初三数学期末考试试卷(2015元旦用卷)
- 格式:doc
- 大小:327.23 KB
- 文档页数:5
2015届九年级上学期期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)在一个不透明的口袋中装有5个完全相同的小球,他们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于3的概率是()A.B.C.D.2.(3分)圆内接四边形ABCD中,若∠A:∠B:∠C=1:2:5,则∠D等于()A.60°B.120°C.140°D.150°3.(3分)关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A.图象的开口向上B.图象的顶点坐标是(﹣1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)4.(3分)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m,拱高为8m,则拱的半径为()A.12m B.8m C.14m D.13m5.(3分)用反证法证明“若⊙O的半径为r,点P到圆心的距离d<r,则点P在⊙O的内部”首先应假设()A.d≤r B.d≥rC.点P在⊙O的外部D.点P在⊙O上或点P在⊙O的外部6.(3分)已知⊙O的直径为13cm,如果直线和圆心的距离为7.5cm,那么直线和圆的公共点的个数为()A.1B.3C.2D.07.(3分)一个圆锥的侧面展开图是一个半圆,则此圆锥母线长与底面半径之比为()A.2:1 B.1:2 C.3:1 D.1:38.(3分)如图,将△ABC绕点C顺时针旋转35°,得△A′B′C,若AC⊥A′B′,则∠BAC=()A.65°B.75°C.55°D.35°二、填空题(共8小题,每小题3分,满分24分)9.(3分)等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为.10.(3分)函数y=(x+1)(3﹣x)取最大值时,x=.11.(3分)如图,已知P A、PB分别切⊙O于A、B,点C在⊙O上,∠BCA=75°,则∠P=.12.(3分)在一个不透明的布袋里放4个白球和m个黄球,它们除颜色不同外,其余均相同,从中随机摸一球.摸到黄球的概率是0.8.则m=.13.(3分)已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是.14.(3分)正△ABC边长是12cm,则它的外接圆半径是cm,边心距是.15.(3分)公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t ﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行m才能停下来.16.(3分)如图,直径AB=6的半圆,绕B点顺时针旋转60°,此时点A就到了点A′,则图中阴影部分的面积是.三、解答题(共10小题,满分102分)17.(8分)解方程:(1)x2﹣2x+2=0(2)t2﹣t+=0.18.(10分)关于x的一元二次方程x2+2x+k﹣1=0的实数根是x1,x2.(1)求k的取值范围;(2)若x1+x2+2x1x2>﹣1且k为整数,求k的值.19.(8分)小军和小明玩一种抽卡片游戏,他们拿了八张扑克牌,将数字为1、2、3、7的四张牌给小军,将数字为4、5、6、8的四张牌给小明,并按如下游戏规则进行:小军和小明各自的四张牌中随机抽出一张,然后将抽出的两张牌数字相加,若和为偶数,小军赢,若和为奇数,则小明赢.(1)请用树状图或列表法求小军获胜的概率.(2)这个游戏公平吗?请说明理由.20.(10分)如图,在⊙O中,AB、CD是直径,CE∥AB且交圆于E,求证:=.21.(10分)某企业2012年总产值是2500万元,总支出为2000万元,经市场调查发现该厂2013年总产值比2012年降低20%,预计2014年的总产值将比2013年提高6%,为了使2014年的销售利润与2012年持平,该厂的总支出平均每年应降低百分之几?(销售利润=总产值﹣总支出)22.(10分)已知抛物线y=ax2+bx+c与y=x2的图象形状相同,开口方向也相同,且顶点坐标为(﹣2,﹣4).(1)求函数解析式;(2)求抛物线与x轴的两个交点A、B(A在B的左侧)及与y轴交点C构成的三角形面积.23.(10分)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)设OE交⊙O于点F,若DF=1,BC=2,求由劣弧BC、线段CE和BE所围成的图形面积S.24.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在x天销售的相关信息如表所示.销售量p(件)p=50﹣x销售单价q(元/件)当1≤x≤20时,q=30+x当21≤x≤40时,q=20+(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x天获得的利润y关于x的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大的利润是多少?25.(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为A.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.26.(12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)在一个不透明的口袋中装有5个完全相同的小球,他们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于3的概率是()A.B.C.D.考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.解答:解:根据题意可得:大于3的有4,5三个球,共5个球,任意摸出1个,摸到大于3的概率是.故选B.点评:本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.2.(3分)圆内接四边形ABCD中,若∠A:∠B:∠C=1:2:5,则∠D等于()A.60°B.120°C.140°D.150°考点:圆内接四边形的性质;多边形内角与外角.分析:由圆内接四边形的对角互补,所以∠A:∠B:∠C:∠D=1:2:5:4,即可求∠D=180°×=120°.解答:解:∵四边形ABCD圆内接四边形,∴∠A:∠B:∠C:∠D=1:2:5:4,∴∠D=180°×=120°.故选B.点评:本题利用了圆内接四边形的性质即圆内接四边形的对角互补求解.3.(3分)关于x的二次函数y=﹣(x﹣1)2+2,下列说法正确的是()A.图象的开口向上B.图象的顶点坐标是(﹣1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)考点:二次函数的性质.分析:二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).解答:解:∵这个函数的顶点是(1,2),∴函数的开口向下,对称轴是x=1,∴在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.故选C.点评:本题主要考查了二次函数的开口方向,对称轴,顶点坐标及增减性.[来源:学科网ZXXK]4.(3分)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m,拱高为8m,则拱的半径为()A.12m B.8m C.14m D.13m考点:垂径定理的应用;勾股定理.分析:将拱形图进行补充,构造直角三角形,利用勾股定理和垂径定理解答.解答:解:拱桥的跨度AB=24m,拱高CD=8m,∴AD=12m,利用勾股定理可得:122=AO2﹣(AO﹣8)2,解得AO=13m.即圆弧半径为13m.故选D.点评:本题考查了垂径定理和勾股定理;这两大定理是在圆有关运算中经常用到的.5.(3分)用反证法证明“若⊙O的半径为r,点P到圆心的距离d<r,则点P在⊙O的内部”首先应假设()A.d≤r B.d≥rC.点P在⊙O的外部D.点P在⊙O上或点P在⊙O的外部考点:反证法.分析:用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.解答:解:命题“若⊙O的半径为r,点P到圆心的距离d大于r则点P在⊙O的外部”的结论为:点P在⊙O的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P在⊙O上或点P在⊙O 内,故选:D.点评:此题主要考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.6.(3分)已知⊙O的直径为13cm,如果直线和圆心的距离为7.5cm,那么直线和圆的公共点的个数为()A.1B.3C.2D.0考点:直线与圆的位置关系.分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.直线和圆有两个公共点,则直线和圆相交;直线和圆有唯一一个公共点,则直线和圆相切;直线和圆没有公共点,则直线和圆相离.解答:解:根据题意,可知圆的半径为6.5cm.因为圆心到直线l的距离为7.5cm,所以直线和圆是相离的关系,[来源:学*科*网]所以有0个交点,故选D.点评:主要考查了直线与圆的位置关系与数量之间的联系以及直线和圆的位置关系的概念.7.(3分)一个圆锥的侧面展开图是一个半圆,则此圆锥母线长与底面半径之比为()A.2:1 B.1:2 C.3:1 D.1:3考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开扇形的周长等于圆锥的底面周长,分别设出圆锥的母线长和圆锥的底面半径,利用上述关系得到关系式求出两者的比值即可.解答:解:设圆锥的母线长为R,底面半径为r,∵圆锥的侧面展开图是一个半圆,∴圆锥的侧面展开扇形的弧长为:πR,∵圆锥的侧面展开扇形的周长等于圆锥的底面周长,∵πR=2πr,∴R:r=2:1,故选A.点评:本题考查了圆锥的计算,解题的关键是根据圆锥的侧面展开扇形的弧长等于圆锥的底面周长列出有关母线长和底面半径之间的关系式.8.(3分)如图,将△ABC绕点C顺时针旋转35°,得△A′B′C,若AC⊥A′B′,则∠BAC=()A.65°B.75°C.55°D.35°考点:旋转的性质.专题:计算题.分析:根据旋转的性质得∠ACA′=35°,∠A=∠A′,再利用垂直的定义得到∠A′+∠ACA′=90°,则可计算出∠A′=55°,所以∠A=55°.解答:解:∵△ABC绕点C顺时针旋转35°,得△A′B′C,∴∠ACA′=35°,∠A=∠A′,∵AC⊥A′B′,∴∠A′+∠ACA′=90°,∴∠A′=90°﹣35°=55°,∴∠A=55°.故选C.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.二、填空题(共8小题,每小题3分,满分24分)9.(3分)等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为10.考点:等腰三角形的性质;解一元二次方程-因式分解法.专题:压轴题.分析:由等腰三角形的底和腰是方程x2﹣6x+8=0的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当2是等腰三角形的腰时与当4是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.解答:解:∵x2﹣6x+8=0,∴(x﹣2)(x﹣4)=0,解得:x=2或x=4,∵等腰三角形的底和腰是方程x2﹣6x+8=0的两根,∴当2是等腰三角形的腰时,2+2=4,不能组成三角形,舍去;当4是等腰三角形的腰时,2+4>4,则这个三角形的周长为2+4+4=10.∴这个三角形的周长为10.故答案为:10.点评:此题考查了等腰三角形的性质,一元二次方程的解法.解题的关键是注意分类讨论你思想的应用.10.(3分)函数y=(x+1)(3﹣x)取最大值时,x=1.考点:二次函数的最值.分析:把函数解析式整理成顶点式形式,然后根据二次函数的最值问题解答即可.解答:解:∵y=(x+1)(3﹣x)=﹣x2+2x+3,=﹣(x﹣1)2+4,∴当x=1时,函数取最大值.故答案为:1.点评:本题考查了二次函数的最值问题,是基础题,把函数解析式整理成顶点式形式是解题的关键.11.(3分)如图,已知P A、PB分别切⊙O于A、B,点C在⊙O上,∠BCA=75°,则∠P=30°.考点:切线的性质.分析:首先连接OA,OB,由P A、PB分别切⊙O于A、B,可得OA⊥P A,OB⊥PB,又由点C在⊙O上,∠BCA=75°,可求得∠AOB的度数,继而求得答案.解答:解:连接OA,OB,∵P A、PB分别切⊙O于A、B,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∵∠AOB=2∠BCA=2×75°=150°,∴∠P=360°﹣∠AOB﹣∠OAP﹣∠OBP=30°.故答案为:30°.点评:此题考查了切线的性质以及圆周角定理.此题比较简单,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(3分)在一个不透明的布袋里放4个白球和m个黄球,它们除颜色不同外,其余均相同,从中随机摸一球.摸到黄球的概率是0.8.则m=16.考点:概率公式.分析:由在一个不透明的布袋里放4个白球和m个黄球,它们除颜色不同外,其余均相同,从中随机摸一球.摸到黄球的概率是0.8,可得=0.8,继而求得答案.解答:解:∵在一个不透明的布袋里放4个白球和m个黄球,它们除颜色不同外,其余均相同,从中随机摸一球.摸到黄球的概率是0.8.∴=0.8,解得:m=16,经检验,m=16是原分式方程的解.故答案为:16.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是1.考点:三角形的内切圆与内心;勾股定理的逆定理.分析:根据勾股定理的逆定理求出△ACB是直角三角形,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,根据S△ACB=S△AOC+S△AOB+S△BOC代入即可求出答案.解答:解:∵a=3,b=4,c=5,∴a2+b2=c2,∴∠ACB=90°,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,∵S△ACB=S△AOC+S△AOB+S△BOC,∴×AC×BC=×AC×0E+×AB×OF+×BC×OD,∴3×4=4R+5R+3R,解得:R=1.故答案为:1.点评:本题考查了勾股定理的逆定理,三角形的面积,三角形的内切圆等知识点的应用,解此题的关键是能得出关于R的方程,题目比较典型,难度适中.14.(3分)正△ABC边长是12cm,则它的外接圆半径是4cm,边心距是2cm.考点:正多边形和圆.分析:根据题意画出图形,过点O作OD⊥BC于点D,则BD=BC=6cm,∠OBD=30°,再根据直角三角形的性质求出OD及OB的长即可.解答:解:如图所示,过点O作OD⊥BC于点D,∵△ABC是边长为12cm的等边三角形,∴BD=BC=6cm,∠OBD=30°,∴OB===4,OD=OB=2.故答案为:4,2cm.点评:本题考查的是正多边形和圆,根据题意画出图形,利用数形结合求解是解答此题的关键.15.(3分)公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t ﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行20m才能停下来.考点:二次函数的应用.分析:由题意得,此题实际是求从开始刹车到停止所走的路程,即S的最大值.把抛物线解析式化成顶点式后,即可解答.解答:解:依题意:该函数关系式化简为S=﹣5(t﹣2)2+20,当t=2时,汽车停下来,滑行了20m.故惯性汽车要滑行20米.点评:本题涉及二次函数的实际应用,难度中等.16.(3分)如图,直径AB=6的半圆,绕B点顺时针旋转60°,此时点A就到了点A′,则图中阴影部分的面积是6π.考点:扇形面积的计算;旋转的性质.分析:由旋转的性质可得半圆A′B和和半圆AB的面积相等,所以阴影部分的面积和为扇形A′BA的面积,计算扇形A′BA的面积即可得到答案.解答:解:∵半圆,绕B点顺时针旋转60°,∴把阴影部分的半圆旋转到空白处,则阴影部分恰好为扇形A′BA,∵AB=6,∠ABA′=60°,∴S阴影=S扇形A′BA==6π,故答案为:6π.点评:本题主要考查扇形面积的计算,由旋转得出阴影部分的面积等于扇形A′BA的面积是解题的关键.三、解答题(共10小题,满分102分)17.(8分)解方程:(1)x2﹣2x+2=0(2)t2﹣t+=0.考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)先分解因式,再开方,即可得出一元一次方程,求出方程的解即可;(2)先去分母,再分解因式,即可得出一元一次方程,求出方程的解即可.解答:解:(1)分解因式得:(x﹣)2=0,x﹣=0,x1=x2=;(2)去分母得:t2﹣4t+3=0,(t﹣3)(t﹣1)=0,t﹣3=0,t﹣1=0,t1=3,t2=1.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.18.(10分)关于x的一元二次方程x2+2x+k﹣1=0的实数根是x1,x2.(1)求k的取值范围;(2)若x1+x2+2x1x2>﹣1且k为整数,求k的值.考点:根的判别式;根与系数的关系.分析:(1)由方程有两个实数根,则其判别式大于或等于0可得到关于k的不等式,可求得k的取值范围;(2)利用根与系数的关系表示出题目中的条件,结合(1)可求得k的取值范围,可求得k 的值.解答:解:(1)∵方程有两个实数根,∴b2﹣4ac≥0,即22﹣4(k﹣1)≥0,解得k≤2;(2)由根与系数的关系可知:x1+x2=﹣2,x1x2=k﹣1,∵x1+x2+2x1x2>﹣1,∴﹣2+2(k﹣1)>﹣1,∴k>,由(1)知k≤2,∴<k≤2,∵k是整数,∴k=2.点评:本题主要考查一元二次方程根的判别式及根与系数的关系,掌握一元二次方程有两个不相等的实数根⇔△>0、有两个相等的实数根⇔△=0和无实数根⇔△<0是解题的关键.19.(8分)小军和小明玩一种抽卡片游戏,他们拿了八张扑克牌,将数字为1、2、3、7的四张牌给小军,将数字为4、5、6、8的四张牌给小明,并按如下游戏规则进行:小军和小明各自的四张牌中随机抽出一张,然后将抽出的两张牌数字相加,若和为偶数,小军赢,若和为奇数,则小明赢.(1)请用树状图或列表法求小军获胜的概率.(2)这个游戏公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与和为偶数的情况,再利用概率公式即可求得答案;(2)首先求得小军赢与小明赢的概率,比较概率的大小,即可知这个游戏是否公平.解答:解:(1)画树状图得:[来源:学科网ZXXK]∵共有16种等可能的结果,和为偶数的有6种情况,∴小军获胜的概率为:=.[来源:学|科|网Z|X|X|K](2)不公平.∴P(小军赢)=,P(小明赢)=1﹣=,∴P(小军赢)≠P(小明赢),∴这个游戏不公平.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.(10分)如图,在⊙O中,AB、CD是直径,CE∥AB且交圆于E,求证:=.考点:圆心角、弧、弦的关系.专题:证明题.分析:首先连接OE,由CE∥AB,可证得∠DOB=∠C,∠BOE=∠E,然后由OC=OE,可得∠C=∠E,继而证得∠DOB=∠BOE,则可证得:=.解答:证明:连接OE,∵CE∥AB,∴∠DOB=∠C,∠BOE=∠E,∵OC=OE,∴∠C=∠E,∴∠DOB=∠BOE,∴=.[来源:学。
2015初三年级数学期末考试卷距离期末考试越来越近了,一学期即将结束,各位同学们都进入了紧张的复习阶段,对于初三数学的复习,在背诵一些课本知识点的同时还需要做一些练习题,一起来看一下这篇初三年级数学期末考试卷吧! 一、选择题(每题3分,共30分.每小题有四个选项,其中只有一个选项是正确的,将正确选项的字母填入下表相应的题号下面.) 1.下列图形中,既是中心对称又是轴对称的图形是( ) A. B. C. D. 2.若使二次根式在实数范围内有意义,则的取值范围是( ) A. B. C. D. 3.下列说法中正确的是( ) A.打开电视,正在播放《新闻联播》”是必然事件; B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖; C.想了解台州市城镇居民人均年收入水平,宜采用抽样调查. D.我市未来三天内肯定下雪; 4.若,则的值等于( ) A. B. C. 或2 D.0或 5.若关于x的一元二次方程的两个根为x =1,x =2,则这个方程是( ) A.x +3x+2=0 B.x -3x+2=0 C.x -2x+3=0 D.x +3x-2=0 6.将方程化为的形式,则,的值分别是( ) (A) 和(B) 和(C) 和(D) 和 7..如图,⊙O中,ABDC是圆内接四边形,∠BOC=110度,则∠BDC的度数是( ) A.110度B.70度C.55度D.125度 8.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那幺这个圆锥的高为( ) A.6cm B. cm C.8cm D. cm 9.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有到的点数,则两个骰子向上的一面的点数和为的概率为( ) A. B. C. D. 10.如图,将半径为8的⊙O沿AB折叠,弧AB恰好经过与AB垂直的半径OC的中点D,则折痕AB长为( ) A. B. C.8 D.10 二、填空题(每小题3分,共30分,请把答案填在横线上.) 11. 在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1), 则a = _____,b = ______ . 12. __________. 13.布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是. 14.若最简二次根式与是同类二次根式,则ab = __________________. 15.关于的方程有两个相等的实数根,那幺. 16.已知两圆的半径分别是2和3,圆心距为d,若这两个圆有公共点,则d的取值范围 是。
九年级期末质量监测一、选择题(本题有12小题,每小题4分,共48分)每小题只有一个答案是准确,请将准确答案的代号填入下面的表格里1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2) 4.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内B .圆上C .圆外D .都有可能 5.用配方法解方程2420x x -+=,下列配方准确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2y x =-- D. 23(1)2y x =-+8.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中准确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127C . 127(1+x%)2=173D .173(1-x%)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21B.51 C. 31 D.3210.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π11.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和1012.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中准确结论有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共分24分)13.二次函数2)1(2+-=x y 的最小值是 .14.已知关于x 方程x 2-3x +m =0的一个根是1,则它的另一个根是______.15.如图,A 、B 、C 为⊙O 上三点,且∠OAB=55°,则∠ACB 的度数是_______度.16.⊙O 的直径为10,弦AB=6,P 是弦AB 上一动点,则OP 的取值范围是 . 17.现有6张正面分别标有数字—1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 .18.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=22,则图中阴影部分的面积等于 . 三、解答题:19.解方程:02632=--x xBO AC15题图18题图20题图OPCBA20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点都在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后得到对应的111A B C △, 画出111A B C △,并写出1C 的坐标;(2)以原点O 为对称中心,再画出ABC △关于原点O 对称的222A B C △,并写出点2C 的坐标.21.先化简,再求值:)211(1222x x xx x ++÷--,其中3-=x22.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,PBA C ∠=∠. 求证:PB 是O ⊙的切线;23.已知点A (3,3)在抛物线21433y x x =-+的图象上,设点A 关于抛物线对称轴对称的点为B .(1)求点B 的坐标; (2)求AOB ∠度数.24.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件. (1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.25.如图,抛物线y=-x 2+bx+c 与x 轴交于A (2,0),B (-4,0)两点. (1) 求该抛物线的解析式;(2) 若抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3) 在抛物线的第二象限图像上是否存在一点P ,使得△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存,请说明理由.备用图九年级期末质量监测数 学 试 卷参考答案一、选择题(本题有12小题,每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案AABCDBCDDCAB二、填空题(本题有6小题,每小题4分,共分24分)13、2 14、x=2 15、35 16、54≤≤OP 17、2118、424—三、解答题:(本大题共2个小题,每小题7分,共14分) 19、解: 3224366⨯+±=x -----------------------------3分61526±=3151±=----------------------------------7分 20、(1)图略,C 1(4, 4)------------------------------3分 (2)图略,C 2(-4,1)------------------------------7分四、解答题:(本大题共个4小题,每小题10分,共40分)21、解:原式=xx x x x x x 212)1()1)(1(2++÷--+-----------------3分=2)1(2)1()1)(1(+⋅--+x xx x x x --------------------5分=12+x ----------------------------------8分当3-=x 时,原式=—1------------------------10分22、(1) 20 ,图略----------------------------------2分(2) 126 ---------------------------------------4分(3)树状图或列表法略 ----------------------------8分21=p ------------------------------------10分 23、解:(1)设每件衬衫应降价x 元,由题意得:(50-x )(40+2x)=2400 解得:x 1=10 ,x 2=20因为尽量减少库存,x 1=10舍去答:每件衬衫应降价20元。
2015一如16学年第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.—2、0、2、-3这四个数中最小数的是1]A.2B.0C.—2D.—32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为【】A.30.1父108B,3.01父108C,3.01父109D.0.301^10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是【】A.x—6=*B,x—6=4C,x+6=4D,x+6=M4.设a=2j3—1,a在两个相邻整数之间,则这两个整数是1]A.1和2B.2和3C.3和4D.4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/I互余的角有几个A.2个B.3个C.4个D.5个第5题图第7题图第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是1】A.99.60,99.60B,99.60,99.70C.99.60,98.80D,99.70,99.607.如图为抛物线y=ax2+bx+c的图像,A、RC为抛物线与坐标轴的交点,且OAOG1,则下列关系中正确的是1]A.ac<0B.a—b=1C.a+b=—1D.b>2a8.如图,过DABCM对角线BD上一点M分别作平行四边形两边的平行线EF与GH那么图中的口AEMGJ面积&与口HCFM勺面积S2的大小关系是【】A.s1s2B.S1:二S2C.S1=S2D.2s l=颔9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的1]A.6B.8C.10D.12为E,设DP=x,AE=y,则能反映y与X之间函数关系的大致图象是第10题图10.如图,在矩形ABCD43,AB=3,BC=4,点P在BC边上运动,连结DP过点A作AHDP垂足A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(_3)2的平方根是。
一中初2015级14—15学年度上期期末考试 数 学 试 题 2015.01(本试题共26小题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答. 2.作答前认真阅读答题卡上的注意事项.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将你认为正确的答案代号填 在答题卡表格中对应的位置.1.在4-,0,2-,1这四个数中,最小的数是( )A.4-B.2-C.0D.12.计算()234x -的结果是( )A.616x - B.516x C.64x - D.616x 3.如图,直线AB //CD ,直线EF 分别交直线AB 、CD 于 点E 、F ,EG 平分∠AEF 交CD 于点G ,若∠1=36°, 则∠2的大小是( )A.72°B.67°C.70°D.68° 4.在函数1-=x y 中,自变量x 的取值围是( )A.1>xB.1≠xC.1≤xD.1≥x 5.若点A (2-,m )在正比例函数x y 21-=的图像上,则m 的值是( ) A.41 B.41- C.1 D.1- 6.如图,AB 与⊙O 相切于点A ,AC 为⊙O 的直径,点D 在圆上,且满足∠BAD =40°,则 ∠ACD 的大小是( )A.50°B.45°C.40°D.42°7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,点E 为AB 中点,连 接OE ,则OE 的长是( ) A.5 B.512 C.4 D.25 7题图 6题图3题图xy12题图① ② ③8.一中初三年级某班10名同学的一次体考成绩如下表,则下列说法错误的是( )A.这10名同学的平均成绩为45.5B.这10名同学成绩的中位数是45C.这10名同学成绩的众数为50D.这10名同学成绩的极差为2 9.分式方程0112=--x x 的解是( ) A.2-=x B.2=x C.32=x D.1=x 10.上周周末,小江进行了一次“惊心动魄”的自行车之旅,小江匀速行驶一段路程后,发 现了一处“世外桃源”,便停车享受美景,当小江准备拿手机拍照留影时,发现手机掉 了,于是小江沿原路原速返回,在路途中幸运地找到了手机(停车捡手机的时间忽略不 计),再掉头沿原计划路线以比原速大的速度行驶,则小江离出发点的距离s 与时间t 的 函数关系的大致图象是( )11. 如图,下列一束束“鲜花”都是由一定数量形状相同且边长为1的菱形按照一定规律组 成,其中第①个图形含边长为1的菱形3个,第②个图形含边长为1的菱形6个,第③ 个图形含边长为1的菱形10个,... ...,按此规律,则第⑦个图形中含边长为1的菱形的 个数为( )A.36B.38C.34D.28 12.如图,∆ABC 是等腰直角三角形,∠ACB=90°,点A 在 反比例函数xy 4-=的图像上,点B 、C 都在反比例函数 x y 2-=的图像上,AB //x 轴,则点A 的坐标为( )A.(32,332-)B.(3,334-) C.(334,3-) D.(332,32-) 二、填空题 (本大题6个小题,每小题4分,共24分)在每小题中,请将你认为正确的答成绩(分) 39 42 44 45 4850 人数 1 2 1 2 13A B C D案填在答题卡相应位置的横线上. 13.实数2015-的相反数是 .14.新年第一天,我市大约有13000名市民涌上仙女山、金、巫溪红池坝的滑雪场玩雪. 将13000这个数字用科学记数法表示是 .15.如图,在□ABCD 中,点E 是AD 的中点,连接CE 、BD 相交于点F ,则∆DEF 的周长 与∆BCF 的周长之比=∆∆F DEF :BC C C .16.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AO =AD =2,以A 为圆心,AO 为半径作弧,则图中阴影部分的面积为 . 17.从-1,0,1,2,3这五个数中,随机抽取一个数记为m ,则使关于x 的不等式组122x mx m+⎧⎨-⎩≤≤有解,并且使函数()2212+++-=m mx x m y 与x 轴有交点的概率为 .18.如图,在ABC ∆中,2AB =3AC ,AD 为∆BAC 的角平分线,点H 在线段AC 上,且CH=2AH ,E 为BC 延长线上的一点,连接EH 并延长交AD 于点G ,使EG=ED ,过点E 作 EF ⊥AD 于点F ,则FG AG := . 三、解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:() 45tan 22731221322--⎪⎭⎫ ⎝⎛-+-⨯-+--π20.今年四月份将举行体考,一中为了解初三学生目前体育训练成果,于1月16日举行了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根 据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计 图.(1)请补全条形统计图;(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示,请用画树状图或列表的方法求出所选同学是一男一女的概率.四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算 过程或推理步骤,请将解答书写在答题卡中对应的位置上.16题图 成绩扇形统计图成绩条形统计图 15题图 18题图l21.先化简,再求值:34433922+++÷⎪⎭⎫ ⎝⎛-+++x x x x x x ,其中x 是方程374=+x 的解.22.如图,在笔直的公路l 上有一检查站A ,在观测点B 的南偏西53°方向,且与观测点B 的距离为7.5千米.一辆自行车从位于点B 南偏西 76°方向的点C 处,沿公路自西向东行驶, 2小时后到达检查站A .(1)求观测点B 与公路l 的距离;(2)求自行车行驶的平均速度. (参考数据:252476sin ≈,25676cos ≈ ,476tan ≈ ,5453s ≈ in ,5353cos ≈ ,3453tan ≈)23.一中后勤部门每年都要更新一定数量的书桌和椅子.已知2012年采购的书桌价格为 120元/,椅子价格为40元/,总支出费用34000元;2013年采购的书桌价格上涨为 130元/,椅子价格保持不变,且采购的书桌和椅子的数量与2012年分别相同,总支出 费用比2012年多2000元.(1)求2012年采购的书桌和椅子分别是多少?(2)与2012年相比,2014年书桌的价格上涨了%a (其中500<<a ),椅子的价格上涨了%10,但采购的书桌的数量减少了%21a ,椅子的数量减少了50,且2014 年学校桌子和椅子的总支出费用为34720元,求a 的值.24. 如图,在□ABCD 中,CE ⊥AD 于点E ,且CB=CE ,点F 为CD 边上的一点,CB=CF,连接BF 交CE 于点G.(1)若60=∠D ,CF =32,求C G 的长; (2)求证:AB=ED+CG五、解答题:(本大题2个小题,每小题各12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.如图,抛物线223y x x=--与x轴交于A、B两点(点A在点B的左边),与y轴交于C点,点D是抛物线的顶点. (1)求B、C、D三点的坐标;(2)连接BC,BD,CD,若点P为抛物线上一动点,设点P的横坐标为m,当PBC BCDS S∆∆=时,求m的值(点P不与点D重合);(3) 连接AC,将∆AOC沿x轴正方向平移,设移动距离为a,当点A和点B重合时,停止运动,设运动过程中∆AOC与∆OBC 重叠部分的面积为S,请直接写出S与a之间的函数关系式,并写出相应自变量a的取值围.26.如图(1),抛物线)0(52≠++=abxaxy与x轴交于A、B两点,与y轴交于点C,直线AC的解析式为5+=xy,抛物线的对称轴与x轴交于点E,点D(2-,3-)在对称轴上.(1)求此抛物线的解析式;(2)如图(1),若点M是线段OE上一点(点M不与点O、E重合),过点M作MN⊥x轴,交抛物线于点N,记点N关于抛物线对称轴的对称点为点F,点P是线段MN上一点,且满足MN=4MP,连接FN、FP,作QP⊥PF交x轴于点Q,且满足PF=PQ,求点Q的坐标;(3)如图(2),过点B作BK⊥x轴交直线AC于点K,连接DK、AD,点H是DK的中点,点G是线段AK上任意一点,将∆DGH沿GH边翻折得GHD'∆,求当KG为何值时,GHD'∆与KGH∆重叠部分的面积是∆DGK面积的41.备用图备用图。
2015九年级上期末数学考试试题及答案一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A. 1个 B. 2个 C. 3个 D. 4个2.(3分)(2010•南宁)下列计算结果正确的是()A.+ = B. 3 ﹣=3 C.× = D.=53.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3B. 3 C.﹣3 D.都不对6.(3分)下列方程中,有实数根的是()A. x2+4=0 B. x2+x+3=0 C.D. 5x2+1=2x7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A. y=(x+3)2+2 B. y=(x﹣3)2﹣2 C. y=(x﹣6)2﹣2 D. y=(x﹣3)2+28.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035 B. x(x﹣1)=1035×2 C. x(x﹣1)=1035 D. 2x(x+1)=10359.(3分)(2012•淄博)如图,⊙O的半径为2,弦AB= ,点C在弦AB上,AC= AB,则OC的长为()A.B.C.D.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.内切C.相交D.相离11.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48π B.24π C.12π D.6π12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2012•临沂)计算:4 ﹣= _________ .14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= _________ .15.(4分)(2012•苏州二模)方程x(x﹣1)=x的根是_________ .16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= _________ .17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为_________ ;若∠P=40°,则∠DOE=_________ .18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为_________ .三、解答题(本题共7个小题,满分60分)19.(5分)计算:.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.23.(8分)(2008•山西)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.24.(12分)(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为_________ ,周长为_________ .(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_________ ,周长为_________ .(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为_________ .(4)在图3情况下,若AD=1,求出重叠部分图形的周长.参考答案与试题解析一.选择题(本题12小题,每小题3分,共计36分.请把答案填到题后的答题栏内)1.(3分)在,,,,中最简二次根式的个数是()A. 1个 B. 2个 C. 3个 D. 4个考点:最简二次根式.2448894分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:因为= ,=2 ,= ,所以符合条件的最简二次根式为,,共2个.故选:B.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.(3分)(2010•南宁)下列计算结果正确的是()A.+ = B. 3 ﹣=3 C.× = D.=5考点:二次根式的混合运算.2448894分析:按照二次根式的运算法则进行计算即可.解答:解:A、和不是同类二次根式,不能合并,故A错误;B、3 ﹣=(3﹣1)=2 ,故B错误;C、× = = ,故C正确;D、,故D错误;故选C.点评:此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.3.(3分)(2013•呼和浩特)观察下列图形,既是轴对称图形又是中心对称图形的有()A. 1个 B. 2个 C. 3个 D. 4个考点:中心对称图形;轴对称图形.2448894分析:根据轴对称图形与中心对称图形的概念求解.解答:解:第一个图形不是轴对称图形,是中心对称图形,故本选项错误;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;所以,既是轴对称图形又是中心对称图形共有3个.故选C.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形考点:旋转的性质;正方形的性质.2448894分析:根据旋转的性质知,△ABE≌△CBF,则BE=BF,所以△BEF为等腰直角三角形.解答:解:∵把△ABE绕点B旋转到△CBF,∴△ABE≌△CBF,∴BE=BF,∵∠ABC=90°,∴△BEF为等腰直角三角形.故选:D.点评:此题主要考查了旋转的性,根据已知得出旋转角以及对应边是解题关键.5.(3分)如果关于x的方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3B. 3 C.﹣3 D.都不对考点:一元二次方程的定义.2448894分析:本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.解答:解:由一元二次方程的定义可知,解得m=﹣3.故选C.点评:要特别注意二次项系数m﹣3≠0这一条件,当m﹣3=0时,上面的方程就是一元一次方程了.6.(3分)下列方程中,有实数根的是()A. x2+4=0 B. x2+x+3=0 C.D. 5x2+1=2x考点:根的判别式.2448894专题:计算题.分析:先把D中的方程化为一般式,再计算四个方程的判别式的值,然后根据判别式的意义判断.解答:解:A、△=0﹣4×4<0,方程没有实数根,所以A选项错误;B、△=1﹣4×3<0,方程没有实数根,所以B选项错误;C、△=(﹣)2﹣4×2×(﹣1)>0,方程有两个不相等的实数根,所以C选项正确;D、5x2﹣2x+1=0,△=4﹣4×5×1<0,方程没有实数根,所以D选项错误.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.(3分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A. y=(x+3)2+2 B. y=(x﹣3)2﹣2 C. y=(x﹣6)2﹣2 D. y=(x﹣3)2+2考点:二次函数的三种形式.2448894专题:计算题;配方法.分析:由于二次项系数是1,利用配方法直接加上一次项系数一半的平方来凑完全平方式,可把一般式转化为顶点式.解答:解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选D.点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).8.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035 B. x(x﹣1)=1035×2 C. x(x﹣1)=1035 D. 2x(x+1)=1035考点:由实际问题抽象出一元二次方程.2448894专题:其他问题.分析:如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解答:解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选C.点评:本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.9.(3分)(2012•淄博)如图,⊙O的半径为2,弦AB= ,点C在弦AB上,AC= AB,则OC的长为()A.B.C.D.考点:垂径定理;勾股定理.2448894分析:首先过点O作OD⊥AB于点D,由垂径定理,即可求得AD,BD的长,然后由勾股定理,可求得OD的长,然后在Rt△OCD中,利用勾股定理即可求得OC的长.解答:解:过点O作OD⊥AB于点D,∵弦AB=2 ,∴AD=BD= AB= ,AC= AB= ,∴CD=AD﹣AC= ,∵⊙O的半径为2,即OB=2,∴在Rt△OBD中,OD= =1,在Rt△OCD中,OC= = .故选D.点评:此题考查了垂径定理与勾股定理的应用.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)已知⊙01和⊙O2的半径分别为2和5,且圆心距O1O2=7,则这两圆的位置关系是()A.外切B.内切C.相交D.相离考点:圆与圆的位置关系.2448894分析:由⊙O1与⊙O2的半径分别为2、5,且圆心距O1O2=7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为2和5,且圆心距O1O2=7,又∵2+5=7,∴两圆的位置关系是外切.故选A.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.11.(3分)(2010•杭州)如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为()A.48π B.24π C.12π D.6π考点:相切两圆的性质.2448894分析:由图可知,四个小圆的直径和等于大圆直径,4个小圆大小相等,故小圆直径为12÷4=3,根据周长公式求解.解答:解:大圆周长为12π,四个小圆周长和为4×(12÷4)π=12π,5个圆的周长的和为12π+12π=24π.故选B.点评:本题主要考查相切两圆的性质,解题的关键是熟记圆周长的计算公式:直径×π.12.(3分)PA、PB分别切⊙O于A、B两点,C为⊙O上一动点(点C不与A、B重合),∠APB=50°,则∠ACB=()A.100°B.115°C.65°或115°D.65°考点:切线的性质.2448894分析:画出图形,连接OA、OB,则OA⊥AP,OB⊥PB,求出∠AOB,继而分类讨论,可得出∠AC'B及∠ACB的度数.解答:解:连接OA、OB,∵PA、PB分别切⊙O于A、B两点,∴OA⊥AP,OB⊥PB,①当点C在优弧AB上时,∠AOB=180°﹣∠APB=130°,∴∠AC'B=65°;②当点C在劣弧AB上时,∠ACB=180°﹣∠AC'B=135°.综上可得:∠ACB=65°或115°.故选C.点评:本题考查了切线的性质,需要用到的知识点为:①圆的切线垂直于经过切点的半径,②圆周角定理,③圆内接四边形的对角互补.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2012•临沂)计算:4 ﹣= 0 .考点:二次根式的加减法.2448894专题:计算题.分析:先将二次根式化为最简,然后合并同类二次根式即可.解答:解:原式=4× ﹣2 =0.故答案为:0.点评:此题考查了二次根式的加减运算,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.14.(4分)点A(3,n)关于原点对称的点的坐标为(﹣3,2),那么n= ﹣2 .考点:关于原点对称的点的坐标.2448894分析:根据两点关于原点的对称,横纵坐标符号相反,即可得出n的值.解答:解:∵A(3,n)关于原点对称的点的坐标为(﹣3,2),∴n=﹣2,故答案为:﹣2.点评:本题主要考查了平面直角坐标系内关于原点对称的点的特点,关键是把握坐标变化规律.15.(4分)(2012•苏州二模)方程x(x﹣1)=x的根是x1=0,x2=2 .考点:解一元二次方程-因式分解法.2448894分析:先将原方程整理为一般形式,然后利用因式分解法解方程.解答:解:由原方程,得x2﹣2x=0,∴x(x﹣2)=0,∴x﹣2=0或x=0,解得x1=2,x2=0.故答案为:x1=2,x2=0.点评:本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(4分)已知一元二次方程(m+2)x2+7mx+m2﹣4=0有一个根为0,则m= 2 .考点:一元二次方程的解;一元二次方程的定义.2448894分析:根据条件,把x=0代入原方程可求m的值,注意二次项系数m+2≠0.解答:解:依题意,当x=0时,原方程为m2﹣4=0,解得m1=﹣2,m2=2,∵二次项系数m+2≠0,即m≠﹣2,∴m=2.故本题答案为:2.点评:本题考查了一元二次方程解的定义.方程的解是使方程左右两边成立的未知数的值.17.(4分)如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为16cm ;若∠P=40°,则∠DOE=70°.考点:切线长定理.2448894分析:根据切线长定理,可得DC=DA,EC=EB,继而可将△PCD的周长转化为PA+PB,连接OA、OB、OD、OE、OC,则可求出∠AOB的度数,从而可得∠DOE的度数.解答:解:∵PA、PB、DE是⊙O的切线,∴DA=DC,EC=EB,∴△PDE的周长=PD+DC+EC+PE=PA+PB=2PA=16cm.连接OA、OB、OD、OE、OC,则∠AOB=180°﹣∠P=140°,∴∠DOE=∠COD+∠COE= (∠BOC+∠AOC)= ∠BOC=70°.故答案为:16cm、70°.点评:此题考查了切线长定理及切线的性质,难度适中,注意掌握数形结合思想的应用.18.(4分)(2013•大港区一模)如图,一块含有30°角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为20πcm.考点:弧长的计算;旋转的性质.2448894分析:顶点A从开始到结束所经过的路径是一段弧长是以点C为圆心,AC为半径,旋转的角度是180﹣60=120°,所以根据弧长公式可得.解答:解:=20πcm.故答案为20πcm.点评:本题考查了弧长的计算以及旋转的性质,解本题的关键是弄准弧长的半径和圆心角的度数.三、解答题(本题共7个小题,满分60分)19.(5分)计算:.考点:二次根式的混合运算.2448894专题:计算题.分析:先根据二次根式的乘除法法则得到原式= ﹣+2 ,然后利用二次根式的性质化简后合并即可.解答:解:原式= ﹣+2=4﹣+2=4+ .点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后进行二次根式的加减运算.20.(10分)解下列方程.(1)x2+4x﹣5=0;(2)x(2x+3)=4x+6.考点:解一元二次方程-因式分解法.2448894分析:(1)分解因式,即可得出两个一元一次方程,求出方程的解即可.(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:(1)分解因式得:(x+5)(x﹣1)=0,x+5=0,x﹣1=0,x1=﹣5,x2=1;(2)移项得:x(2x+3)﹣2(2x+3)=0,(2x+3)(x﹣2)=0,2x+3=0,x﹣2=0,x1=﹣,x2=2.点评:本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.21.(5分)△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90°,画出旋转后的△A2B2C2,并写出A2的坐标.考点:作图-旋转变换.2448894专题:作图题.分析:根据网格结构找出点A、B、C绕点C顺时针旋转90°后的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标.解答:解:△A2B2C2如图所示;点A2(8,3).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(10分)(2011•天津)已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.(I)如图①,若⊙O的直径为8,AB=10,求OA的长(结果保留根号);(II)如图②,连接CD、CE,若四边形ODCE为菱形,求的值.考点:切线的性质;含30度角的直角三角形;勾股定理;菱形的性质.2448894专题:几何综合题.分析:(1)连接OC,根据切线的性质得出OC⊥AB,再由勾股定理求得OA即可;(2)根据菱形的性质,求得OD=CD,则△ODC为等边三角形,可得出∠A=30°,即可求得的值.解答:解:(1)如图①,连接OC,则OC=4,∵AB与⊙O相切于点C,∴OC⊥AB,∴在△OAB中,由AO=OB,AB=10,得AC= AB=5.在Rt△AOC中,由勾股定理得OA= = = ;(2)如图②,连接OC,则OC=OD,∵四边形ODCE为菱形,∴OD=CD,∴△ODC为等边三角形,有∠AOC=60°.由(1)知,∠OCA=90°,∴∠A=30°,∴OC= OA,∴ = .点评:本题考查了切线的性质和勾股定理以及直角三角形、菱形的性质,是一道综合题,要熟练掌握.23.(8分)(2008•山西)如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.考点:切线的判定;圆周角定理.2448894专题:证明题.分析:要证GE是⊙O的切线,只要证明∠OEG=90°即可.解答:证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG= AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OEG=∠ODG=90°,故GE是⊙O的切线;(证法二)连接OE,OG,∵AG=GD,CO=OD,∴OG∥AC,∴∠1=∠2,∠3=∠4.∵OC=OE,∴∠2=∠4,∴∠1=∠3.又OE=OD,OG=OG,∴△OEG≌△ODG,∴∠OEG=∠ODG=90°,∴GE是⊙O的切线.点评:本题考查切线的判定方法及圆周角定理运用.24.(12分)(2012•乐山)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.考点:一元二次方程的应用.2448894专题:增长率问题;压轴题.分析:(1)设出平均每次下调的百分率,根据从5元下调到3.2列出一元二次方程求解即可;(2)根据优惠方案分别求得两种方案的费用后比较即可得到结果.解答:解(1)设平均每次下调的百分率为x.由题意,得5(1﹣x)2=3.2.解这个方程,得x1=0.2,x2=1.8.因为降价的百分率不可能大于1,所以x2=1.8不符合题意,符合题目要求的是x1=0.2=20%.答:平均每次下调的百分率是20%.(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元),方案二所需费用为:3.2×5000﹣200×5=15000(元).∵14400<15000,∴小华选择方案一购买更优惠.点评:本题考查了一元二次方程的应用,在解决有关增长率的问题时,注意其固定的等量关系.25.(10分)一位同学拿了两块45°三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.(1)如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为 4 ,周长为4+4 .(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为 4 ,周长为8 .(3)如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为 4 .(4)在图3情况下,若AD=1,求出重叠部分图形的周长.考点:旋转的性质;全等三角形的判定与性质;勾股定理;等腰直角三角形;三角形中位线定理.2448894分析:(1)根据AC=BC=4,∠ACB=90°,得出AB的值,再根据M是AB的中点,得出AM=MC,求出重叠部分的面积,再根据AM,MC,AC的值即可求出周长;(2)易得重叠部分是正方形,边长为AC,面积为AC2,周长为2AC.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E.求得Rt△MHD≌Rt△MEG,则阴影部分的面积等于正方形CEMH的面积.(4)先过点M作ME⊥BC于点E,MH⊥AC于点H,根据∠DMH=∠EMH,MH=ME,得出Rt△DHM≌Rt△EMG,从而得出HD=GE,CE=AD,最后根据AD和DF的值,算出DM= ,即可得出答案.解答:解:(1)∵AC=BC=4,∠ACB=90°,∴AB= = =4 ,∵M是AB的中点,∴AM=2 ,∵∠ACM=45°,∴AM=MC,∴重叠部分的面积是=4,∴周长为:AM+MC+AC=2 +2 +4=4+4 ;故答案为:4,4+4 ;(2)∵叠部分是正方形,∴边长为×4=2,面积为×4×4=4,周长为2×4=8.故答案为:4,8.(3)过点M分别作AC、BC的垂线MH、ME,垂足为H、E,∵M是△ABC斜边AB的中点,AC=BC=4,∴MH= BC,ME= AC,∴MH=ME,又∵∠N MK=∠HME=90°,∴∠NMH+∠HMK=90°,∠EMG+∠HMK=90°,∴∠HMD=∠EMG,在△MHD和△MEG中,∵,∴△MHD≌△MEG(ASA),∴阴影部分的面积等于正方形CEMH的面积,∵正方形CEMH的面积是ME•MH= ×4× ×4=4;∴阴影部分的面积是4;故答案为:4.(4)如图所示:过点M作ME⊥BC于点E,MH⊥AC于点H,∴四边形MECH是矩形,∴MH=CE,∵∠A=45°,∴∠AMH=45°,∴AH=MH,∴AH=CE,在Rt△DH M和Rt△GEM中,,∴Rt△DHM≌Rt△GEM.∴GE=DH,∴AH﹣DH=CE﹣GE,∴CG=AD,∵AD=1,∴DH=1.∴DM= =∴四边形DMGC的周长为:CE+CD+DM+ME=AD+CD+2DM=4+2 .点评:此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.======*以上是由明师教育编辑整理======。
2015九年级(上)期末数学试卷一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有一项是符合题目要求的,请把每小题的答案填题后的在括号中)1.下列各组二次根式中是同类二次根式的是()A.B.C.D.2.下列运算正确的是()A.3﹣2=1 B.=C.2=2D.÷3=3.关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A.2 B.﹣2 C.2或﹣2 D. 14.若关于x的一元二次方程mx2﹣2x+1=0无实数根,则一次函数y=(m﹣1)x﹣m图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离7.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B. 4 C.2D.28.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30° B.45° C.60° D.90°9.下列事件属于随机事件的有()①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.A.② B.②④ C.②③ D.①④10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)11.使有意义,则x的取值范围是.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是.13.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为.14.直径分别为4和8的两圆相切,那么两圆的圆心距为.15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=.16.如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.17.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是cm2.18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有个.三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)19.计算(1);(2).20.解下列方程(1)x2+2x﹣3=0(2)x(2x﹣5)=2x﹣5.21.如图,利用关于原点对称的点的坐标特点,画出△ABC关于原点O对称的△A1B1C1,并写出点A1、B1、C1的坐标.22.已知电流在一定时间内正常通过电子元件的概率为0.5,分别求在一定时间内A、B之间电流通过的概率.(要求:解答分两步:第一步用列举法写出各种可能的结果;第二步,求A、B之间电流通过的概率.)23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°,BC=,求⊙O的半径.24.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.25.在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?26.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.参考答案与试题解析一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出四个选项中,只有一项是符合题目要求的,请把每小题的答案填题后的在括号中)1.下列各组二次根式中是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:化简各选项后根据同类二次根式的定义判断.解答:解:A、=2与被开方数不同,故不是同类二次根式,故A选项错误;B、与被开方数不同,故不是同类二次根式,故B选项错误;C、与被开方数相同,是同类二次根式,故C选项正确;D、与被开方数不同,故不是同类二次根式,故D选项错误.故选:C.点评:本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.下列运算正确的是()A.3﹣2=1 B.=C.2=2D.÷3=考点:二次根式的混合运算.专题:计算题.分析:根据合并同类二次根式对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法对D进行判断.解答:解:A、3﹣2=,所以A选项错误;B、与不能合并,所以B选项错误;C、2×2=4,所以C选项错误;D、÷3=3÷3=,所以D选项正确.故选D.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.3.关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A.2 B.﹣2 C.2或﹣2 D. 1考点:一元二次方程的解;一元二次方程的定义.分析:把x=0代入已知方程,列出关于m的新方程,通过解新方程可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,∴m2﹣4=0且m﹣2≠0,解得,m=﹣2.故选:B.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.解题时,注意一元二次方程的二次项系数一定不能等于零.4.若关于x的一元二次方程mx2﹣2x+1=0无实数根,则一次函数y=(m﹣1)x﹣m图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:根的判别式;一次函数图象与系数的关系.专题:计算题.分析:根据判别式的意义得到m≠0且△=(﹣2)2﹣4m<0,解得m>1,然后根据一次函数的性质可得到一次函数y=(m﹣1)x﹣m图象经过第一、三象限,且与y轴的交点在x 轴下方.解答:解:根据题意得m≠0且△=(﹣2)2﹣4m<0,解得m>1,∵m﹣1>0,﹣m<0,∴一次函数y=(m﹣1)x﹣m图象经过第一、三、四象限.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.5.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、既是轴对称图形,不是中心对称图形,故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.已知线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,则⊙A和⊙B的位置关系()A.内含B.相交C.外切D.外离考点:圆与圆的位置关系.分析:针对两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.解答:解:依题意,线段AB=7cm,现以点A为圆心,2cm为半径画⊙A;再以点B为圆心,3cm为半径画⊙B,∴R+r=3+2=5,d=7,所以两圆外离.故选D.点评:此题主要考查了圆与圆的位置关系,圆与圆的位置关系与数量关系间的联系.此类题为中考热点,需重点掌握.7.如图,△ABC中,∠B=90°,∠C=30°,AB=1,将△ABC绕顶点A旋转180°,点C落在C′处,则CC′的长为()A.4B. 4 C.2D.2考点:解直角三角形;旋转的性质.专题:计算题.分析:因为在△ABC中,∠B=90°,∠C=30°,AB=1,由此得到AC=2,又根据旋转可以推出AC′=AC,即可求出CC′.解答:解:∵在△ABC中,∠B=90°,∠C=30°,AB=1,∴AC=2.∵将△ABC绕顶点A旋转180°,点C落在C′处,AC′=AC=2,∴CC′=4.故选B.点评:此题主要考查学生对旋转的性质及综合解直角三角形的运用能力.8.如图,AB是半圆O的直径,∠BAC=60°,D是半圆上任意一点,那么∠D的度数是()A.30° B.45° C.60° D.90°考点:圆周角定理;等边三角形的判定与性质.分析:首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角即可求得∠D的度数.解答:解:连接BC,∵AB是半圆的直径∴∠ACB=90°∵∠BAC=60°,∴∠ABC=90°﹣∠BAC=30°,∴∠D=∠ABC=30°.故选A.点评:本题题考查了圆周角定理此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.9.下列事件属于随机事件的有()①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰;②经过城市中某有交通信号灯的路口,遇到红灯;③今年春节会下雪;④5,4,9的三根木条组成三角形.A.② B.②④ C.②③ D.①④考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,对各小题分析判断即可得解.解答:解:①当室外温度低于﹣10℃时,将一碗清水放在室外会结冰,是必然事件;②经过城市中某有交通信号灯的路口,遇到红灯,是随机事件;③今年春节会下雪,是随机事件;④5,4,9的三根木条组成三角形,是不可能事件,所以,属于随机事件的是②③.故选C.点评:本题考查了随机事件,关键在于正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A.B.C.D.考点:列表法与树状图法.分析:先用列举法求出两张纸片的所有组合情况,再根据概率公式解答.解答:解:任取两张纸片,能拼成“小房子”(如图2)的概率等于,即.故选D.点评:用到的知识点为:概率=所求情况数与总情况数之比.二、填空题(本大题共8小题,每小题3分,共24分)11.使有意义,则x的取值范围是x≥﹣且x≠0.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式求解即可.解答:解:根据题意得,3x+2≥0且x≠0,解得x≥﹣且x≠0.故答案为:x≥﹣且x≠0.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是正十边形.考点:多边形内角与外角.专题:应用题.分析:外角等于与它不相邻的内角的四分之一可知该多边形内角为144°,外角36°,根据正多边形外角和=360°,利用360÷36即可解决问题.解答:解:∵一个正多边形它的一个外角等于与它相邻的内角的,∴它的每一个外角=180÷5=36°,∴它的边数=360÷36=10.故答案为正十边形.点评:本题主要考查了多边形的外角和等于360度,难度适中.13.已知代数式x2﹣4x﹣2的值为3,则代数式2x2﹣8x﹣5的值为5.考点:代数式求值.专题:计算题.分析:根据题意求出x2﹣4x的值,原式前两项提取2变形后,将x2﹣4x的值代入计算即可求出值.解答:解:∵x2﹣4x﹣2=3,即x2﹣4x=5,∴原式=2(x2﹣4x)﹣5=10﹣5=5.故答案为:5.点评:此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.14.直径分别为4和8的两圆相切,那么两圆的圆心距为2或6.考点:圆与圆的位置关系.分析:两圆相切,则两圆外切或内切.当两圆外切时,圆心距等于两圆半径之和;当两圆内切时,圆心距等于两圆半径之差.解答:解:当两圆外切时,则圆心距等于4÷2+8÷2=6;当两圆内切时,则圆心距等于8÷2﹣4÷2=2.故答案为:2或6.点评:此题考查了两圆的位置关系与数量之间的联系.注意:两圆相切,则两圆内切或外切.15.如图,把△ABC绕点C顺时针旋转25°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A=65°.考点:旋转的性质.专题:计算题.分析:根据旋转的性质对应点与旋转中心的连线段的夹角等于旋转角得到∠ACA′=25°,而∠A′DC=90°,则∠A′=90°﹣25°=65°,然后再根据旋转的性质即可得到∠A=65°.解答:解:∵△ABC绕点C顺时针旋转25°,得到△A′B′C,∴∠ACA′=25°,又∵∠A′DC=90°,∴∠A′=90°﹣25°=65°,∴∠A=65°.故答案为65°.点评:本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应边相等,对应点与旋转中心的连线段的夹角等于旋转角.16.如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.考点:概率公式.专题:跨学科.分析:根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.解答:解:P(灯泡发光)=.故本题答案为:.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.17.用一张半径为24cm的扇形纸片做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm,那么这张扇形纸片的面积是240πcm2.考点:圆锥的计算.专题:压轴题;数形结合.分析:易得圆锥的底面周长,利用侧面积公式可得扇形纸片的面积.解答:解:∵圆锥的底面周长为20π,∴扇形纸片的面积=×20π×24=240πcm2.故答案为240π.点评:考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开图的弧长;圆锥的侧面积=LR.18.一个口袋里有25个球,其中红球、黑球、黄球若干个,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有15个.考点:利用频率估计概率.分析:先求出试验200次摸到黄球的频率,再乘以总球的个数即可.解答:解:∵口袋里有25个球,试验200次,其中有120次摸到黄球,∴摸到黄球的频率为:=,∴袋中的黄球有25×=15个.故估计袋中的黄球有15个.点评:用到的知识点为:部分的具体数目=总体数目×相应频率.三.解答题(本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程)19.计算(1);(2).考点:二次根式的混合运算.专题:计算题.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根二次根式的乘除法则进行计算.解答:解:(1)原式=2+﹣2=;(2)原式=2×××=.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.20.解下列方程(1)x2+2x﹣3=0(2)x(2x﹣5)=2x﹣5.考点:解一元二次方程-因式分解法.专题:计算题.分析:(1)利用因式分解法解方程;(2)先移项得到x(2x﹣5)﹣(2x﹣5)=0,再利用因式分解法解方程.解答:解:(1)(x﹣1)(x+3)=0,x﹣1=0或x+3=0,所以x1=1,x2=﹣3;(2)x(2x﹣5)﹣(2x﹣5)=0,(2x﹣5)(x﹣1)=0,2x﹣5=0或x﹣1=0,所以x1=,x2=1.点评:本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21.如图,利用关于原点对称的点的坐标特点,画出△ABC关于原点O对称的△A1B1C1,并写出点A1、B1、C1的坐标.考点:作图-旋转变换.专题:作图题.分析:根据平面直角坐标系找出点A、B、C关于原点对称的A1、B1、C1的位置,然后顺次连接即可,再根据关于原点对称的点的横坐标与纵坐标写出A1、B1、C1的坐标.解答:解:△A1B1C1如图所示;A1(3,﹣2),B1(2,1),C1(﹣2,﹣3).点评:本题考查了利用旋转变换作图,根据平面直角坐标系准确找出对应点的位置是解题的关键.22.已知电流在一定时间内正常通过电子元件的概率为0.5,分别求在一定时间内A、B之间电流通过的概率.(要求:解答分两步:第一步用列举法写出各种可能的结果;第二步,求A、B之间电流通过的概率.)考点:列表法与树状图法.专题:计算题.分析:画树状图得出所有等可能的情况数,找出通电的情况,即可求出所求概率.解答:解:画树状图,如图所示:,得出所有等可能的情况有4种,其中通电的占3种,则P(通电)=.点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2)当∠ODB=30°,BC=,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:证明题.分析:(1)根据垂径定理得到弧CD=弧AD,然后根据圆周角定理得∠CBD=∠DBA;(2)由于∠OBD=∠ODB=30°,则∠ABC=60°,再根据半圆(或直径)所对的圆周角是直角得到∠ACB=90°,然后根据含30度的直角三角形三边的关系.可得到直径AB的长,则即可得到圆的半径.解答:(1)证明:∵OD⊥AC,∴弧CD=弧AD,∴∠CBD=∠DBA,∴BD平分∠ABC;(2)解:∵OD=OB,∴∠OBD=∠ODB=30°,∴∠ABC=60°,∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠A=30°,BC=,∴AB=2BC=2,∴⊙O的半径为.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和含30度的直角三角形三边的关系.24.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.考点:一元二次方程的应用.分析:根据可以砌50m长的墙的材料,即总长度是50米,AB=x米,则BC=(50﹣2x)米,再根据矩形的面积公式列方程,解一元二次方程即可.解答:解:设AB=x米,则BC=(50﹣2x)米.根据题意可得,x(50﹣2x)=300,解得:x1=10,x2=15,当x=10,BC=50﹣10﹣10=30>25,故x1=10(不合题意舍去),当x=15时,BC=50﹣2×15=20(米).答:可以围成AB的长为15米,BC为20米的矩形.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙MN最长可利用25m,舍掉不符合题意的数据.25.在4张完全相同的卡片正面分别写上数字1,2,3,3,现将它们的背面朝上洗均匀.(1)随机抽出一张卡片,求抽到数字“3”的概率;(2)若随机抽出一张卡片记下数字后放回并洗均匀,再随机抽出一张卡片,求两次都是抽到数字“3”的概率;(要求画树状图或列表求解)(3)如果再增加若干张写有数字“3”的同样卡片,洗均匀后,使得随机抽出一张卡片是数字“3”的概率为,问增加了多少张卡片?考点:列表法与树状图法;概率公式.分析:(1)由有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次都是抽到数字“3”的情况,再利用概率公式求解即可求得答案;(3)首先设增加了x张卡片,即可得方程:=,解此方程即可求得答案.解答:解:(1)∵有4张完全相同的卡片正面分别写上数字1,2,3,3,抽到数字“3”的有2种情况,∴随机抽出一张卡片,抽到数字“3”的概率为:=;(2)列表得:第二张第一张1 2 3 31 (1,1)(1,2)(1,3)(1,3)2 (2,1)(2,2)(2,3)(2,3)3 (3,1)(3,2)(3,3)(3,3)3 (3,1)(3,2)(3,3)(3,3)∵共有16种等可能的结果,两次都是抽到数字“3”的有4种情况,∴P(两次都是抽到数字“3”)==;(3)设增加了x张卡片,则有:=,解得:x=4,∴增加了4张卡片.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.26.如图,点P在y轴上,⊙P交x轴于A、B两点,连结BP并延长交⊙P于C,过点C 的直线y=2x+b交x轴于D,且⊙P的半径为,AB=4.(1)求点B、P、C的坐标;(2)求证:CD是⊙P的切线.考点:切线的判定;一次函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)连结AC,由于BC是圆P的直径,那么∠CAB=90°.解Rt△ABC,得出AC==2,由垂径定理得出OB=OA=2,根据三角形中位线定理得出OP=AC=1,从而求出点B、P、C的坐标;(2)将C(﹣2,2)代入y=2x+b,利用待定系数法求出过点C的直线解析式为y=2x+6,得到D(﹣3,0),AD=1.再利用SAS证明△ADC≌△OPB,得出∠DCA=∠B,然后证明∠BCD=90°,根据切线的判定定理证明CD是⊙P的切线.解答:(1)解:连结AC.∵BC是⊙P的直径,∴∠CAB=90°.在Rt△ABC中,∵∠CAB=90°,BC=2,AB=4,∴AC==2,∵OP⊥AB,∴OB=OA=2,∴OP=AC=1,∴P(0,1),B(2,0),C(﹣2,2);(2)证明:将C(﹣2,2)代入y=2x+b,得﹣4+b=2,解得b=6∴y=2x+6,当y=0时,则x=﹣3,∴D(﹣3,0),∴AD=1.在△ADC和△OPB中,,∴△ADC≌△OPB(SAS),∴∠DCA=∠B.∵∠B+∠ACB=90°,∴∠DCA+∠ACB=90°,即∠BCD=90°,∴CD是⊙P的切线.点评:本题考查了切线的判定,垂径定理,勾股定理,全等三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.。
2015届九年级上学期期末数学试卷一、选择题:每小题2分,共16分.四个选项中只有一项是正确的.1.(2分)如图,所给三视图的几何体是()A.球B.圆柱C.圆锥D.三棱锥2.(2分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣2x﹣6=0 B.x2﹣4x+4=0 C.3x2+2x+1=0 D.x2+3x+6=03.(2分)根据下面表格中列出来的数据,你猜想方程x2+2x﹣100=0有一个根大约是()x9.03 9.04 9.05 9.06 9.07x2+2x﹣100 ﹣0.400 ﹣0.198 0.003 0.203 0.405A.9.025 B.9.035 C.9.045 D.9.0554.(2分)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短5.(2分)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.B.C.D.6.(2分)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.557.(2分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=的图象经过点C,则这个反比例函数的表达式为()A.y=﹣B.y=﹣C.y=D.y=8.(2分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题:每小题2分,共16分.9.(2分)方程x2=5x的根是.10.(2分)正比例函数y=6x的图象与反比例函数y=的图象的交点在象限.11.(2分)若==≠0,且a+3c﹣2b=16,则b=.[来源:学#科#网]12.(2分)收入倍增计划是2012年11月中国共产党第十八次全国代表大会报告中提出的.“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人均收入为4万元,到2020年该地城乡居民人均收入达到8万元.设每五年的平均增长率为a%,则可列方程为.13.(2分)如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.14.(2分)如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为.15.(2分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为.16.(2分)已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.要在这张纸板中剪取正方形.如图1所示的剪法称为第1次剪取,记所得正方形面积为s1;按照图1的剪法,在余下的△ADE和△BDF中,分别剪取两个全等的正方形,称为第2次剪取,并记这两个正方形面积之和为s2(如图2);再在余下的四个三角形中,用同样的方法分别剪去正方形,得到四个全等的正方形,成为第3次剪取,并记这四个正方形面积之和为S3(如图3);继续剪取下去…;则第n此剪取时,S n=.三、解答题:每题7分,共14分.17.(7分)解方程:x2+2x﹣5=0.18.(7分)如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.四、解答题:每题8分,共16分.19.(8分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.20.(8分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?五、解答题:每题9分,共18分.21.(9分)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求y与x之间的函数关系式;并写出自变量x的取值范围;(2)若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?22.(9分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=位于第一象限的图象上,OA=1,OC=6.(1)求反比例函数的表达式;(2)求正方形ADEF的边长;(3)根据图象直接写出直线BE对应的一次函数的函数值大于反比例函数y=的值时,自变量x的取值范围.六、解答题:每题10分,佛纳甘20分.23.(10分)如图1,在正方形ABCD中,E是BC边上的动点(点E不与端点B、C重合),以AE为边,在直线BC的上方作矩形AEFG.使顶点G恰好落在射线CD上,过点F作FH⊥BC,交BC的延长线于点H.(1)求证:①矩形AEFG是正方形;②BE=HC;(2)若题设中动点E在BC的延长线上,其他条件不变,请在图2中补全图形,猜想(1)中的两个结论是否成立,请直接写出结论,不需要证明.24.(10分)如图,在△ABC中,AD是∠BAC的平分线,AD的垂直平分线EF交CB的延长线于点F,交AD于点E,交AC于点M.[来源:学§科§网Z§X§X§K](1)△ACF与△BAF相似吗?请说明理由;(2)如果AF=6,BD=2,AC=4,求DC和AM的长.参考答案与试题解析一、选择题:每小题2分,共16分.四个选项中只有一项是正确的.[来源:学科网] 1.(2分)如图,所给三视图的几何体是()A.球B.圆柱C.圆锥D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:C.点评:本题考查了由三视图判断几何体的知识,解题的关键是了解主视图和左视图的大致轮廓为长方形的几何体为锥体.2.(2分)下列一元二次方程中,有两个不相等实数根的是()A.x2﹣2x﹣6=0 B.x2﹣4x+4=0 C.3x2+2x+1=0 D.x2+3x+6=0考点:根的判别式.分析:判断上述四个方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:A、∵△=b2﹣4ac=(﹣2)2﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,故本选项正确;B、∵△=b2﹣4ac=(﹣4)2﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=b2﹣4ac=22﹣4×3×1=﹣8<0,∴方程没有实数根,故本选项错误;D、∵△=b2﹣4ac=32﹣4×1×6=﹣15<0,∴方程没有实数根,故本选项错误;故选A.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.(2分)根据下面表格中列出来的数据,你猜想方程x2+2x﹣100=0有一个根大约是()x9.03 9.04 9.05 9.06 9.07x2+2x﹣100 ﹣0.400 ﹣0.198 0.003 0.203 0.405A.9.025 B.9.035 C.9.045 D.9.055考点:估算一元二次方程的近似解.专题:计算题.分析:根据函数y=x2+2x﹣100的图象与x轴的交点的横坐标就是方程x2+2x﹣100=0的根来解决此题.解答:解:方程x2+2x﹣100=0的一个根就是函数y=x2+2x﹣100的图象与x轴的一个交点,即关于函数y=x2+2x﹣100,y=0时x的值,由表格可得:当x的值是9.05时,函数值y与0最接近.因而方程的解介于9.04与9.05之间,故选C.点评:本题考查了估算一元二次方程的近似解,属于基础题,掌握函数y=ax2+bx+c的图象与x轴的交点与方程ax2+bx+c=0的根的关系是解决此题的关键所在.4.(2分)如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短考点:中心投影.分析:根据中心投影的特点:等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.进行判断即可.解答:解:因为小亮由A处走到B处这一过程中离光源是由远到近再到远的过程,所以他在地上的影子先变短后变长.故选C.点评:本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长;②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.5.(2分)随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为()A.B.C.D.考点:列表法与树状图法.分析:先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.解答:解:随机掷一枚均匀的硬币两次,落地后情况如下:至少有一次正面朝上的概率是,故选D.点评:本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(2分)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55考点:用样本估计总体.分析:小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.解答:解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.点评:本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.7.(2分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y=的图象经过点C,则这个反比例函数的表达式为()A.y=﹣B.y=﹣C.y=D.y=考点:反比例函数图象上点的坐标特征;菱形的性质.专题:计算题.分析:根据菱形的性质得到OD=OB=2,CD=AC=3,CD⊥y轴,再利用k的几何意义得到|k|=×2×3,然后去绝对值即可得到满足条件的k的值,从而得到反比例函数解析式.解答:解:∵菱形OABC的顶点O是原点,∴AC与OB互相垂直平分,∴OD=OB=2,CD=AC=3,CD⊥y轴,∴|k|=×2×3,而k<0,∴k=﹣6,∴反比例函数解析式为y=﹣.故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了菱形的性质.8.(2分)如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.专题:压轴题;动点型.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠P AD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选:B.点评:本题考查了动点问题函数图象,主要利用了相似三角形的判定与性质,难点在于根据点P的位置分两种情况讨论.二、填空题:每小题2分,共16分.9.(2分)方程x2=5x的根是x1=0,x2=5.考点:解一元二次方程-因式分解法.专题:计算题.分析:先把方程变形为x2﹣5x=0,把方程左边因式分解得x(x﹣5)=0,则有x=0或x﹣5=0,然后解一元一次方程即可.解答:解:x2﹣5x=0,∴x(x﹣5)=0,∴x=0或x﹣5=0,∴x1=0,x2=5.故答案为x1=0,x2=5.点评:本题考查了利用因式分解法解一元二次方程:先把方程变形为一元二次方程的一般形式,然后把方程左边因式分解,这样就把方程转化为两个一元一次方程,再解一元一次方程即可.10.(2分)正比例函数y=6x的图象与反比例函数y=的图象的交点在一、三象限.考点:反比例函数与一次函数的交点问题.分析:根据两函数解析式可知两函数的图象在一、三象限,故可知其交点也在第一、三象限.解答:解:∵y=6x,y=,∴正比例函数和反比例函数图象过一、三象限,∴两函数图象的交点在一、三象限,故答案为:一、三.点评:本题主要考查函数图象,掌握正比例函数和反比例函数当比例系数大于0时图象过一、三象限,小于0时过二四象限是解题的关键.11.(2分)若==≠0,且a+3c﹣2b=16,则b=10.考点:比例的性质.分析:根据比例的性质,可用b表示a,用b表示c,再根据代入法,可得关于b的一元一次方程,根据解一元一次方程,可得答案.解答:解:由==≠0,得a=,c=.把a=,c=代入方程,得+3×﹣2b=16.解得b=10,故答案为:10.点评:本题考查了比例的性质,利用比例的性质:用b表示a,用b表示c是解题关键.12.(2分)收入倍增计划是2012年11月中国共产党第十八次全国代表大会报告中提出的.“2020年实现国内生产总值和城乡居民人均收入比2010年翻一番”,假设2010年某地城乡居民人均收入为4万元,到2020年该地城乡居民人均收入达到8万元.设每五年的平均增长率为a%,则可列方程为4(1+a%)2=8.[来源:]考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:利用一般用增长后的量=增长前的量×(1+增长率)求出即可.解答:解:依题意得2020年人均收入为4(1+a%)2,∴4(1+a%)2=8.故答案为:4(1+a%)2=8.[来源:Z|xx|]点评:本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.[来源:]13.(2分)如图所示,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为22.5米.考点:平行线分线段成比例.专题:压轴题.分析:根据题意,河两岸平行,故可根据平行线分线段成比例来解决问题,列出方程,求解即可.解答:解:如下图,设河宽为h,∵AB∥CD由平行线分线段成比例定理得:,解之得:h=22.5,所以河宽为22.5米.故答案为:22.5.点评:本题考查平行线分线段成比例定理的实际应用.14.(2分)如图,在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,则点E的对应点E′的坐标为(2,﹣1)或(﹣2,1).考点:位似变换;坐标与图形性质.分析:由在直角坐标系中,点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,利用位似图形的性质,即可求得点E的对应点E′的坐标.解答:解:∵点E(﹣4,2),以O为位似中心,按2:1的相似比把△EFO缩小为△E′F′O,∴点E的对应点E′的坐标为:(2,﹣1)或(﹣2,1).故答案为:(2,﹣1)或(﹣2,1).点评:此题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解此题的关键.15.(2分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为2.4.考点:矩形的判定与性质;垂线段最短.分析:根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.解答:解:连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,[来源:Z§xx§]∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故答案为:2.4.点评:本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.16.(2分)已知△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2.要在这张纸板中剪取正方形.如图1所示的剪法称为第1次剪取,记所得正方形面积为s1;按照图1的剪法,在余下的△ADE和△BDF中,分别剪取两个全等的正方形,称为第2次剪取,并记这两个正方形面积之和为s2(如图2);再在余下的四个三角形中,用同样的方法分别剪去正方形,得到四个全等的正方形,成为第3次剪取,并记这四个正方形面积之和为S3(如图3);继续剪取下去…;则第n此剪取时,S n=()n﹣1.考点:相似三角形的判定与性质.专题:规律型.分析:根据题意可求得△ABC的面积,且可得出每个正方形是所以三角形面积的一半,即为上一次剪得的正方形面积的一半,可得出S n与△ABC的面积之间的关系,可求得答案.解答:解:∵AC=BC=2,∴∠A=∠B=45°,∵四边形CEDF为正方形,∴DE⊥AC,∴AE=DE=DF=BF,∴S正方形CEDF=CE•CF=AC•BC=S△ABC=1,同理每次剪得的正方形的面积都是所在三角形面积的一半,∴S2=S△AED+S△BDF=S正方形CEDF=S1,同理可得S3=S2=()2S1,依此类推可得S n=()n﹣1S1=()n﹣1,故答案为:()n﹣1.点评:本题主要考查正方形的性质,根据条件找到S n与S1之间的关系是解题的关键.注意规律的总结与归纳.三、解答题:每题7分,共14分.17.(7分)解方程:x2+2x﹣5=0.考点:解一元二次方程-配方法.专题:方程思想.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解答:解:∵x2+2x﹣5=0,∴x2+2x=5,∴x2+2x+1=5+1,∴(x+1)2=6,∴x+1=±,∴x=﹣1±.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.(7分)如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.考点:作图-三视图.分析:利用已知几何体的形状进而补全几何体的三视图.解答:解:如图所示:点评:此题主要考查了画几何体的三视图,注意三视图中实线与虚线.四、解答题:每题8分,共16分.19.(8分)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.考点:列表法与树状图法;反比例函数图象上点的坐标特征.分析:(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据反比例函数的性质求出在图象上的点,即可得出答案.解答:解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2 ﹣1 1﹣2 (﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1 (﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1 (﹣2,1)(﹣1,1)(1,1)(2)∵点(x,y)在图象上的只有(﹣2,1),(1,﹣2),∴点(x,y)在图象上的概率.点评:此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)新兴商场经营某种儿童益智玩具.已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元.每件玩具的售价定为多少元时,月销售利润恰为2520元?考点:一元二次方程的应用.专题:销售问题.分析:根据题意知一件玩具的利润为(30+x﹣20)元,月销售量为(230﹣10x),然后根据月销售利润=一件玩具的利润×月销售量列出一元二次方程求解即可.解答:解:设每件玩具上涨x元,则售价为(30+x)元,则根据题意,得(30+x﹣20)(230﹣10x)=2520.整理方程,得x2﹣13x+22=0.解得:x1=11,x2=2,当x=11时,30+x=41>40,∴x=11 不合题意,舍去.∴x=2,∴每件玩具售价为:30+2=32(元).答:每件玩具的售价定为32元时,月销售利润恰为2520元.点评:考查了一元二次方程的应用,解题的关键是能够了解总利润的计算方法,难度不大.五、解答题:每题9分,共18分.21.(9分)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克.已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求y与x之间的函数关系式;并写出自变量x的取值范围;(2)若每毫升血液中的含药量不低于2毫克时治疗有效,那么病人服药一次治疗疾病的有效时间是多长?考点:反比例函数的应用.分析:(1)根据点(2,4)利用待定系数法求正比例函数解形式;根据点(2,4)利用待定系数法求反比例函数解形式;(2)根据两函数解析式求出函数值是2时的自变量的值,即可求出有效时间.解答:解:(1)设正比例函数的表达式为y=kx,根据图象知,正比例函数的图象经过点(2,4),[来源:学科网]则2k=4.解得k=2.所以正比例函数表达式为y=2x(0≤x≤2);设反比例函数的表达式为y=,根据图象知,反比例函数的图象经过点(2,4),则,解得k=8.所以,所求的反比例函数表达为y=(x>2).(2)由题意,当y=2时,即2x=2,解得x=1.=2,解得x=4.∴4﹣1=3(小时).答:病人服药一次,治疗疾病的有效时间是3小时.点评:本题主要考查图象的识别能力和待定系数法求函数解形式,是近年2015届中考的热点之一.22.(9分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=位于第一象限的图象上,OA=1,OC=6.(1)求反比例函数的表达式;(2)求正方形ADEF的边长;(3)根据图象直接写出直线BE对应的一次函数的函数值大于反比例函数y=的值时,自变量x的取值范围.[来源:学。
仁和中学2014年上学期九年级数学期末试题(时间:120分钟;满分:100分)一、 选择题(每小题3分,共24分) 1. 若方程0132=--x x 的两根为1x 、2x ,则2121x x x x +的值为( )A .3B .-3C .31D . 31-2.二次函数2)1(2+-=x y 的最小值是 ( )A 、2B 、-2C 、-1D 、13. 关于x 的一元二次方程(m -1)x 2-2mx+m=0有两个实数根,那么m 的取值范围是 ( )A. m>0B. m ≥0C. m>0且m ≠1D. m ≥0,且m ≠1 4. 下图中不是中心对称图形的是( )A B C D5.如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB =α.则α的值为( ) A .135° B .120° C ..100°6.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( ) A .2 B .3 C .4 D .5 7. 如图,若a <0,b>0,c<0,则抛物线c bx ax y ++=2的图象大致为( )8. 已知两圆半径为5cm 和3cm ,圆心距为3cm ,则两圆的位置关系是( )A .相交B .内含C .内切D .外切第5题图 第6题图 O C B A αα 班级____________________________姓名____________________________学号____________________________密 封 线二、填空题(每小题3分,共18分)9. 点P (2,3-)关于原点对称点P '的坐标为 .10. 如图,已知P A ,PB 分别切⊙O 于点A 、B ,60P ∠=,8PA =,那么弦AB 的长是 。
11. 在半径为π6的圆中,60°的圆心角所对的弧长等于 .12. 在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为52,则n =___________。
2015初三年级数学期末考试卷即5x2+2x﹣4=0,这里a=5,b=2,c=﹣4,∵△=4+80=84,x==.四、(每小题9分,共18分)18.解:(1)画树状图得:则(m,n)的所有取值为:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2);(2)∵关于x的一元二次方程有实数根,△=m2﹣2n0,关于x的一元二次方程有实数根的有:(0,0),(1,0),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2);关于x的一元二次方程有实数根的概率为:=.19.(1)解:设每千克核桃应降价x元.1分根据题意,得(60﹣x﹣40)(100+20)=2240.4分化简,得x2﹣10x+24=0解得x1=4,x2=6.6分答:每千克核桃应降价4元或6元.7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),.9分答:该店应按原售价的九折出售.10分五、(共18分)20.解:过点B作BDAC于D.由题意可知,BAC=45,ABC=90+15=105,ACB=180﹣BAC﹣ABC=30,在Rt△ABD中,BD=ABsinBAD=20=10(海里),在Rt△BCD中,BC===20(海里).答:此时船C与船B的距离是20海里.21.证明:(1)∵Rt△ABC中,BAC=30,AB=2BC,又∵△ABE是等边三角形,EFAB,AB=2AFAF=CB,在Rt△AFE和Rt△BCA中,,△AFE≌△BCA(HL),AC=EF;(2)由(1)知道AC=EF,而△ACD是等边三角形,DAC=60EF=AC=AD,且ADAB,而EFAB,EF∥AD,四边形ADFE是平行四边形.六、(每小题8分,共16分)22.解:(1)∵点P的坐标为,可得AP=2,. 又∵PN=4,可得AN=6,点N的坐标为.把代入中,得k=9.(2)∵k=9,双曲线方程为.当x=2时,..又∵PMAN,AM==C△APM=5+.23.解:由题意得,AP=2t,CQ=4t,PD=AD﹣AP=12﹣2t,∵E是BC的中点,CE=BC=32=16,∵AD∥BC,点P在AD上,点Q在BC上,PD∥QE,①点Q在线段CE上时,EQ=16﹣4t,12﹣2t=16﹣4t,解得t=2,②点Q在线段BE上时,EQ=4t﹣16,12﹣2t=4t﹣16,解得t=,点P停止运动时,t==6,06,当运动时间为2秒或秒时,以点P、Q、E、D为顶点的四边形是平行四边形.七、(本题12分)24.解:(1)∵PEPM,EPM=90,DPE+CPM=90,又矩形ABCD,D=90,DPE+DEP=90,CPM=DEP,又D=90,△CPM∽△DEP,=,又CP=x,DE=y,AB=DC=4,DP=4﹣x,又M为BC中点,BC=2,CM=1,=,则y=﹣x2+4x;(2)当E与A重合时,DE=AD=2,∵△CPM∽△DEP,=,又CP=x,DE=2,CM=1,DP=4﹣x,=,即x2﹣4x+2=0,解得:x=2+或x=2﹣,则x的值为2+或2﹣;(3)存在,过P作PHAB于点H,∵点D关于直线PE的对称点D落在边AB上,PD=PD=4﹣x,ED=ED=y=﹣x2+4x,EA=AD﹣ED=x2﹣4x+2,PDE=D=90,在Rt△DPH中,PH=2,DP=DP=4﹣x,根据勾股定理得:DH==,∵EDA=180﹣90﹣PDH=90﹣PDH=DPH,PDE=PHD=90,△EDA∽△DPH,=,即==x=,整理得:2x2﹣4x+1=0,解得:x=,当x=时,点D关于直线PE的对称点D落在边AB上.故答案为:(1)y=﹣x2+4x;(2)2+或2﹣这篇初三年级数学期末考试卷就为大家分享到这里了。
九年级数学期末试题卷—1 (共4页)2015学年第一学期期末考试九年级数学试题卷温馨提示:1.本试卷分试题卷和答题卷两部分,考试时间120分钟,满分120分.2.答题前,请在答题卷的相应区域内填写学校、班级、姓名、考场号、座位号、以及填涂学生检测号等. 3.不能使用计算器.4.所有答案都必须做在答题卷规定的位置上,注意试题序号与答题序号相对应. 一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分)1.“a 是实数,||0a ≥”这一事件是……………………………………………………( ▲ )A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件2.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为………………( ▲ )A. 21y x =+B. 2(1)y x =+ C. 21y x =- D. 2(1)y x =-3.如图所示的三视图表示的几何体是…………………………………………………( ▲ )4.将量角器按如图所示的方式放置在三角形纸板上,使点 C 在半圆上. 点A 、B 的读数分别为86°、30°,则∠ACB的度数为…………………………………………( ▲ )A. 15°B. 28°C. 29°D. 34°5.若23a b b -=,则a b =……………………………( ▲ ) A. 13 B. 23 C. 43 D. 536.如图,△ABC 的三个顶点分别在正方形网格的格点上, 则tan A ∠的值是…………………………………( ▲ )主视图 左视图 A B C D 俯视图 A CB第4题图第6题图九年级数学期末试题卷—2 (共4页)A.65 B. 56C. 3D. 207.在一个布袋中装着只有颜色不同,其它都相同的红、黄、黑三种小球各一个,从中任意摸出一个球,记下颜色后放回并搅匀,再摸出一个球,则摸出的两个球中,一个是红球,一个是黑球的概率是…………………………………………………………………………( ▲ )A. 19B. 29C. 13D.498.已知二次函数c bx ax y ++=2 的图象如图所示,那么下列判断不正确...的是……( ▲ ) A. ac <0 B. c b a +->0 C. a b 4-= D. 关于x 的方程 02=++c bx ax 的根是11-=x ,52=x9.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ;下半身长x 与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为………………………………………………………………( ▲ ) A .3cm B .6cm C .8cm D .10cm 10.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是……………………………………………( ▲ ) A. 8B. C.D. 二、认真填一填(本题有6小题,每小题4分,共24分)11.比较三角函数值的大小:sin30° ▲ tan30°(填入“>”或“<”).12.某厂生产了1200件衬衫,根据以往经验其合格率为0.95左右,则这1200件衬衫中次品(不合格)的件数大约为 ▲ . 13.已知二次函数42++=bx x y 顶点在x 轴上,则b= ▲ . 14.如图,已知AB 是⊙O 的直径,CD 是⊙O 的切线,C 为切点,且∠BAC =50°,则∠ACD = ▲ °.15.一个比例为1:10000的矩形草坪示意图的长、宽分别为5cm ,2cm ,则此矩形草坪的实际面积为 ▲ 2m .16.P 是正方形ABCD 的BC 边上一点,连结AP ,AB =8,BP =3,Q 是线段AP 上一动点,连结BQ 并延长交四边形ABCD 的一边于点R ,若点Q 是BR 的三等分点,则AR 的长为 ▲ .三、解答题(本大题有8小题,共66分)第14题图x第8题图第9题图第10题图A九年级数学期末试题卷—3 (共4页)17.(本题6分)计算:00200230sin 230cos 845tan 60sin 4+-+ 18.(本题6分)已知线段AB ,把线段AB 五等分.(不要求写出作法)19.(本题6分)如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:AD BE =ACBC.20.(本题8分)如图,AB 是⊙O 的直径,C 是⊙O 上一点,CD ⊥AB 于D ,且AB =8,DB =2. (1)求证:△ABC ∽△ACD ; (2)求图中阴影部分的面积.21.(本题8分)已知二次函数y=2x 2-x -3.(1)求函数图象的顶点坐标,与坐标轴交点坐标,并画出函数大致图象;(2)根据图象直接回答:当x 为何值时,y <0?当x 为何值时y >-3?BC ADE第19题图第20题图第21题图九年级数学期末试题卷—4 (共422.(本题10分)已知如图在△ABC 中,∠B =45°,∠BCA =30°,过点A 、 B 、C 三点作⊙O ,过点C 作⊙O 的切线交BA 延长线 于点D ,连结OA 交BC 于E . (1)求证:OA //CD ;(2)求证△ABE ∽△DCA ; (3)若OA =2,求BC 的长.23.(本题10分)已知在平面直角坐标系XOY 中,抛物线)0(21≠+=a bx ax y ,与x 轴正半轴交于点1A (2,0),顶点为1P ,△11A OP 为正三角形,现将抛物线)0(21≠+=a bx ax y 沿射线1OP 平移,把过点1A 时的抛物线记为抛物线2y ,记抛物线2y 与x 轴的另一交点为2A ;把抛物线2y 继续沿射线1OP 平移,把过点2A 时的抛物线记为抛物线3y ,记抛物线3y 与x 轴的另一交点为3A ;….;把抛物线2015y 继续沿射线1OP 平移,把过点2015A 时的抛物线记为抛物线2016y ,记抛物线2016y 与x 轴的另一交点为2016A ,顶点为2016P .若这2016条抛物线的顶点都在射线1OP 上.(1)①求△OP 1A 1的面积;②求b a ,的值; (2)求抛物线2y 的解析式;(3)请直接写出....点2016A 以及点2016P 坐标.24.(本题12分)已知如图,圆P 经过点A (-4,0),点B (6,0), 交y 轴于点C ,∠ACB =45°,连结AP 、BP . (1)求圆P 的半径; (2)求OC 长;(3)在圆P 上是否存在点D ,使△BCD 的面积等于△ABC 的面积,若存在求出点D 坐标,若不存 在说明理由.第22题图第23题图。
2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。
2014-2015学年人教版九年级上学期期末数学试卷(一)一、选择题(共8小题,每小题4分,满分32分)1.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.3.若如图是某个几何体的三视图,则这个几何体是()A.长方体B.正方体C.圆柱D.圆锥4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B. 2 C. 4 D.86.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<07.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.28.如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段EF B.线段DE C.线段CE D.线段BE二、填空题(共4小题,每小题4分,满分16分)9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为cm2.(结果保留π)10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为m.11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.12.对于正整数n,定义F(n)=,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),F k+1(n)=F(F k(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.(1)求:F2(4)=,F2015(4)=;(2)若F3m(4)=89,则正整数m的最小值是.三、解答题(共13小题,满分72分)13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1.14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.18.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x2<0,且>﹣1,求整数m的值.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次 1 2 ...x (10)日产量(件)95 90 ...100﹣5x (50)单件利润(万元) 6 8 ...2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO 交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB=,AD=2,求线段PC的长.22.阅读下面材料:小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC=;tan∠AOD=;解决问题:如图3,计算:tan∠AOD=.23.在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n).(1)求代数式mn的值;(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值;(3)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).25.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积.例如,若图形W是半径为1的⊙O,当P,Q分别是⊙O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是⊙O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4(1)若图形W是等腰直角三角形ABO,OA=OB=1.①如图3,当点A,B在坐标轴上时,它的测度面积S=;②如图4,当AB⊥x轴时,它的测度面积S=;(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为;(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.2014-2015学年人教版九年级上学期期末数学试卷(一)参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1.方程x2﹣3x﹣5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定是否有实数根考点:根的判别式.分析:求出b2﹣4ac的值,再进行判断即可.解答:解:x2﹣3x﹣5=0,△=b2﹣4ac=(﹣3)2﹣4×1×(﹣5)=29>0,所以方程有两个不相等的实数根,故选A.点评:本题考查了一元二次方程的根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.2.在Rt△ABC中,∠C=90°,BC=3,AB=5,则sinA的值为()A.B.C.D.考点:锐角三角函数的定义.分析:直接根据三角函数的定义求解即可.解答:解:∵Rt△ABC中,∠C=90°,BC=3,AB=5,∴sinA==.故选A.点评:此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.即sinA=∠A的对边:斜边=a:c.3.若如图是某个几何体的三视图,则这个几何体是()A.长方体B.正方体C.圆柱D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:D.点评:本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.4.小丁去看某场电影,只剩下如图所示的六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号.若小丁从中随机抽取一个,则抽到的座位号是偶数的概率是()A.B.C.D.考点:概率公式.分析:由六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,直接利用概率公式求解即可求得答案.解答:解:∵六个空座位供他选择,座位号分别为1号、4号、6号、3号、5号和2号,∴抽到的座位号是偶数的概率是:=.故选C.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C. 4 D.8考点:位似变换.专题:计算题.分析:根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可.解答:解:∵C1为OC的中点,∴OC1=OC,∵△ABC和△A1B1C1是以点O为位似中心的位似三角形,∴=,B1C1∥BC,∴=,∴=,即=∴A1B1=2.故选B.点评:本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.6.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2 B.y2<0<y1 C.y1<y2<0 D.y2<y1<0考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到y1=﹣,y2=﹣,然后利用x1<0<x2即可得到y1与y2的大小.解答:解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,∴y1=﹣,y2=﹣,∵x1<0<x2,∴y2<0<y1.故选B.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A.B.C.1 D.2考点:垂径定理;全等三角形的判定与性质.分析:根据垂径定理求出AD,证△ADO≌△OFE,推出OF=AD,即可求出答案.解答:解:∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DOE=∠ADO=90°,∴∠DAO+∠DOA=90°,∠DOA+∠EF=90°,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴OF=AD=1,故选C.点评:本题考查了全等三角形的性质和判定,垂径定理的应用,解此题的关键是求出△ADO≌△OFE和求出AD的长,注意:垂直于弦的直径平分这条弦.8.如图,在矩形ABCD中,AB<BC,AC,BD交于点O.点E为线段AC上的一个动点,连接DE,BE,过E作EF⊥BD于F,设AE=x,图1中某条线段的长为y,若表示y与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段EF B.线段DE C.线段CE D.线段BE考点:动点问题的函数图象.分析:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G,分别找出线段EF、CE、BE最小值出现的时刻即可得出结论.解答:解:作BN⊥AC,垂足为N,FM⊥AC,垂足为M,DG⊥AC,垂足为G.由垂线段最短可知:当点E与点M重合时,即AE<时,FE有最小值,与函数图象不符,故A错误;由垂线段最短可知:当点E与点G重合时,即AEd>时,DE有最小值,故B正确;∵CE=AC﹣AE,CE随着AE的增大而减小,故C错误;由垂线段最短可知:当点E与点N重合时,即AE<时,BE有最小值,与函数图象不符,故D错误;故选:B.点评:本题主要考查的是动点问题的函数图象,根据垂线段最短确定出函数最小值出现的时刻是解题的关键.二、填空题(共4小题,每小题4分,满分16分)9.如图,已知扇形的半径为3cm,圆心角为120°,则扇形的面积为3πcm2.(结果保留π)考点:扇形面积的计算.专题:压轴题.分析:知道扇形半径,圆心角,运用扇形面积公式就能求出.解答:解:由S=知S=×π×32=3πcm2.点评:本题主要考查扇形面积的计算,知道扇形面积计算公式S=.10.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为24m.考点:相似三角形的应用.分析:根据同时同地的物高与影长成正比列式计算即可得解.解答:解:设这栋建筑物的高度为xm,由题意得,=,解得x=24,即这栋建筑物的高度为24m.故答案为:24.点评:本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.考点:二次函数的性质.专题:数形结合.分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.解答:解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.12.对于正整数n,定义F(n)=,其中f(n)表示n的首位数字、末位数字的平方和.例如:F(6)=62=36,F(123)=f(123)=12+32=10.规定F1(n)=F(n),F k+1(n)=F(F k(n)).例如:F1(123)=F(123)=10,F2(123)=F(F1(123))=F(10)=1.(1)求:F2(4)=37,F2015(4)=26;(2)若F3m(4)=89,则正整数m的最小值是6.考点:规律型:数字的变化类.专题:新定义.分析:通过观察前8个数据,可以得出规律,这些数字7个一个循环,根据这些规律计算即可.解答:解:(1)F2(4)=F(F1(4))=F(16)=12+62=37;F1(4)=F(4)=16,F2(4)=37,F3(4)=58,F4(4)=89,F5(4)=145,F6(4)=26,F7(4)=40,F8(4)=16,通过观察发现,这些数字7个一个循环,2015是7的287倍余6,因此F2015(4)=26;(2)由(1)知,这些数字7个一个循环,F4(4)=89=F18(4),因此3m=18,所以m=6.故答案为:(1)37,26;(2)6.点评:本题属于数字变化类的规律探究题,通过观察前几个数据可以得出规律,熟练找出变化规律是解题的关键.三、解答题(共13小题,满分72分)13.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可.解答:解:原式=﹣1+﹣1+2=.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.如图,△ABC中,AB=AC,D是BC中点,BE⊥AC于E,求证:△ACD∽△BCE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形的性质,由AB=AC,D是BC中点得到AD⊥BC,易得∠ADC=∠BEC=90°,再加上公共角,于是根据有两组角对应相等的两个三角形相似即可得到结论.解答:证明:∵AB=AC,D是BC中点,∴AD⊥BC,∴∠ADC=90°,∵BE⊥AC,∴∠BEC=90°,∴∠ADC=∠BEC,而∠ACD=∠BCE,∴△ACD∽△BCE.点评:本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了等腰三角形的性质.15.已知m是一元二次方程x2﹣3x﹣2=0的实数根,求代数式的值.考点:一元二次方程的解.专题:计算题.分析:把x=m代入方程得到m2﹣2=3m,原式分子利用平方差公式化简,将m2﹣2=3m代入计算即可求出值.解答:解:把x=m代入方程得:m2﹣3m﹣2=0,即m2﹣2=3m,则原式===3.点评:此题考查了一元二次方程的解,熟练掌握运算法则是解本题的关键.16.抛物线y=2x2平移后经过点A(0,3),B(2,3),求平移后的抛物线的表达式.考点:二次函数图象与几何变换.专题:计算题.分析:由于抛物线平移前后二次项系数不变,则可设平移后的抛物线的表达式为y=2x2+bx+c,然后把点A和点B的坐标代入得到关于b、c的方程组,解方程组求出b、c 即可得到平移后的抛物线的表达式.解答:解:设平移后的抛物线的表达式为y=2x2+bx+c,把点A(0,3),B(2,3)分别代入得,解得,所以平移后的抛物线的表达式为y=2x2﹣4x+3.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17.如图,在平面直角坐标系xOy中,正比例函数y=2x与反比例函数y=的图象交于A,B两点,A点的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的解析式;(2)若点P是反比例函数y=图象上的一点,且满足△OPC与△ABC的面积相等,请直接写出点P的坐标.考点:反比例函数与一次函数的交点问题.分析:(1)把A点横坐标代入正比例函数可求得A点坐标,代入反比例函数解析式可求得k,可求得反比例函数解析式;(2)由条件可求得B、C的坐标,可先求得△ABC的面积,再结合△OPC与△ABC的面积相等求得P点坐标.解答:解:(1)把x=2代入y=2x中,得y=2×2=4,∴点A坐标为(2,4),∵点A在反比例函数y=的图象上,∴k=2×4=8,∴反比例函数的解析式为y=;(2)∵AC⊥OC,∴OC=2,∵A、B关于原点对称,∴B点坐标为(﹣2,﹣4),∴B到OC的距离为4,∴S△ABC=2S△ACO=2××2×4=8,∴S△OPC=8,设P点坐标为(x,),则P到OC的距离为||,∴×||×2=8,解得x=1或﹣1,∴P点坐标为(1,8)或(﹣1,﹣8).点评:本题主要考查待定系数法求函数解析式及函数的交点问题,在(1)中求得A点坐标、在(2)中求得P点到OC的距离是解题的关键.18.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.考点:解直角三角形;勾股定理.专题:计算题.分析:(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.解答:解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC=S△ADC,∴S△BDC=S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.19.已知关于x的一元二次方程mx2﹣(m+2)x+2=有两个不相等的实数根x1,x2.(1)求m的取值范围;(2)若x2<0,且>﹣1,求整数m的值.考点:根的判别式;根与系数的关系.专题:计算题.分析:(1)由二次项系数不为0,且根的判别式大于0,求出m的范围即可;(2)利用求根公式表示出方程的解,根据题意确定出m的范围,找出整数m的值即可.解答:解:(1)由已知得:m≠0且△=(m+2)2﹣8m=(m﹣2)2>0,则m的范围为m≠0且m≠2;(2)方程解得:x=,即x=1或x=,∵x2<0,∴x2=<0,即m<0,∵>﹣1,∴>﹣1,即m>﹣2,∵m≠0且m≠2,∴﹣2<m<0,∵m为整数,∴m=﹣1.点评:此题考查了根的判别式,一元二次方程有两个不相等的实数根即为根的判别式大于0.20.某工厂生产的某种产品按质量分为10个档次,据调查显示,每个档次的日产量及相应的单件利润如表所示(其中x为正整数,且1≤x≤10);质量档次 1 2 ...x (10)日产量(件)95 90 ...100﹣5x (50)单件利润(万元) 6 8 ...2x+4 (24)为了便于调控,此工厂每天只生产一个档次的产品,当生产质量档次为x的产品时,当天的利润为y万元.(1)求y关于x的函数关系式;(2)工厂为获得最大利润,应选择生产哪个档次的产品?并求出当天利润的最大值.考点:二次函数的应用.分析:(1)根据总利润=单件利润×销售量就可以得出y与x之间的函数关系式;(2)由(1)的解析式转化为顶点式,由二次函数的性质就可以求出结论.解答:解:(1)由题意,得y=(100﹣5x)(2x+4),y=﹣10x2+180x+400(1≤x≤10的整数);答:y关于x的函数关系式为y=﹣10x2+180x+400;(2)∵y=﹣10x2+180x+400,∴y=﹣10(x﹣9)2+1210.∵1≤x≤10的整数,∴x=9时,y最大=1210.答:工厂为获得最大利润,应选择生产9档次的产品,当天利润的最大值为1210万元.点评:本题考查了总利润=单件利润×销售量的运用,二次函数的解析式的运用,顶点式的运用,解答时求出函数的解析式是关键.21.如图,四边形ABCD是平行四边形,点A,B,C在⊙O上,AD与⊙O相切,射线AO 交BC于点E,交⊙O于点F.点P在射线AO上,且∠PCB=2∠BAF.(1)求证:直线PC是⊙O的切线;(2)若AB=,AD=2,求线段PC的长.考点:切线的判定;勾股定理;平行四边形的性质;相似三角形的判定与性质.分析:(1)首先连接OC,由AD与⊙O相切,可得FA⊥AD,四边形ABCD是平行四边形,可得AD∥BC,然后由垂径定理可证得F是的中点,BE=CE,∠OEC=90°,又由∠PCB=2∠BAF,即可求得∠OCE+∠PCB=90°,继而证得直线PC是⊙O的切线;(2)首先由勾股定理可求得AE的长,然后设⊙O的半径为r,则OC=OA=r,OE=3﹣r,则可求得半径长,易得△OCE∽△CPE,然后由相似三角形的对应边成比例,求得线段PC 的长.解答:(1)证明:连接OC.∵AD与⊙O相切于点A,∴FA⊥AD.∵四边形ABCD是平行四边形,∴AD∥BC,∴FA⊥BC.∵FA经过圆心O,∴F是的中点,BE=CE,∠OEC=90°,∴∠COF=2∠BAF.∵∠PCB=2∠BAF,∴∠PCB=∠COF.∵∠OCE+∠COF=180°﹣∠OEC=90°,∴∠OCE+∠PCB=90°.∴OC⊥PC.∵点C在⊙O上,∴直线PC是⊙O的切线.(2)解:∵四边形ABCD是平行四边形,∴BC=AD=2.∴BE=CE=1.在Rt△ABE中,∠AEB=90°,AB=,∴.设⊙O的半径为r,则OC=OA=r,OE=3﹣r.在Rt△OCE中,∠OEC=90°,∴OC2=OE2+CE2.∴r2=(3﹣r)2+1.解得,∵∠COE=∠PCE,∠OEC=∠CEP=90°.∴△OCE∽△CPE,∴.∴.∴.点评:此题考查了切线的判定、平行四边形的性质、勾股定理以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.22.阅读下面材料:小明观察一个由1×1正方形点阵组成的点阵图,图中水平与竖直方向上任意两个相邻点间的距离都是1,他发现一个有趣的问题:对于图中出现的任意两条端点在点阵上且互相不垂直的线段,都可以在点阵中找到一点构造垂直,进而求出它们相交所成锐角的正切值.请回答:(1)如图1,A,B,C是点阵中的三个点,请在点阵中找到点D,作出线段CD,使得CD⊥AB;(2)如图2,线段AB与CD交于点O.为了求出∠AOD的正切值,小明在点阵中找到了点E,连接AE,恰好满足AE⊥CD于点F,再作出点阵中的其它线段,就可以构造相似三角形,经过推理和计算能够使问题得到解决.请你帮小明计算:OC=;tan∠AOD=5;解决问题:如图3,计算:tan∠AOD=.考点:相似形综合题.分析:(1)用三角板过C作AB的垂线,从而找到D的位置;(2)连接AC、DB、AD、DE.由△ACO∽△DBO求得CO的长,由等腰直角三角形的性质可以求出AF,DF的长,从而求出OF的长,在Rt△AFO中,根据锐角三角函数的定义即可求出tan∠AOD的值;(3)如图,连接AE、BF,则AF=,AB=,由△AOE∽△BOF,可以求出AO=,在Rt△AOF中,可以求出OF=,故可求得tan∠AOD.解答:解:(1)如图所示:线段CD即为所求.(2)如图2所示连接AC、DB、AD.∵AD=DE=2,∴AE=2.∵CD⊥AE,∴DF=AF=.∵AC∥BD,∴△ACO∽△DBO.∴CO:DO=2:3.∴CO=.∴DO=.∴OF=.tan∠AOD=.(3)如图3所示:根据图形可知:BF=2,AE=5.由勾股定理可知:AF==,AB==.∵FB∥AE,∴△AOE∽△BOF.∴AO:OB=AE:FB=5:2.∴AO=.在Rt△AOF中,OF==.∴tan∠AOD=.点评:本题主要考查的是相似三角形的性质和判定、勾股定理的应用、锐角三角函数的定义,根据点阵图构造相似三角形是解题的关键.23.在平面直角坐标系xOy中,反比例函数y=的图象经过点A(1,4)、B(m,n).(1)求代数式mn的值;(2)若二次函数y=(x﹣1)2的图象经过点B,求代数式m3n﹣2m2n+3mn﹣4n的值;(3)若反比例函数y=的图象与二次函数y=a(x﹣1)2的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.考点:反比例函数综合题;代数式求值;反比例函数与一次函数的交点问题;二次函数的性质.专题:综合题;数形结合;分类讨论.分析:(1)只需将点A、B的坐标代入反比例函数的解析式就可解决问题;(2)将点B的坐标代入y=(x﹣1)2得到n=m2﹣2m+1,先将代数式变形为mn(m2﹣2m+1)+2mm﹣4n,然后只需将m2﹣2m+1用n代替,即可解决问题;(3)可先求出直线y=x与反比例函数y=交点C和D的坐标,然后分a>0和a<0两种情况讨论,先求出二次函数的图象经过点D或C时对应的a的值,再结合图象,利用二次函数的性质(|a|越大,抛物线的开口越小)就可解决问题.解答:解:(1)∵反比例函数y=的图象经过点A(1,4)、B(m,n),∴k=mn=1×4=4,即代数式mn的值为4;(2)∵二次函数y=(x﹣1)2的图象经过点B,∴n=(m﹣1)2=m2﹣2m+1,∴m3n﹣2m2n+3mn﹣4n=m3n﹣2m2n+mn+2mn﹣4n=mn(m2﹣2m+1)+2mm﹣4n=4n+2×4﹣4n=8,即代数式m3n﹣2m2n+3mn﹣4n的值为8;(3)设直线y=x与反比例函数y=交点分别为C、D,解,得:或,∴点C(﹣2,﹣2),点D(2,2).①若a>0,如图1,当抛物线y=a(x﹣1)2经过点D时,有a(2﹣1)2=2,解得:a=2.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得:满足条件的a的范围是0<a<2;②若a<0,如图2,当抛物线y=a(x﹣1)2经过点C时,有a(﹣2﹣1)2=﹣2,解得:a=﹣.∵|a|越大,抛物线y=a(x﹣1)2的开口越小,∴结合图象可得:满足条件的a的范围是a<﹣.综上所述:满足条件的a的范围是0<a<2或a<﹣.点评:本题主要考查了反比例函数图象上点的坐标特征、求代数式的值、求直线与反比例函数图象的交点坐标、二次函数的性质等知识,另外还重点对整体思想、数形结合的思想、分类讨论的思想进行了考查,运用整体思想是解决第(2)小题的关键,考虑临界位置并运用数形结合及分类讨论的思想是解决第(3)小题的关键.24.如图1,在△ABC中,BC=4,以线段AB为边作△ABD,使得AD=BD,连接DC,再以DC为边作△CDE,使得DC=DE,∠CDE=∠ADB=α.(1)如图2,当∠ABC=45°且α=90°时,用等式表示线段AD,DE之间的数量关系;(2)将线段CB沿着射线CE的方向平移,得到线段EF,连接BF,AF.①若α=90°,依题意补全图3,求线段AF的长;②请直接写出线段AF的长(用含α的式子表示).考点:几何变换综合题.分析:(1)根据等腰直角三角形的性质得出即可;(2)①设DE与BC相交于点H,连接AE,交BC于点G,根据SAS推出△ADE≌△BDC,根据全等三角形的性质得出AE=BC,∠AED=∠BCD.求出∠AFE=45°,解直角三角形求出即可;②过E作EM⊥AF于M,根据等腰三角形的性质得出∠AEM=∠FME=,AM=FM,解直角三角形求出FM即可.解答:解:(1)AD+DE=4,理由是:如图1,∵∠ADB=∠EDC=∠α=90°,AD=BD,DC=DE,∴AD+DE=BC=4;(2)①补全图形,如图2,设DE与BC相交于点H,连接AE,交BC于点G,∵∠ADB=∠CDE=90°,∴∠ADE=∠BDC,在△ADE与△BDC中,,∴△ADE≌△BDC,∴AE=BC,∠AED=∠BCD.∵DE与BC相交于点H,∴∠GHE=∠DHC,∴∠EGH=∠EDC=90°,∵线段CB沿着射线CE的方向平移,得到线段EF,∴EF=CB=4,EF∥CB,∴AE=EF,∵CB∥EF,∴∠AEF=∠EGH=90°,∵AE=EF,∠AEF=90°,∴∠AFE=45°,∴AF==4;②如图2,过E作EM⊥AF于M,∵由①知:AE=EF=BC,∴∠AEM=∠FME=,AM=FM,∴AF=2FM=EF×sin=8sin.点评:本题考查了全等三角形的性质和判定,解直角三角形,等腰三角形的性质,平移的性质的应用,能正确作出辅助线是解此题的关键,综合性比较强,难度偏大.。
初三数学期末学业水平质量检测
2014年1月
一、选择题:
1.如图:在Rt△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值等于( )
A .
3
5 B .45
C .3
4
D .
3
4
2.如图:在△ABC 中,点D 、E 分别在AB 、AC 上,∠ADE =∠C ,且AD ∶AC =2∶3,那么
DE ∶BC 等于( )
A .3∶1
B .1∶3
C .3∶4
D .2∶3
3.如图,点A 、B 、P 是⊙O 上的三点,若∠APB =45°,
则∠AOB 的度数为 ( ) A .100° B .90° C .85° D .45°
4.一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是 ( ) A .
2
1 B .
3
1 C .
51
D .
10
1 5.若二次函数
c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为
( )
A .8、-1
B .8、1
C .6、-1
D .6、1
6.反比例函数x
k
y =
的图象如图所示,以下结论:①常数0k >;②当0>x 时,函数值0y >;③
y 随x 的增大而减小;④若点),(y x P 在此函数图象上,则点),('y x P --也在此函数图象上.
其中正确的是
( )
A .①②③④
B .①②③
C .①②④
D .②③④
7.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,E 为BC 中点,则sin∠AEB 的值是
( )
A
D
A .
5
5
B .
43 C .
53 D .5
4
8.如图,在⊙O 中,直径AB =4,CD =AB ⊥CD 于点E ,点M 为线段EA 上一个动点,连接CM 、
DM ,并延长DM 与弦AC 交于点P ,设线段CM 的长为x ,△PMC 的面积为y ,则下列图象中,能表示y
与x 的函数关系的图象大致是 ( )
A B C D
二、填空题
9.已知y x 23=,那么
=+y
x x
.
10.请写出一个图象为开口向下,并且与
y 轴交于点)1,0(-的二次函数表达式
.
11.如图,AB 是半圆O 的直径,AB =3,弦AC =
32
3
,点P 为半圆O 上一点(不与点A 、 C )重合. 则∠APC 的度数为 .
12.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,
BC =8,则MN = .
13.如图,∠AOB =90º,将Rt △OAB 绕点O 按逆时针方向旋转至Rt△O A′B′,使点B 恰好落在边A′B′
上.已知tan A =
12
,OB =5,则BB′= .
14.如图,已知在扇形OAB 中,∠AOB =90°,半径OA =10,正方形FCDE 的四个顶点分别在
AB 和半
径OA 、OB 上,则CD 的长为 .
三、解答题:
A
A'12题图
13题图
14题图
A
B
15.计算:()()1260sin 245tan 45cos 30sin 02+
︒-︒-︒+︒-
16.已知二次函数
24(0)y ax x c a =++≠的图象对称轴为2x =,且过点B (-1,0)
. 求此二次函数的表达式.
17.如图,在四边形ABCD 中,∠C =60º,∠B =∠D =90º,AD =2AB ,CD =3,求BC 的长.
18.一件轮廓为圆形的文物出土后只留下了一块残片,文物学家希望能把此件文物进行
复原,因此把残片抽象成了一个弓形,如图所示,经过测量得到弓形高CD =15
米,
∠CAD =30°,请你帮助文物学家完成下面两项工作:
(1)作出此文物轮廓圆心O 的位置(尺规作图,保留作图痕迹,不写作法); (2)求出弓形所在圆的半径.
20.如图,谢明住在一栋住宅楼AC 上,他在家里的窗口点B 处,看楼下一条公路的两侧点F 和点E 处
(公路的宽为EF ),测得俯角α、β分别为30°和60°,点F 、E 、C 在同一直线上. (1)请你在图中画出俯角α和β.
(2)若谢明家窗口到地面的距离BC =6米,求公路宽EF 是多少米?(结果精确到0.1米;可能用到的数据73.13≈)
21.已知:如图,一次函数x y 2-=的图象与反比例函数k
y x
=
的图象交于A 、B 两点,且点B 的坐
标为()m ,1.
A
B
(1)求反比例函数
k y x
=
的表达式;(2)点()1,n C
在反比例函数k y x
=的图上,求△AOC 的面积;
(3)在(2)的条件下,在坐标轴上找出一点P ,使△APC 为等腰三角形,请直接写出所有符合条件
的点P 的坐标.
22.已知:如图,在⊙O 中,直径AB ⊥CD 于点E ,连接BC .
(1)线段BC 、BE 、AB 应满足的数量关系是 ;(2)若点P 是优弧CAD 上一点(不与点C 、A 、D 重合),连接BP 与CD 交于点G . 请完成下面四个任务:
①根据已知画出完整图形,并标出相应字母;②在正确完成①的基础上,猜想线段BC 、BG 、BP 应满足的数量关系是 ;③证明你在②中的猜想是正确的;
④点P ′恰恰是你选择的点P 关于直径AB 的对称点,那么按照要求画出图形后在②中的猜想仍然正确吗? ;(填正确或者不正确,不需证明)
23.如图,在平面直角坐标系xOy 中,以点(1,1)M -
x 轴
交于A 、B 两点,与y 轴交于C 、D 两点,二次函数2(0)y ax bx c a =++≠的图象经
过点A 、B 、C ,顶点为E .
(1)求此二次函数的表达式;
(2)设∠DBC =α,∠CBE =β,求sin (α-β)的值;
(3)坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与 △BCE 相似.若存在,请直接写出点P 的坐标;若不存在,请说明理由.。