方程是 13.两圆0122201222222222=-++++=-++++b by bx y x a ay ax y x 与的公共弦长的最大值是
14.直线k y x k y x k y x 上,则的交点在圆与2503202222=+=--=--的值是
15.求过的圆的方程轴上截得的弦长等于)两点,且在,()与(
64312x B A
16.已知圆C :04822=-++y x y x 与以原点为圆心的某圆关于b kx y +=直线对称 (1)求b k 、的值 (2)若这时两圆的交点为AOB B A ∠,求、的度数
17.已知圆R a a y a ax y x C ∈=-+---+其中:,0)1(4)12(2222 (1)证明圆C 过定点(2)当a 变化时求圆心的轨迹(3)求面积最小的圆C
18.已知圆a MN x a a A C 2)0)(,0(的长为轴上截得的弦,且在过定点> (1)求圆C 的圆心的轨迹方程 (2)设的方程的最大值及此时圆求
C m
n
n m n AN m AM +==,,
参考答案:
1.选B.提示:化为圆的标准方程1)2(22=-+y x ,圆心(0,2),半径为1,设夹角为α, 则3
,62),2,0(,212
sin
π
απαπαα
==∴∈=
,选B 2.选D. 提示:斜率1323
21tan 0<-=+=
=<αk ,所以 45<α选D
3.选 A.提示:由点到直线的距离公式有
4
1
cos sin 1
cos cos sin 122=
+-⋅+⨯θ
θθθθ,即θθθθ22s i n s i n s i n s i n -=-4
1=
,6,21sin π
θθ==∴即
4.选C. 提示:0222=-+x y x 的圆心为(1,0),半径为1,而0422=-+y y x 圆的圆心(0,2),半径为2,因为圆心距1212,5)20()01(22+<<-=-+-=d d 而,所以两
圆相交
5.选A. 提示:两直线平行,需要:
21,2
11≠=∴≠=bm ab m
b a 且,故选A 6.选C. 提示:关于03)()(2,,=+------=x y x y y x x y 得代替用代替对称就是用 所以选C
7.选D. 提示:第一、第二象限角平分线与圆围成的面积,即4
1
个圆的面积,选D 8.选C. 提示:AB 的垂直平分线方程)5
5
(121-⨯=-
x y ,化简为02=--y x 所求圆的圆心坐标在此直线方程上,代入验证知C 满足 9.选 A. 提示:圆心到直线的距离1)
3(12
)3(312
2
=+--⨯-=
d ,所以弦长为
32)12(222=-
10.选 B.提示:圆与直线相离,那么圆心到直线的距离大于半径r ,即
51
25
3)4(202
2
=+-+-⨯<
<r
11.(]⎪⎭
⎫⎢⎣⎡+∞-∞-,3
5
1, 。
提示:直线AC 的斜率3
5
=AC k ,直线BC 的斜率1-=BC k ,所以直线斜率的取值范围是
(]⎪⎭
⎫
⎢
⎣⎡+∞-∞-,3
51,
12. x y 2=或1+=x y 。
提示(1)过原点的直线方程x y 2=
(2)不过原点时,设直线方程为1,12,=∴+=∴+=b b b x y ,直线方程为1+=x y 13.2.提示:公共弦的最大值即就是小圆的直径,将两圆配为标准方程即得答案 14.1±.提示:联立两直线方程得交点坐标)3,4(k k --代入圆的方程即得1±=k 三、解答题
15.解析:设圆的方程为022=++++F Ey Dx y x ∵圆在x 轴上截得的弦长为6,∴02
=++F Dx x ∴3644)(,,2212212
2
12121=-=-+=-=-=+F D x x x x x x F x x D x x ① 4分
又因圆过点)4,3(),2,1(B A ,∴0241=++++F E D ②
043169=++++F E D ③ 6分
联立①②③解之得27,22,127,2,8=-===-=-=F E D F E D 或 10分 ∴圆的方程为072822=+--+y x y x 或027221222=+-++x x y x 12分
16.解析(1)两个圆的圆心为)0,0(),2,4(-,,圆C 的半径52=r ,圆心直线的斜率为
2
1
0402-=---,所以2=k ,又两圆圆心的中点)1,2(-满足直线方程,得5=b 6分
(2)直线AB 的方程是052=+-y x
设直线AB 的中点D ,则52,55
5===
r CD
001202,60=∠=∠=∠∴DCA ACB DCA 故 12分
17.解析(1)把圆C 的方程化为0)442(4222=+--+-++y x a y y x
令04420422
2=+--=-++y x y y x 且,解之得5
6,520,2=-
===y x y x 或 无论a 取何值圆C 经过两个定点)5
6
,52(),0,2(-
B A 4分 (2)设圆心坐标为),(y x ,则有12,-==a y a x 消去a 得12-=x y ,故当a 变化时,圆
C 的圆心轨迹是012=--y x 8分 (3)由(1)知圆心过定点)5
6
,52(),0,2(-
B A ,当线段AB 是圆
C 的直径时,圆C 的面积最小,其最小
值是ππ5
9
)2(
2==AB
s ,所以圆的方程为59)53()54(22=-+-y x 12分
18.解析:(1)设圆心坐标),(y x C ,则由题意知2
2
22)(y a a y x +=-+
整理得ay x 22=,即圆C 的圆心轨迹方程为ay x 22= 6分 (2)设圆心为),(00y x ,则)0,(),0,(00a x N a x M +-
220220)(,)(a a x n a a x m ++=+-=∴
)2(44202
044022
022ay x a
x a x m n n m m n n m =++=+=+∴
22212)(22244440
20220
2022002
2
2
20≤+
+=++=++=
++=
y a y a a y a y a y a
y a
y a a ay 10分 当且仅当a y =0时取“=”此时a x 2±=,圆的半径a r 2=
m
n
n m +∴
的最大值22,此时圆C 的方程是2222)()2(a a y a x =-++ 或2222)()2(a a y a x =-+- 14分。