4-4.高考总复习 数学高考总复习 数学doc
- 格式:doc
- 大小:58.50 KB
- 文档页数:5
2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
数学高考一轮总复习1、培养优良的学习习惯,牢固掌握基础知识点,多动脑,多动手做原知识题型,尽量不做或少做较难的综合套题。
2、带着问题去听课,边听边动脑筋,随时准备着回答老师的问题,会让自己精力非常集中。
3、建立错题记录本,把自己的错误记录在案,便于各个击破,查补漏洞。
4、制定学习的短期计划和长期计划,最好有周计划和日计划,按计划将知识连成网络。
多做历届高考真题,强化做题意识。
制订计划要结合自己的实际,不能将目标定得过高或过低。
5、重视课本,夯实基础。
切实抓好"三基'基础知识、基本技能、基本方法。
最基础的知识是最有用的知识,最基本的方法是最有用的方法。
2高考数学复习方法适度学习,但不搞题海战术。
基础题、中档题不必须要题海,高档题题海也是不能解决的。
切忌"高起点、高强度、高要求',投入很大,收效甚微,甚至丧失学习数学的兴趣和信心。
重视课本,夯实基础。
切实抓好"三基'基础知识、基本技能、基本方法。
最基础的知识是最有用的知识,最基本的方法是最有用的方法。
构建立体化的知识体系,在复习过程中自觉地将新知识及时纳进已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。
建立优良知识结构和认知结构体系,课本是考试内容的载体,是高考命题的依据,也是同学智能的生长点,是最有参照价值的资料。
只有吃透课本上的例题、习题,才干全面、系统地掌握基础知识、基本技能和基本方法,构建数学的知识网络,以不变应万变。
高考试题无论怎样变化、革新,都是基本数学问题的组合。
提升能力,适度革新,考查能力是高考的重点和永恒主题。
高考遵循"以能力立意命题'。
复习中数学能力的培养是关键,思维能力、运算能力、空间想象能力以及施行能力和革新意识,以及提出问题、分析问题和解决问题的能力,数学探究能力、数学建模能力、数学交流能力、数学施行能力、直觉猜测、归纳抽象、符号表示、运算求解、演绎证实、体系构建等诸多方面,都是高考考查的重点。
高考数学总复习知识点一、二次函数1. 一元二次函数的定义和性质2. 二次函数图像的基本形状及其特征3. 二次函数的解析式和标准式的转换与应用4. 一元二次方程的解法与应用5. 二次函数与一元二次方程的应用题分析与解答二、函数与方程组1. 函数的定义和性质2. 方程组的定义和解法(代入法、消元法)3. 函数与方程组的应用题分析与解答三、立体几何1. 空间几何体的定义与性质2. 空间几何体的表面积和体积计算3. 空间几何体的相交关系与判定四、数列与数列的通项公式1. 数列的定义和性质2. 等差数列和等比数列的概念与性质3. 求和公式的推导与应用4. 数列的递推公式与通项公式的推导与应用五、概率统计1. 随机事件的基本概念2. 概率的定义和性质3. 统计的基本概念与计算4. 事件的互斥与独立的判定和计算六、三角函数1. 三角函数的概念和性质2. 常用的三角函数的图像与性质3. 三角函数的相互关系与计算4. 三角函数的应用题分析与解答七、导数与微分应用1. 函数求导的概念和求法2. 导数的几何意义和物理意义3. 函数的最值和极值点的判定和计算4. 函数的图像和曲线的性质分析与完善八、平面解析几何与向量1. 平面坐标系和基本图形的性质2. 平面解析几何基本定理的应用3. 向量的定义和基本运算4. 向量几何的性质与定理的应用九、数与式1. 数的有理化、约分、化简2. 分式的性质及其应用3. 根式的求值与运算4. 多项式的性质与基本运算5. 代数式的展开与因式分解十、函数的应用1. 函数在实际问题中的应用和解析2. 函数的模型建立与解题方法3. 函数方程和不等式的应用4. 函数图像的分析与应用以上是高考数学总复习的主要知识点,希望能对你的备考有所帮助。
祝你取得优异的成绩!。
2024年高考数学总复习第二章《函数与基本初等函数》模考卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln x +1-x 的定义域是()A .(0,1)B .[0,1)C .(0,1]D .[0,1]答案C解析>0,-x ≥0,解得0<x ≤1,所以函数f (x )的定义域为(0,1].故选C.2.下列函数中,既是奇函数,又在区间(0,1)上递减的函数是()A .y =cos xB .y |C .y =tan xD .y =x-3答案D解析由于y =cos x 是偶函数,故A 不是正确选项.由于y |是偶函数,故B 不是正确选项.由于y =tan x 在(0,1)上为增函数,故C 不是正确选项.D 选项中y =x -3既是奇函数,又在(0,1)上递减,符合题意.故选D.3.设函数y =log 3x 与y =3-x 的图象的交点为(x 0,y 0),则x 0所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为方程log 3x =-x +3的解,就是m (x )=log 3x +x -3的零点,因为m (x )=log 3x +x -3单调递增且连续,m (x )=log 3x +x -3在(1,2)上满足m (1)m (2)>0,m (x )=log 3x +x -3在(2,3)上满足m (2)m (3)<0,所以m (x )=log 3x +x -3的零点在(2,3)内,可得方程log 3x +x -3=0的解所在的区间是(2,3),即则x 0所在的区间是(2,3),故选C.4.若a =π82=1πlog b ,c =log ()A .b >c >aB .a >b >cC .c >a >bD .b >a >c答案B解析a =π82>20=1,∵0<1π<1,1πlog b >0,∴0<b <1,c =log log 232<log 21=0,∴a >b >c .故选B.5.(2019·山师大附中模拟)函数f (x )-2a )x +3a (x <1),x (x ≥1)的值域为R ,则实数a 的取值范围是()A .(-∞,-1) B.12,1C.-1答案C解析因为函数f (x )-2a )x +3a (x <1)x (x ≥1),的值域为R -2a >0,1-2a )+3a ≥0,解得-1≤a <12,故选C.6.函数y =2xln|x |的图象大致为()答案B解析采用排除法,函数定义域为{x |x ≠0且x ≠±1},排除A ;当x >1时,ln|x |>0,y =2xln|x |>0,排除D ;当x <-1时,ln|x |>0,y =2x ln|x |<0,排除C ,故选B.7.(2019·山师大附中模拟)函数f (x )是R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则函数f (x )在[3,5]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数答案D解析已知f(x+1)=-f(x),则函数周期T=2,因为函数f(x)是R上的偶函数,在[-1,0]上单调递减,所以函数f(x)在[0,1]上单调递增,即函数在[3,5]上是先减后增的函数.故选D.8.(2019·新乡模拟)设函数f(x)=e-x-e x-5x,则不等式f(x2)+f(-x-6)<0的解集为() A.(-3,2)B.(-∞,-3)∪(2,+∞)C.(-2,3)D.(-∞,-2)∪(3,+∞)答案D解析由f(x)=e-x-e x-5x,得f(-x)=e x-e-x+5x=-f(x),则f(x)是奇函数,故f(x2)+f(-x-6)<0⇔f(x2)<-f(-x-6)=f(x+6).又f(x)是减函数,所以f(x2)<f(x+6)⇔x2>x+6,解得x<-2或x>3,故不等式f(x2)+f(-x-6)<0的解集为(-∞,-2)∪(3,+∞),故选D.9.(2019·广东六校模拟)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(2019)等于()A.-2018B.2C.0D.50答案C解析f(x)是定义域为(-∞,+∞)的奇函数,可得f(-x)=-f(x),f(1-x)=f(1+x)即有f(x+2)=f(-x),即f(x+2)=-f(x),进而得到f(x+4)=-f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(-1)=-f(1)=-2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,可得f(1)+f(2)+f(3)+…+f(2019)=504×0+2+0-2=0.故选C.10.(2019·衡水中学摸底)已知函数f(x)e x,x≤0,x,x>0(e为自然对数的底数),若关于x 的方程f(x)+a=0有两个不相等的实根,则a的取值范围是()A .a >-1B .-1<a <1C .0<a ≤1D .a <1答案C解析画出函数f (x )的图象如图所示,若关于x 的方程f (x )+a =0有两个不相等的实根,则函数f (x )与直线y =-a 有两个不同交点,由图可知-1≤-a <0,所以0<a ≤1.故选C.11.(2019·新疆昌吉教育共同体月考)若关于x 的不等式1+a cos x ≥23sin 2R 上恒成立,则实数a 的最大值为()A .-13 B.13C.23D .1答案B解析1+a cos x ≥23sin 2=23cos 2x =23(2cos 2x -1),令cos x =t ∈[-1,1],并代入不等式,则问题转化为不等式4t 2-3at -5≤0在t ∈[-1,1]+3a -5≤0,-3a -5≤0,所以-13≤a ≤13.所以实数a 的最大值为13.12.(2019·沈阳东北育才学校模拟)设函数f (x )+1|,x ≤0,4x |,x >0,若关于x 的方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23x 4的取值范围是()1,721C .(-1,+∞)-∞,72答案A解析画出函数f (x )的图象如图所示,根据对称性可知,x 1和x 2关于x =-1对称,故x 1+x 2=-2.由于|log 4x |=|log 41x |,故1x 3=x 4,x 3·x 4=1.令log 41x =1,解得x =14,所以x 3∈14,x 3(x 1+x 2)+1x 23x 4=-2x 3+1x 3,由于函数y =-2x +1x 在区间14,减函数,故-2x 3+1x 3∈1,72,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=ln x -2的定义域为________.答案[e 2,+∞)解析∵函数f (x )=ln x -2,∴ln x -2≥0,即ln x ≥ln e 2,∴x ≥e 2,∴函数f (x )=ln x -2的定义域为[e 2,+∞).14.(2019·浏阳六校联考)f (x )是定义在R 上的周期为3的奇函数,当0<x <1时,f (x )=4x ,则f (6)=________.答案-2解析由题意得-72+=-124=-2,又f (6)=f (0)=0,∴f (6)=-2.15.(2019·青岛调研)已知函数f (x )3(x +1),x >0,-x ,x ≤0,f (m )>1,则m 的取值范围是____________.答案(-∞,0)∪(2,+∞)解析若f (m )>1>0,3(1+m )>log 33≤0,-m >1,>0,+1>3≤0,m >0,解得m >2或m <0.16.已知函数f (x )2+3a ,x <0,a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰好有两个不相等的实数解,则a 的取值范围是________.答案13,23∪解析画出函数y =|f (x )|的图象如图,由函数y =f (x )是单调递减函数可知,0+3a ≥log a (0+1)+1,即a ≥13,由log a (x 0+1)+1=0得,x 0=1a -1≤2,所以当x ≥0时,y =2-x 与y =|f (x )|图象有且仅且一个交点.所以当2≥3a ,即13≤a ≤23时,函数y =|f (x )|与函数y =2-x 图象恰有两个不同的交点,即方程|f (x )|=2-x 恰好有两个不相等的实数解,结合图象可知当直线y =2-x 与函数y =x 2+3a 相切时,得x 2+x +3a -2=0.由Δ=1-4(3a -2)=0,解得a =34,此时也满足题意.综上,所求实数a 的取值范围是13,23∪三、解答题(本大题共70分)17.(10分)(2019·酒泉敦煌中学诊断)求下列函数的解析式:(1)已知2f (x -1)-f (1-x )=2x 2-1,求二次函数f (x )的解析式;(2)已知f (x -1)=x ,求f (x )的解析式.解(1)设f (x )=ax 2+bx +c (a ≠0),则f (x -1)=a (x -1)2+b (x -1)+c ,f (1-x )=a (1-x )2+b (1-x )+c ,所以2f (x -1)-f (1-x )=2ax 2-4ax +2a +2bx -2b +2c -(ax 2-2ax +a +b -bx +c )=ax 2-(2a -3b )x +a -3b +c =2x2-1,=2,a -3b =0,-3b +c =-1,=2,=43,=1,所以f (x )=2x 2+43x +1.(2)令t =x -1,t ≥-1,则x =(t +1)2,∴f (t )=(t +1)2(t ≥-1).∴f (x )的解析式为f (x )=(x +1)2,x ≥-1.18.(12分)(2019·廊坊省级示范高中联考)已知函数f (x )=log 3(ax 2-x +3).(1)若函数f (x )的定义域为R ,求a 的取值范围;(2)已知集合M =[1,3],方程f (x )=2的解集为N ,若M ∩N ≠∅,求a 的取值范围.解(1)因为函数的定义域为R ,所以ax 2-x +3>0恒成立,当a =0时,-x +3>0不恒成立,不符合题意;当a ≠0>0,=1-12a <0,解得a >112.综上所述a >112.(2)由题意可知,ax 2-x +3=9在[1,3]上有解.即a =6x 2+1x 在[1,3]上有解,设t =1x,t ∈13,1,则a =6t 2+t ,因为y =6t 2+t 在13,1上单调递增,所以y ∈[1,7].所以a ∈[1,7].19.(12分)函数f (x )对任意的a ,b ∈R 都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)判断函数f (x )是否为奇函数;(2)证明:f (x )在R 上是增函数;(3)解不等式f (3m 2-m -2)<1.(1)解当a =b =0时,解得f (0)=1,显然函数不可能是奇函数.(2)证明任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1,∵x 2-x 1>0,∴f (x 2-x 1)>1,∴f (x 2)-f (x 1)>0,∴f (x )在R 上是增函数.(3)∵f (0)=1,∴f (3m 2-m -2)<1=f (0),又f (x )在R 上递增,所以3m 2-m -2<0,解得-23<m <1,∴-23,20.(12分)已知定义在R 上的函数f (x )是偶函数,当x ≥0时,f (x )=x 2-4x +1.(1)求函数f (x )在R 上的解析式;(2)若方程m =f (x )有4个根x 1,x 2,x 3,x 4,求m 的取值范围及x 1+x 2+x 3+x 4的值.解(1)设x <0⇒-x >0⇒f (-x )=(-x )2-4(-x )+1=x 2+4x +1,由函数f (x )是偶函数,则f (x )=f (-x )=x 2+4x +1,综上f (x )2-4x +1,x ≥0,2+4x +1,x <0或f (x )=x 2-4|x |+1.(2)作出函数f (x )的图象如图所示,由图可知,当-3<m <1时,方程m =f (x )有4个根.令x 1<x 2<x 3<x 4,由x 1+x 22=-2,x 3+x 42=2,得x 1+x 2=-4,x 3+x 4=4,则x 1+x 2+x 3+x 4=0.21.(12分)(2019·荆州质检)为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产x 万件,需另投入流动成本为C (x )万元,且C (x )=2+4x ,0<x <8,x +49x -35,x ≥8,每件产品售价为10元.经市场分析,生产的产品当年能全部售完.(1)写出年利润P (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?解(1)因为每件产品售价为10元,则x 万件产品销售收入为10x 万元,依题意得,当0<x <8时,P (x )=10x 2+45=-12x 2+6x -5,当x ≥8时,P (x )=10x x +49x -5=30所以P (x )-12x 2+6x -5,0<x <8,x ≥8.(2)当0<x <8时,P (x )=-12(x -6)2+13,当x =6时,P (x )取得最大值P (6)=13,当x ≥8时,P ′(x )=-1+49x 2<0,所以P (x )为减函数,当x =8时,P (x )取得最大值P (8)=1278,因为13<1278,故当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为1278万元.22.(12分)(2019·佛山禅城区调研)已知f (x )是定义在(-1,1)上的奇函数,当x ∈(0,1)时,f (x )=2x 4x +1.(1)求f (x )在(-1,1)上的解析式;(2)若g (x )是周期为2的函数,且x ∈(-1,1)时g (x )=f (x ),求x ∈(2n ,2n +1),n ∈N 时函数g (x )的解析式.解(1)当x ∈(-1,0)时,-x ∈(0,1),因为函数f (x )为奇函数,所以f (x )=-f (-x )=-2-x4-x +1=-2x1+4x .因为f (x )是定义在(-1,1)上的奇函数,所以f (0)=0,故当x ∈(-1,1)时,f (x )的解析式为f (x )∈(0,1),x ∈(-1,0).(2)设x ∈(2n ,2n +1),则x -2n ∈(0,1),g (x -2n )=2x-2n4x -2n +1.因为g (x )周期为2,n ∈N ,所以2n 也是周期,g (x -2n )=g (x ),所以x ∈(2n,2n +1)时,g (x )=2x -2n 4x-2n+1.。
高三数学复习专题目录专题一、数列与不等式数列(1)数列(2)专题二、三角函数三角函数(1)三角函数(2)专题三、立体几何立体几何(1)立体几何(2)专题一、数列与不等式一.基础知识梳理数列:1. 了解数列的概念和几种简单的表示方法(列表、图像、通项公式)2.了解数列是自变量为正整数的一类函数.3.了解递推公式是给出数列的一种方法,能据递推公式写出前几项,同时求出通项公式.4,理解等差、等比数列的概念,掌握等差数列的通项公式与前n项公式,并能解决简单实际问题.5.体会等差数列、等比数列与一次函数,指数函数,二次函数的关系.不等式:(必修部分)1.一元二次不等式^2+^ + c>0(cz>0)与相应的函数y = ax2+bx+c(a>0\相应的方程ax2+bx +c = 0(«〉。
)之间的关系2.一元二次不等式恒成立情况小结:J G >0 [a<0 ax2 + bx + c>0(a/0)恒成立 o。
,ax2 +bx + c <0(a/0)恒成立o。
3.二元一次不等式表示的平面区域:直线I: ax + by + c = 0把直角坐标平面分成了三个部分:(1)直线/上的点(x, y)的坐标满足ax +by+ c = 0(2)直线Z一侧的平面区域内的点(x, y)^^ax + by + oO(3)直线Z另一侧的平面区域内的点(x,y)满足ox + /<y + c<0所以,只需要在直线Z的某一侧的平面区域内,任取一特殊点(将,光),从ax0+by0+c值的正负,即可判断不等式表示的平面区域。
4.线性规划:如果两个变量x,y满足一组一次不等式,求这两个变量的一个线性函数的最大值或最小值,称这个线性函数为目标函数,称一次不等式组为约束条件,像这样的问题叫作二元线性规划问题.其中,满足约束条件的解(x,y)称为可行解,由所有可行解组成的集合称为可行域,使目标函数取得最大值和最小值的可行解称为这个问题的最优解.5.基本不等式:⑴如果"eR,那么/+〃 2 2沥,(当且仅当“=。
数学总复习高考教案七篇数学总复习高考教案篇1一教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。
另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。
突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点三学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
新人教版高三数学专题总复习Word完整版2018年高考数学复习专题专题一集合、逻辑与不等式集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N* (2)0{-1,1} (3)∈{0}∉∅(4){0} (5){0}∈{0,1} (6){0}{0}∅∉⊆其中正确的关系是______.解答:(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作;N 表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.∅2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:aA.∉3.明确集合与集合的关系及符号表示:如果集合A 中任意一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集.记作:AB 或BA .⊆⊇如果集合A 是集合B 的子集,且B 中至少有一个元素不属于A ,那么,集合A 叫做集合B 的真子集.AB 或BA .4.子集的性质:①任何集合都是它本身的子集:AA ;⊆②空集是任何集合的子集:A ;∅⊆提示:空集是任何非空集合的真子集.③传递性:如果AB ,BC ,则AC ;如果AB ,BC ,则AC .⊆⊆⊆例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(UA)∩(UB)={1,9},A ∩B ={2},B ∩(UA)={4,6,8}.求集合A ,B .解:根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A ={2,3,5,7},B ={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素构成的集合叫做A 、B 的交集.记作:A ∩B .对于两个给定的集合A 、B ,把它们所有的元素并在一起构成的集合叫做A 、B 的并集.记作:A ∪B .如果集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合叫做A 在U 中的补集.记作UA .2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a}.若M ∩N =,则实数a 的取值范围是______.∅答:(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合,则b -a =______.},,0{},,1{b ab a b a =+【分析】因为,所以a +b =0或a =0(舍去,否则没有意义),},,0{},,1{b a ba b a =+a b 所以,a +b =0,=-1,所以-1∈{1,a +b ,a},a =-1,ab 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①;②Q ;③|-3|N*;④.其中正确命题的个数是( )R ∈212∉∉Q ∈-|3|(A)1 (B)2 (C)3 (D)42.下列各式中,A 与B 表示同一集合的是( )(A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C)A ={0},B = (D)A ={y |y =x2+1},B ={x |y =x2+1}∅3.已知M ={(x ,y)|x >0且y >0},N ={(x ,y)|xy >0},则M ,N 的关系是( )(A)MN (B)NM (C)M =N (D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则下式中正确的关系是( )(A)U =A ∪B (B)U =(UA)∪B (C)U =A ∪(UB) (D)U =(UA)∪(UB)二、填空题5.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =______.6.设M ={1,2},N ={1,2,3},P ={c |c =a +b ,a ∈M ,b ∈N},则集合P 中元素的个数为______.7.设全集U =R ,A ={x |x ≤-3或x ≥2},B ={x |-1<x <5},则(UA)∩B =______.8.设集合S ={a0,a1,a2,a3},在S 上定义运算为:aiaj =ak ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则a2a3=______;满足关系式(xx)a2=a0的x(x ∈S)的个数为______.⊕⊕⊕⊕⊕三、解答题9.设集合A ={1,2},B ={1,2,3},C ={2,3,4},求(A ∩B)∪C .10.设全集U ={小于10的自然数},集合A ,B 满足A ∩B ={2},(UA)∩B ={4,6,8},(UA)∩(UB)={1,9},求集合A 和B .11.已知集合A ={x |-2≤x ≤4},B ={x |x >a},①A ∩B ≠,求实数a 的取值范围;∅②A ∩B ≠A ,求实数a 的取值范围;③A ∩B ≠,且A ∩B ≠A ,求实数a 的取值范围.∅§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p 则q .逆命题:若q 则p .否命题:若p ,则q .逆否命题:若q ,则p .注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.⌝⌝⌝⌝4.充要条件如果pq ,则p 叫做q 的充分条件,q 叫做p 的必要条件.⇒如果pq 且qp ,即qp 则p 叫做q 的充要条件,同时,q 也叫做p 的充要条件.⇒⇒⇔5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例1 分别写出由下列命题构成的“p∨q”“p∧q”“p”形式的复合命题,并判断它们的真假.⌝(1)p:0∈N,q:1N;∉(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.解:(1)p∨q:0∈N,或1N;∉p∧q:0∈N,且1N;p:0N.∉⌝∉因为p真,q假,所以p∨q为真,p∧q为假,p为假.⌝(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,p为真.⌝【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则AB.解:(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若AB,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.评述:原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【分析】由定义知,若pq且qp,则p是q的充分不必要条件;⇒若pq且qp,则p是q的必要不充分条件;⇒若pq且qp,p与q互为充要条件.⇒⇒于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4 设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M ∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件解:条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x <3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}R,所以p是q的必要非充分条件,选B.⊆【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若AB 且BA,则p是q的充分非必要条件;若AB且BA,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.⊆⊆例5 命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x ∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)x∈Z,1<4x<3 (B)x∈Z,3x-1=0∃∃(C)x∈R,x2-1=0 (D)x∈R,x2+2x+2>0∀∀2.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈Ax∈B,则称AB”.那么“A不是B的子集”可用数学语言表达为( )⇒⊆(A)若x∈A但xB,则称A不是B的子集∀∉(B)若x∈A但xB,则称A不是B的子集∃∉(C)若xA但x∈B,则称A不是B的子集∃∉(D)若xA但x∈B,则称A不是B的子集∀∉二、填空题5.“p 是真命题”是“p ∨q 是假命题的”__________________条件.⌝6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“AB ”是“UBUA ”的______条件.⊆⊆8.设A 、B 为两个集合,下列四个命题:①AB 对任意x ∈A ,有xB ②ABA ∩B =⇔∉⇔∅③ABAB ④AB 存在x ∈A ,使得xB ⇔⇔∉ 其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)x ∈{x |x ∈Z},log2x >0;∃ (4).041,2≥+-∈∀x x x R 10.已知实数a ,b ∈R .试写出命题:“a2+b2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.§1-3 不等式(含推理与证明)【知识要点】1.不等式的性质.(1)如果a >b ,那么b <a ;(2)如果a >b ,且b >c ,那么a >c ;(3)如果a >b ,那么a +c >b +c(如果a +c >b ,那么a >b -c);(4)如果a >b ,c >d ,那么a +c >b +d ;(5)如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc ;(6)如果a >b >0,c >d >0,那么ac >bd ;(7)如果a >b >0,那么an >bn(n ∈N +,n >1);(8)如果a >b >0,那么;)1,N (>∈>+n x b a n n2.进行不等式关系判断时常用到的实数的性质:若a ∈R ,则.)R (0.0||;02+∈≥≥≥a a a a3.会解一元一次不等式,一元二次不等式,简单的分式不等式、绝对值不等式.简单的含参数的不等式.4.均值定理:如果a 、b ∈R +,那么当且仅当a =b 时,式中等号成立..2ab b a ≥+ 其他常用的基本不等式:如果a 、b ∈R ,那么a2+b2≥2ab ,(a -b)2≥0. 如果a 、b 同号,那么.2≥+b a a b5.合情推理之归纳推理与类比推理;演绎推理;综合法、分析法与反证法.【复习要求】1.运用不等式的性质解决以下几类问题:(1)根据给定的条件,判断给出的不等式能否成立;(2)利用不等式的性质,实数的性质以及函数的有关性质判断实数值的大小关系;(3)利用不等式的性质等判断不等式变换中条件与结论间的充分必要关系.2.熟练掌握一元一次不等式,一元二次不等式、简单的分式不等式、绝对值不等式的解法.并会解简单的含参数的不等式.3.了解合情推理和演绎推理的含义,能利用归纳和类比等进行简单的推理.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.能较为灵活的运用综合法、分析法与反证法证明数学问题.熟练运用比较法比较数与式之间的大小关系.比较法:常有“作差比较法”和“作商比较法”;综合法:从已知推导致结果的思维方法;分析法:从结果追溯到产生这一结果的原因的思维方法;反证法:由证明pq 转向证明qr …t ,而t 与假设矛盾,或与某个真命题矛盾,从而判定q 为假,进而推出q 为真的方法,叫做反证法.⇒⌝⇒⇒⇒⌝一般来讲,由分析法得到的证明思路往往用综合法的方式来书写.【例题分析】例1 若a >b >c ,则一定成立的不等式是( )A .a |c |>b |c |B .ab >acC .a -|c |>b -|c |D .cb a 111<< 【分析】关于选项A .当c =0时,a |c |>b |c |不成立.关于选项B .当a <0时,ab >ac 不成立.关于选项C .因为a >b ,根据不等式的性质a -|c |>b -|c |,正确. 关于选项D .当a >b >0>c 时,不成立.所以,选C .c b a 111<< 例2 a ,b ∈R ,下列命题中的真命题是( )A .若a >b ,则|a |>|b |B .若a >b ,则b a 11<C .若a >b ,则a3>b3D .若a >b ,则1>b a 【分析】关于选项A .当a =-1,b =-2时,|a |>|b |不成立. 关于选项B .当a >0,b <0时,不成立.ba 11< 关于选项C .因为a >b ,根据不等式的性质a3>b3,正确. 关于选项D .当b <0时,不成立.所以,选C .1>b a【评析】判断不等关系的正误,其一要掌握判断的依据,依据相关的理论判断,切忌仅凭感觉进行判断;其二要掌握判断的方法.判断不等式的理论依据参看本节的知识要点,另外,后面专题讲到的函数的相关知识尤其是函数的单调性也是解决不等式问题的非常重要的方法.判断一个不等式是正确的,就应该给出一个合理的证明(或说明),就像例1、例2对正确的选项判断那样.判断一个不等式是不正确的,应举出反例.例3 解下列不等式:(1)x2-x -1>0;(2)x2-3x +2>0;(3)2x2-3x +1≤0;(4)(5)|2x -1|<3;(6);021>--x x .1212≤--x x 解:(1)方程x2-x -1=0的两个根是结合函数y =x2-x -1的图象,可得不等式x2-x -1>0的解集为251,21±=x x }.251251|{+>-<x x x 或 (2)不等式x2-3x +2>0等价于(x -1)(x -2)>0,易知方程(x -1)(x -2)=0的两个根为x1=1,x2=2,结合函数y =x2-3x +2的图象,可得不等式x2-3x +2>0的解集为{x |x <1或x >2}.(3)不等式2x2-3x +1≤0等价于(2x -1)(x -1)≤0,以下同(2)的解法, 可得不等式的解集为}.121|{≤≤x x(4)等价于(x -1)(x -2)>0,以下同(2)的解法,可得不等式的解集为{x |x <1或x >2}.021>--x x (5)不等式|2x -1|<3等价于-3<2x -1<3,所以-2<2x <4,即-1<x <2,所以不等式|2x -1|<3的解集为{x |-1≤x <2}.(6)不等式可以整理为1212≤--x x ,021≤-+x x ,021≤-+x x 等价于以下同(4)的解法,可得不等式的解集为{x |-1≤x <2}..021021=-+<-+x x x x 或 【评析】一元一次不等式、一元二次不等式的解法要熟练掌握.其他不等式的解法适当掌握.1.利用不等式的性质可以解一元一次不等式.2.解一元二次不等式要注意函数、方程、不等式三者之间的联系,通过研究与一元二次不等式相对应的一元二次方程的根的情况、进而结合相应的二次函数的图象就可以解决一元二次不等式解集的问题了.所以,解一元二次不等式的步骤为:计算二次不等式相应的方程的判别式;求出相应的一元二次方程的根(或根据判别式说明无根);画出相应的二次函数的简图;根据简图写出二次不等式的解集.3、不等式与(x -a)(x -b)>0同解;不等式与(x -a)(x -b)<0同解;0>--bx a x 0<--b x a x 4*、不等式|f(x)|<c 与-c <f(x)<c 同解;不等式|f(x)|>c 与“f(x)>c 或f(x)<-c ”同解.在解简单的分式不等式时要注意细节,例如(5)题关于“≤”号的处理.例4 解下列关于x 的不等式;(1)ax +3<2;(2)x2-6ax +5a2≤0.解:(1)由ax +3<2得ax <-1,当a =0时,不等式解集为;∅当a >0时,不等式解集为;}1|{ax x -<当a <0时,不等式解集为.}1|{a x x -> (2)x2-6ax +5a2≤0等价于不等式(x -a)(x -5a)≤0,当a =0时,不等式解集为{x |x =0};当a >0时,不等式解集为{x |a ≤x ≤5a};当a <0时,不等式解集为{x |5a ≤x ≤a}.【评析】含参数的不等式的解法与不含参数的不等式的解法、步骤是完全一致的.要注意的是,当进行到某一步骤具有不确定性时,需要进行分类讨论.如(2)的解决过程中,当解出方程(x -a)(x -5a)=0的两根为x1=a ,x2=5a 之后,需要画出二次函数y =x2-6ax +5a2的草图,这时两根a 与5a 的大小不定,需要讨论,当分a =0,a >0,a <0三种情况之后,就可以在各自情况下确定a 与5a 的大小,画出二次函数y =x2-6ax +5a2的草图写出解集了.例5 已知a >b >0,c <d <0,m <0.求证:⋅->-db mc a m 证明:方法一(作差比较)由已知b -a <0,c -d <0,又m <0,所以m[(b -a)+(c -d)]>0,因为a >b >0,c <d <0,所以a -c >0,b -d >0, 所以,所以0))(()]()[(>---+-d b c a d c a b m ⋅->->---db mc a md b m c a m 即,0 方法二因为c <d <0,所以c -d <0,又a >b >0,所以a -b >0,所以a -b >c -d ,所以a -c >b -d >0,所以,又因为m <0,所以d b c a -<-11⋅->-db mc a m 例6 已知a +b +c =0,a >b >c ,求证:(1)a >0;(2).2->a c证明:(1)假设a ≤0,因为a >b >c ,所以b <0,c <0.所以a +b +c <0,与a +b +c =0矛盾.(2)因为b =-a -c ,a >b ,所以,所以2a >-c ,又a >0,所以,所以a c ->2.2->a c 例7 已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 证明:假设(1-a)b ,(1-b)c ,(1-c)a 均大于,41 即,41)1(,41)1(,41)1(>->->-a c c b b a 因为a ,b ,c ∈(0,1),所以1-a ,1-b ,1-c ∈(0,1),所以,同理(1-b)+c >1,(1-c)+a >1,1)1(2)1(>-≥+-b a b a所以(1-a)+b +(1-b)+c +(1-c)+a >3,即0>0,矛盾.所以(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 【评析】证明常用的方法有比较法、综合法、分析法与反证法等.证明不等式也是如此.1、例5中的方法一所用到的比较法从思维、书写的角度都较为容易,也相对易于把握,要熟练掌握.2、例5中的方法二所用到的综合法是一般证明题常用的方法,其书写方法简明、易读,但要注意的是,这样的题的思路常常是分析法.比如,例5中的方法二的思路我们可以认为是这样得到的:欲证只需证明m(b -d)>m(a -c)(因为b -d >0,a -c >0),即只需证明b -d <a -c ,即只需证明a -b >c -d ,,db mc a m ->- 而由已知a -b >0,c -d <0,所以可以循着这个思路按照相反的顺序书写.所以,在很多情况下,分析法更是思考问题的方法,而综合法更是一种书写方法.3、适合用反证法证明的常见的命题一般是非常显而易见的问题(如例6(1))、否定式的命题、存在性的命题、含至多至少等字样的命题(如例7)等等.证明的步骤一般是:(1)假设结论的反面是正确的;(2)推出矛盾的结论;(3)得出原来命题正确的结论.例8 根据图中图形及相应点的个数找规律,第8个图形相应的点数为______.【分析】第一个图有1行,每行有1+2个点;第二个图有2行,每行有2+2个点;第三个图有3行,每行有3+2个点;……第八个图有8行,每行有8+2个点,所以共有8×10=80个点.答:80.练习1-3一、选择题1.若则下列各式正确的是( )011>>b a (A)a >b(B)a <b (C)a2>b2 (D)2211b a < 2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a2<b2 (B)a2b <ab2 (C) (D)b a ab 2211<b a a b < 3.已知A ={x ||x |<a},B ={x |x >1},且A ∩B =,则a 的取值范围是( )∅(A){a |a ≤1} (B){a |0≤a ≤1} (C){a |a <1} (D){a |0<a <1}4.设集合M ={1,2,3,4,5,6},S1,S2,…,Sk 都是M 的含有两个元素的子集,且满足:对任意的Si ={ai ,bi}、Sj ={aj ,bj}(i ≠j ,i ,j ∈{1,2,3,…,k})都有,(min{x ,y}表示两个数x ,y 中的较小者),则k 的最大值是( )},min{},min{j j j j i i i i a b b a a bb a =/ (A)10 (B)11 (C)12 (D)13二、填空题5.已知数列{an}的第一项a1=1,且,请计算出这个数列的前几项,并据此归纳出这个数列的通项公式an =______.),3,2,1(11 =+=+n a aa n n n6.不等式x2-5x +6<0的解集为____________.7.设集合A ={x ∈R ||x |<4},B ={x ∈R |x2-4x +3>0},则集合{x ∈R |x ∈A ,且xA ∩B}=____________.∉8.设a ∈R 且a ≠0,给出下面4个式子:①a3+1;②a2-2a +2;③;④a a 1+⋅+221aa 其中恒大于1的是______.(写出所有满足条件式子的序号)三、解答题9.解下列不等式:(1)2x2+x >0;(2)x2+3x +1<0;(3);(4)|2-x |<3;(5).032<-x x 21>-x x 10.已知a +b +c =0,求证:ab +bc +ca ≤0.11.解下列关于x 的不等式:(1)x2-2ax -3a2<0;(2)ax2-x >0;习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( )(A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x |(C)若x 是负数,则x ≠|x | (D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N)∪P (B)(M ∩N)∩P(C)(M ∩N)∪(UP) (D)(M ∩N)∩(UP)3.“”是“对任意的正数”的( )81=a 12,≥+xa x x(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a&b ∈P ”,则运算“&”可以是( )(A)加法 (B)减法 (C)乘法 (D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )(A)ab >ac (B)c(b -a)<0 (C)cb2<ab2 (D)ac(a -c)<0二、填空题6.若全集U ={0,1,2,3}且UA ={2},则集合A =______.7.命题“x ∈A ,但xA ∪B ”的否定是____________.∃∉8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A},则B =____________.9.已知集合A ={x |x2-3x +2<0},B ={x |x <a},若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a2+b2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)三、解答题11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a2+b2的大小.13.设a ≠b ,解关于x 的不等式:a2x +b2(1-x)≥[ax +b(1-x)]2.14.设数集A 满足条件:①AR ;②0A 且1A ;③若a ∈A ,则⊆∉∉.11A a ∈- (1)若2∈A ,则A 中至少有多少个元素;(2)证明:A 中不可能只有一个元素.专题一 集合、逻辑与不等式参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A 表示非负偶数集,集合B 表示能被4整除的自然数集,所以{正奇数}(UB),从而U =A ∪(UB).二、填空题5.{x |x <4} 6.4个 7.{x |-1<x <2} 8.a1;2个(x 为a1或a3).三、解答题9.(A ∩B)∪C ={1,2,3,4}10.分析:画如图所示的韦恩图:得A ={0,2,3,5,7},B ={2,4,6,8}.11.答:①a <4;②a ≥-2;③-2≤a <4提示:画数轴分析,注意a 可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件 6.若|x |≤1,则x ≥-1 7.充要条件 8.④ 提示:8.因为AB ,即对任意x ∈A ,有x ∈B .根据逻辑知识知,AB ,即为④.⊆ 另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab =0,则a2+b2=0;是假命题;例如a =0,b =1否命题:若a2+b2≠0,则ab ≠0;是假命题;例如a =0,b =1逆否命题:若ab ≠0,则a2+b2≠0;是真命题;因为若a2+b2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.练习1-3一、选择题1.B 2.C 3.A 4.B二、填空题5. 6.{x |2<x <3} 7.{x ∈R |1≤x ≤3| 8.④n1 三、解答题9.答:(1);(2);}210|{-<>x x x 或}253253|{+-<<--x x (3);(4){x |-1<x <5};(5).}230|{<<x x }310|{<<x x 10.证明:ab +bc +ca =b(a +c)+ac =-(a +c)(a +c)+ac =-a2-ac -c2所以ab +bc +ca ≤0.11.解:(1)原不等式(x +a)(x -3a)<0.⇔分三种情况讨论:①当a <0时,解集为{x |3a <x <-a};②当a =0时,原不等式x2<0,解集为;⇔∅③当a >0时,解集为{x |-a <x <3a}.(2)不等式ax2-x >0x(ax -1)>0.⇔分三种情况讨论:①当a =0时,原不等式-x >0,解集为{x |x <0};⇔②当a >0时,x(ax -1)>0x(x -)>0,解集为;⇔a 1}10|{ax x x ><或 ③当a <0时,x(ax -1)>0x(x -)<0,解集为.⇔a 1}01|{<<x a x 习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③.∀ 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式即21<x ,021,021<-<-xx x 所以,此不等式等价于x(2x -1)>0,解得x <0或,012>-x x 21>x 所以,原不等式的解集为{x |x <0或}.21>x 12.解:(1)由a +b =1得a =1-b ,因为0<a <b , 所以1-b >0且1-b <b ,所以.121<<b(2)a2+b2-b =(1-b)2+b2-b =2b2-3b +1=⋅--81)43(22b 因为,所以121<<b ,081)43(22<--b即a2+b2<b .13.解:原不等式化为(a2-b2)x +b2≥(a -b)2x2+2b(a -b)x +b2,移项整理,得(a -b)2(x2-x)≤0.因为a ≠b ,故(a -b)2>0,所以x2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,,2三个元素.21 (2)假设A 中只有一个元素,设这个元素为a ,由已知,则.即a2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.A a∈-11a a -=11专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a2+2a +2=-1,即a2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( )(A) (B)22)(,t y x y ==2|,|t y x y ==(C) (D)1,112+=--=x y x x y x x y x y 2,== 【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1)(2);11--=x y ;3212-+=x x y (3) (4);)1()3lg(0-+-=x xx y ;2|2|12---=x x y 解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}.。
专题一集合与常用逻辑用语1.1 集合基础篇考点一集合及其关系考向一集合元素个数问题1.(2023届福建漳州质检,1)已知集合A={4,5,6,7},B={6,7,8},全集U=A∪B,则集合∁U(A∩B)中的元素个数为( ) A.1 B.2 C.3 D.4答案C2.(2017课标Ⅲ,1,5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为( ) A.3 B.2 C.1 D.0答案B3.(2020课标Ⅲ文,1,5分)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为( ) A.2 B.3 C.4 D.5答案B4.(2020课标Ⅲ理,1,5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B 中元素的个数为( ) A.2 B.3 C.4 D.6答案C5.(2022山东聊城二模,1)已知集合A={0,1,2},B={ab|a∈A,b∈A},则集合B中元素的个数为( ) A.2 B.3 C.4 D.5答案C6.(2022广东深圳光明二模,1)已知集合A={x∈N|1<x<log2k},若集合A中至少有2个元素,则( ) A.k≥16 B.k>16 C.k≥8 D.k>8答案D考向二集合子集个数问题1.(2023届沈阳四中月考,1)已知集合A={x∈N|-1<x<ln k}共有8个子集,则实数k的取值范围为( ) A.(0,3] B.(e,e3]C.(e2,e3]D.(e3,e4]答案C2.(2022江苏苏州期初调研,1)已知M、N为R的子集,若M∩∁R N=⌀,N={1,2},则满足题意的M的个数为( ) A.1 B.2 C.3 D.4答案D3.(2022重庆实验外国语学校入学考,1)已知集合A={x∈Z|x2-4x-5<0},集合B={x||x|<2},则A∩B的子集个数为( ) A.4 B.5 C.7 D.15答案A4.(2021江苏扬州二中检测,2)已知集合A={x|x2+x=0,x∈R},则满足A∪B={0,-1,1}的集合B的个数是( ) A.4 B.3 C.2 D.1答案A5.(2022石家庄二中模拟,1)已知集合A={(x,y)|y=x2},B={(x,y)|y=√x},则A∩B的真子集个数为( ) A.1 B.2 C.3 D.4答案C考向三集合间基本关系的判定1.(2022江苏南通模拟检测,2)设集合A={x|x2-3x+2<0},B={x|1<x<3},则( )A.A=BB.A⊇BC.A⊆BD.A∩B=⌀答案C2.(2022武汉模拟,2)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( ) A.1 B.2 C.3 D.4答案D3.(2022湖北华中师大一附中模拟,3)若集合A∪B=B∩C,则( )A.A⊆B⊆CB.B⊆C⊆AC.C⊆B⊆AD.B⊆A⊆C答案A4.(2022山东潍坊三模,1)已知集合A,B,若A={-1,1},A∪B={-1,0,1},则一定有( )A.A⊆BB.B⊆AC.A∩B=⌀D.0∈B答案D考点二集合的基本运算考向一求集合的交集、并集1.(2023届贵州遵义新高考协作体入学质量监测,1)若集合A={x|log2(x-2)<0},B={x|x2-3x≤0},则A∪B=( ) A.(2,3] B.(-∞,3]C.(2,3)D.[0,3]答案D≤0},则2.(2023届福建龙岩一中月考,1)已知集合A={x|y=√2−x2},B={x|x−2x+1A∩B=( )A.(-1,√2]B.[-1,√2]C.[-1,2]D.[-√2,2]答案A3.(2023届山西长治质量检测,2)已知集合A={x|x2≤9,x∈R},B={x|√x−1≤2,x∈Z},则A∩B=( ) A.(1,3) B.[1,3]C.(1,3]D.{1,2,3}答案D4.(2022新高考Ⅰ,1,5分)若集合M={x|√x<4},N={x|3x≥1},则M∩N=( )≤x<2}A.{x|0≤x<2}B.{x|13≤x<16}C.{x|3≤x<16}D.{x|13答案D},则A∩B=( ) 5.(2022全国甲文,1,5分)设集合A={-2,-1,0,1,2},B={x|0≤x<52A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案A6.(2021新高考Ⅰ,1,5分)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=( )A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案B7.(2022浙江,1,4分)设集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案D8.(2022新高考Ⅱ,1,5分)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=( )A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案B9.(2021全国甲文,1,5分)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=( )A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案B10.(2021全国甲理,1,5分)设集合M={x|0<x<4},N={x|13≤x≤5},则M∩N=( )A.{x|0<x≤13} B.{x|13≤x<4}C.{x|4≤x<5}D.{x|0<x≤5}答案B11.(2022山东临沂二模,2)设集合A={x|-2≤x≤1},B={y|y=2x,x∈A},则A∩B=( )A.⌀B.[14,1]C.[-2,0)D.(0,+∞)答案B考向二集合的交、并、补混合运算1.(2023届浙南名校联盟联考一,5)设全集U=R,集合A={x|x2-2x-8<0},B={2,3,4,5},则(∁U A)∩B=( ) A.{2} B.{2,3}C.{4,5}D.{3,4,5}答案C2.(2022全国甲理,3,5分)设全集U={-2,-1,0,1,2,3},集合A={-1,2},B={x|x2-4x+3=0},则∁U(A∪B)=( ) A.{1,3} B.{0,3}C.{-2,1}D.{-2,0}答案D3.(2021新高考Ⅱ,2,5分)若全集U={1,2,3,4,5,6},集合A={1,3,6},B={2,3,4},则A∩∁U B=( ) A.{3} B.{1,6}C.{5,6}D.{1,3}答案B4.(2021全国乙文,1,5分)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M ∪N)=( ) A.{5} B.{1,2}C.{3,4}D.{1,2,3,4}答案A5.(2022福建宁化一中月考,1)设集合A={x|x2-3x-4≤0},B={x|log2x>1},U=R,则(∁U A)∪B=( ) A.{x|x>4} B.{x|x>2或x<-1}C.{x|x>4或x<-1}D.{x|x<-1}答案B6.(2017天津理,1,5分)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,6}D.{x∈R|-1≤x≤5}答案B7.(2021重庆二模,1)已知集合A={x|-2<x≤2},B={x|-1<x≤1},则下列结论正确的是( )A.A∩B=AB.B⊆(∁R A)C.A∩(∁R B)=⌀D.A∪(∁R B)=R答案D8.(2023届福建龙岩一中月考,13)已知集合A={x|log2x<2},则∁R A=.答案(-∞,0]∪[4,+∞)综合篇考法一集合间基本关系的求解方法考向一借助Venn图或数轴判断两集合关系1.(2021全国乙理,2,5分)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A.⌀B.SC.TD.Z答案C2.(2021广州一模,1)若集合M={x||x|≤1},N={y|y=x2,|x|≤1},则( )A.M=NB.M⊆NC.N⊆MD.M∩N=⌀答案C3.(2022山东济宁二模,1)设集合A={x|log0.5(x-1)>0},B={x|2x<4},则( )A.A=BB.A⊇BC.A∩B=BD.A∪B=B答案D4.(2022山东枣庄一模,2)已知集合A={y|y=2cos x,x∈R},则满足B⫋A的集合B可以是( )A.[-2,2]B.[-2,3]C.[-1,1]D.R答案C考向二由集合的关系求参数的值(取值范围)1.(2022湖南新高考教学教研联盟联考,2)已知集合A={x|-2<x<1},集合B={x|-m≤x≤m},若A⊆B,则m的取值范围是( ) A.(0,1) B.(0,2]C.[1,+∞)D.[2,+∞)答案D2.(2021杭州高级中学期中,1)已知集合M={x|y=ln(3+2x-x2)},N={x|x>a},若M⊆N,则实数a的取值范围是( ) A.[3,+∞) B.(3,+∞)C.(-∞,-1]D.(-∞,-1)答案C3.(2021河北张家口宣化一中模拟,1)已知集合A={x|x2+2ax-3a2=0},B={x|x2-3x>0},若A⊆B,则实数a的取值范围为( )A.{0}B.{-1,3}C.(-∞,0)∪(3,+∞)D.(-∞,-1)∪(3,+∞)答案D4.(多选)(2021广东肇庆统测三,10)已知集合A={x∈R|x2-3x-18<0},B={x∈R|x2+ax+a2-27<0},则下列命题中正确的是( )A.若A=B,则a=-3B.若A⊆B,则a=-3C.若B=⌀,则a≤-6或a≥6D.若B⫋A,则-6<a≤-3或a≥6答案ABC5.(2022浙江舟山中学模拟,4)若集合A={x|2a+1≤x≤3a-5},B={x|5≤x≤16},则能使A⊆B成立的所有a组成的集合为( )A.{a|2≤a≤7}B.{a|6≤a≤7}C.{a|a≤7}D.⌀答案C,1},又可表示成6.(2022河北邯郸模拟,13)含有三个实数的集合既可表示成{a,ba{a2,a+b,0},则a2 021+b2 022=.答案-17.(2022福建厦门二模,13)集合A=[1,6],B={x|y=√x−a},若A⊆B,则实数a的取值范围是.答案(-∞,1]8.(2023届江苏南京、镇江学情调查,17)集合A={x|x2-6x-7≤0},B={x|m+1<x<2m-1}. (1)若m=5,求A∪B;(2)若A ∩B =B ,求实数m 的取值范围. 解析 A ={x |x 2-6x -7≤0}={x |-1≤x ≤7}.(1)当m =5时,B ={x |6<x <9},所以 A ∪B ={x |-1≤x <9}. (2)若A ∩B =B ,则B ⊆A.当B =⌀时,m +1≥2m -1,即m ≤2,B ⊆A ,符合题意; 当B ≠⌀时,则有{m +1<2m −1,m +1≥−1,2m −1≤7,解得2<m ≤4.综上所述,m ≤4.故m 的取值范围是{m |m ≤4}.考法二 集合运算问题的求解方法考向一 利用Venn 图、数轴解决集合的运算问题1.(2023届长沙长郡中学月考,1)已知全集U =R,集合A ={2,3,4},集合B ={0,2,4,5},则图中的阴影部分表示的集合为( )A.{2,4}B.{0}C.{5}D.{0,5} 答案 D2.(2023届湖北摸底联考,2)已知全集U =A ∪B =(0,2],A ∩∁U B =(1,2],则B = ( )A.(0,1]B.(0,2)C.(0,1)D.⌀ 答案 A3.(2022山东泰安三模,1)已知集合M ={x |lg (x -1)≤0},N ={x ||x -1|<1},则M ∩N = ( ) A.(0,2] B.(0,2) C.(1,2) D.(1,2] 答案 C4.(2022湖北荆州中学三模,2)设集合A 、B 均为U 的子集,如图,A ∩(∁U B )表示区域( )A.ⅠB.ⅡC.ⅢD.Ⅳ 答案 B5.(2022山东日照三模,1)集合A ={x |-1≤x <2},B ={x |x >1},则A ∩(∁R B )=( )A.{x|-1≤x<1}B.{x|-1≤x≤1}C.{x|1≤x<2}D.{x|x<2}答案B6.(2022重庆涪陵实验中学期中,3)已知集合M={x|x2-3x-10<0},N={x|-3≤x≤3},且M、N 都是全集R的子集,则如图所示的韦恩图中阴影部分所表示的集合为( )A.{x|3<x≤5}B.{x|x<-3或x>5}C.{x|-3≤x≤-2}D.{x|-3≤x≤5}答案C7.(多选)(2022长沙一中4月模拟,9)图中阴影部分用集合符号可以表示为( )A.B∩(A∪C)B.∁U B∩(A∪C)C.B∩∁U(A∪C)D.(A∩B)∪(B∩C)答案AD考向二由集合的基本运算求参数值(范围)1.(2023届重庆南开中学月考,3)设集合A={x|(x-1)(x+2)≥0},B={x|x>a},且A∪B=R,则a的取值范围是( ) A.a>-2 B.a>1 C.a≤1 D.a≤-2答案D2.(2022湖南师大附中三模,1)已知集合A={1,2,3},B={x|x2-6x+m=0},若A∩B={2},则B=( ) A.{2,8} B.{2,4} C.{2,3} D.{2,1}答案B3.(2022山东威海模拟,1)设集合A={x|x2-2x-3<0},B={x|2x-a<0},且A∩B={x|-1<x<1},则a=( ) A.-1 B.-2 C.1 D.2答案D4.(2022武汉模拟,1)集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},如果A ∪B =A ,则实数a 的取值范围为 ( )A.{a |a ≤1}B.{a |a <-1或a =1}C.{a |a ≤-1}D.{a |a ≤-1或a =1} 答案 D5.(2022西安检测,2)已知集合A ={x |x 2-3x -4=0},B ={x |a <x <a 2},若A ∩B =⌀,则实数a 的取值范围是 ( )A.(-∞,-1]B.[4,+∞)C.(-∞,-1)∪(2,4)D.[-1,2]∪[4,+∞) 答案 D6.(2022广东潮州三模,13)已知集合A ={−1,12},B ={x |mx -1=0},若A ∩B =B ,则所有实数m组成的集合是 . 答案 {-1,0,2}7.(2021天津联考,16)已知集合A ={x |x 2-5x -6<0},B ={x |m +1≤x ≤2m -1,m ∈R}. (1)若m =4,求集合∁R A ,集合A ∪∁R B ; (2)若A ∪B =A ,求实数m 的取值范围.解析 (1)A ={x |-1<x <6},则∁R A ={x |x ≤-1或x ≥6}.又∁R B ={x |x <5或x >7},因此A ∪∁R B ={x |x <6或x >7}.(2)因为A ∪B =A ,所以B ⊆A.当B =⌀时,m +1>2m -1,则m <2;当B ≠⌀时,由题意得{2m −1≥m +1,2m −1<6,m +1>−1,解得2≤m <72.综上,实数m 的取值范围是(−∞,72).。
2024年高考数学总复习第三章《导数及其应用》测试卷及答案解析(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知曲线y=f(x)在x=5处的切线方程是y=-x+5,则f(5)与f′(5)分别为() A.5,-1B.-1,5C.-1,0D.0,-1答案D解析由题意可得f(5)=-5+5=0,f′(5)=-1,故选D.2.已知函数f(x)=x sin x+ax,且f1,则a等于()A.0B.1C.2D.4答案A解析∵f′(x)=sin x+x cos x+a,且f1,∴sin π2+π2cosπ2+a=1,即a=0.3.若曲线y=mx+ln x在点(1,m)处的切线垂直于y轴,则实数m等于() A.-1B.0C.1D.2答案A解析f(x)的导数为f′(x)=m+1x,曲线y=f(x)在点(1,m)处的切线斜率为k=m+1=0,可得m=-1.故选A.4.已知f1(x)=sin x+cos x,f n+1(x)是f n(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,f n+1(x)=f n′(x),n∈N*,则f2020(x)等于()A.-sin x-cos x B.sin x-cos xC.-sin x+cos x D.sin x+cos x答案B解析∵f1(x)=sin x+cos x,∴f2(x)=f1′(x)=cos x-sin x,∴f3(x)=f2′(x)=-sin x-cos x,∴f4(x)=f3′(x)=-cos x+sin x,∴f5(x)=f4′(x)=sin x+cos x=f1(x),∴f n(x)是以4为周期的函数,∴f2020(x)=f4(x)=sin x-cos x,故选B.5.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+ln x(其中e为自然对数的底数),则f′(e)等于()A .1B .-1C .-eD .-e -1答案D解析已知f (x )=2xf ′(e)+ln x ,其导数f ′(x )=2f ′(e)+1x,令x =e ,可得f ′(e)=2f ′(e)+1e ,变形可得f ′(e)=-1e ,故选D.6.函数y =12x 2-ln x 的单调递减区间为()A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)答案B解析由题意知,函数的定义域为(0,+∞),又由y ′=x -1x≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].7.(2019·沈阳东北育才学校模拟)已知定义在(0,+∞)上的函数f (x )=x 2+m ,g (x )=6ln x -4x ,设两曲线y =f (x )与y =g (x )在公共点处的切线相同,则m 值等于()A .5B .3C .-3D .-5答案D解析f ′(x )=2x ,g ′(x )=6x -4,令2x =6x-4,解得x =1,这就是切点的横坐标,代入g (x )求得切点的纵坐标为-4,将(1,-4)代入f (x )得1+m =-4,m =-5.故选D.8.(2019·新乡模拟)若函数f (x )=a e x +sin x 在-π2,0上单调递增,则a 的取值范围为()B .[-1,1]C .[-1,+∞)D .[0,+∞)答案D解析依题意得,f ′(x )=a e x +cos x ≥0,即a ≥-cos xe x 对x ∈-π2,0恒成立,设g (x )=-cos xe x ,x ∈-π2,0,g ′(x )g ′(x )=0,则x =-π4,当x ∈-π2,-g ′(x )<0;当x -π4,0时,g ′(x )>0,故g (x )max =g (0,则a ≥0.故选D.9.(2019·河北衡水中学调研)如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为()A.2000π9B.4000π27C .81πD .128π答案B解析小圆柱的高分为上下两部分,上部分同大圆柱一样为5,下部分深入底部半球内设为h (0<h <5),小圆柱的底面半径设为r (0<r <5),由于r ,h 和球的半径5满足勾股定理,即r 2+h 2=52,所以小圆柱体积V =πr 2(h +5)=π(25-h 2)(h +5)(0<h <5),求导V ′=-π(3h -5)·(h +5),当0<h ≤53时,体积V 单调递增,当53<h <5时,体积V 单调递减.所以当h =53时,小圆柱体积取得最大值,V max ==4000π27,故选B.10.(2019·凉山诊断)若对任意的0<x 1<x 2<a 都有x 2ln x 1-x 1ln x 2<x 1-x 2成立,则a 的最大值为()A.12B .1C .eD .2e答案B解析原不等式可转化为1+ln x 1x 1<1+ln x 2x 2,构造函数f (x )=1+ln x x ,f ′(x )=-ln xx2,故函数在(0,1)上导数大于零,单调递增,在(1,+∞)上导数小于零,单调递减.由于x 1<x 2且f (x 1)<f (x 2),故x 1,x 2在区间(0,1)上,故a 的最大值为1,故选B.11.(2019·洛阳、许昌质检)设函数y =f (x ),x ∈R 的导函数为f ′(x ),且f (x )=f (-x ),f ′(x )<f (x ),则下列不等式成立的是(注:e 为自然对数的底数)()A .f (0)<e -1f (1)<e 2f (2)B .e -1f (1)<f (0)<e 2f (2)C .e 2f (2)<e -1f (1)<f (0)D .e 2f (2)<f (0)<e -1f (1)答案B解析设g (x )=e -x f (x ),∴g ′(x )=-e -x f (x )+e -x f ′(x )=e -x (f ′(x )-f (x )),∵f ′(x )<f (x ),∴g ′(x )<0,∴g (x )为减函数.∵g (0)=e 0f (0)=f (0),g (1)=e -1f (1),g (-2)=e 2f (-2)=e 2f (2),且g (-2)>g (0)>g (1),∴e -1f (1)<f (0)<e 2f (2),故选B.12.(2019·廊坊省级示范高中联考)已知函数f (x )=-13x 3-12x 2+ax -b 的图象在x =0处的切线方程为2x -y -a =0,若关于x 的方程f (x 2)=m 有四个不同的实数解,则m 的取值范围为()A.-323,-B.-2-323,-2答案D解析由函数f (x )=-13x 3-12x 2+ax -b ,可得f ′(x )=-x 2-x +a ,则f (0)=-b =-a ,f ′(0)=a =2,则b =2,即f (x )=-13x 3-12x 2+2x -2,f ′(x )=-x 2-x +2=-(x -1)(x +2),所以函数f (x )在(-2,1)上单调递增,在(-∞,-2),(1,+∞)上单调递减,又由关于x 的方程f (x 2)=m 有四个不同的实数解,等价于函数f (x )的图象与直线y =m 在x ∈(0,+∞),上有两个交点,又f (0)=-2,f (1)=-56,所以-2<m <-56,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.(2019·陕西四校联考)已知函数f (x )=ln x +2x 2-4x ,则函数f (x )的图象在x =1处的切线方程为________________.答案x -y -3=0解析∵f (x )=ln x +2x 2-4x ,∴f ′(x )=1x +4x -4,∴f ′(1)=1,又f (1)=-2,∴所求切线方程为y -(-2)=x -1,即x -y -3=0.14.已知函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.答案-1e2,解析f ′(x )=ln x +1x (x -a )=ln x +1-ax,函数f (x )=(x -a )ln x (a ∈R ),若函数f (x )存在三个单调区间,则f ′(x )有两个变号零点,即f ′(x )=0有两个不等实根,即a =x (ln x +1)有两个不等实根,转化为y =a 与y =x (ln x +1)的图象有两个不同的交点.令g (x )=x (ln x +1),则g ′(x )=ln x +2,令ln x +2=0,则x =1e 2,即g (x )=x (ln x +1)[g (x )]min =-1e 2,当x →0时,g (x )→0,当x →+∞时,f (x )→+∞,所以结合f (x )的图象(图略)可知a -1e 2,15.(2019·山师大附中模拟)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数,f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.答案-1,12解析由函数f (x )=x 3-2x +e x -1e x f ′(x )=3x 2-2+e x +1e x ≥-2+e x +1ex ≥-2+2e x ·1e x=0,当且仅当x =0时等号成立,可得f (x )在R 上递增,又f (-x )+f (x )=(-x )3+2x +e -x -e x +x 3-2x +e x -1e x 0,可得f (x )为奇函数,则f (a -1)+f (2a 2)≤0,即有f (2a 2)≤0-f (a -1)=f (1-a ),即有2a 2≤1-a ,解得-1≤a ≤12.16.(2019·湖北黄冈中学、华师附中等八校联考)定义在R 上的函数f (x )满足f (-x )=f (x ),且对任意的不相等的实数x 1,x 2∈[0,+∞)有f (x 1)-f (x 2)x 1-x 2<0成立,若关于x 的不等式f (2mx -ln x-3)≥2f (3)-f (-2mx +ln x +3)在x ∈[1,3]上恒成立,则实数m 的取值范围是______________.答案12e ,1+ln 36解析∵函数f (x )满足f (-x )=f (x ),∴函数f (x )为偶函数.又f (2mx -ln x -3)≥2f (3)-f (-2mx +ln x +3)=2f (3)-f (2mx -ln x -3),∴f (2mx -ln x -3)≥f (3).由题意可得函数f (x )在(-∞,0)上单调递增,在[0,+∞)上单调递减.∴|2mx -ln x -3|≤3对x ∈[1,3]恒成立,∴-3≤2mx -ln x -3≤3对x ∈[1,3]恒成立,即ln x2x ≤m ≤ln x +62x对x ∈[1,3]恒成立.令g (x )=ln x2x ,x ∈[1,3],则g ′(x )=1-ln x 2x 2∴g (x )在[1,e ]上单调递增,在(e,3]上单调递减,∴g (x )max =g (e)=12e .令h (x )=ln x +62x ,x ∈[1,3],则h ′(x )=-5-ln x2x 2<0,∴h (x )在[1,3]上单调递减,∴h (x )min =h (3)=6+ln 36=1+ln 36.综上可得实数m 的取值范围为12e ,1+ln 36.三、解答题(本大题共70分)17.(10分)(2019·辽宁重点高中联考)已知函数f (x )=x 3+mx 2-m 2x +1(m 为常数,且m >0)有极大值9.(1)求m 的值;(2)若斜率为-5的直线是曲线y =f (x )的切线,求此直线方程.解(1)f ′(x )=3x 2+2mx -m 2=(x +m )(3x -m )=0,令f ′(x )=0,则x =-m 或x =13m ,当x 变化时,f ′(x )与f (x )的变化情况如下表:f ′(x )+0-0+f (x )增极大值减极小值增从而可知,当x =-m 时,函数f (x )取得极大值9,即f (-m )=-m 3+m 3+m 3+1=9,∴m =2.(2)由(1)知,f (x )=x 3+2x 2-4x +1,依题意知f ′(x )=3x 2+4x -4=-5,∴x =-1或x =-13,又f (-1)=6,=6827,所以切线方程为y -6=-5(x +1)或y -6827=-即5x +y -1=0或135x +27y -23=0.18.(12分)(2019·成都七中诊断)已知函数f (x )=x sin x +2cos x +ax +2,其中a 为常数.(1)若曲线y =f (x )在x =π2处的切线斜率为-2,求该切线的方程;(2)求函数f (x )在x ∈[0,π]上的最小值.解(1)求导得f ′(x )=x cos x -sin x +a ,由f a -1=-2,解得a =-1.此时2,所以该切线的方程为y -2=-2x +y -2-π=0.(2)对任意x ∈[0,π],f ″(x )=-x sin x ≤0,所以f ′(x )在[0,π]内单调递减.当a ≤0时,f ′(x )≤f ′(0)=a ≤0,∴f (x )在区间[0,π]上单调递减,故f (x )min =f (π)=a π.当a ≥π时,f ′(x )≥f ′(π)=a -π≥0,∴f (x )在区间[0,π]上单调递增,故f (x )min =f (0)=4.当0<a <π时,因为f ′(0)=a >0,f ′(π)=a -π<0,且f ′(x )在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x 0∈(0,π),使得f ′(x 0)=0,且f (x )在[0,x 0]上单调递增,在[x 0,π]上单调递减.故f (x )的最小值等于f (0)=4和f (π)=a π中较小的一个值.①当4π≤a <π时,f (0)≤f (π),故f (x )的最小值为f (0)=4.②当0<a <4π时,f (π)≤f (0),故f (x )的最小值为f (π)=a π.综上所述,函数f (x )的最小值f (x )min,a ≥4π,π,a <4π.19.(12分)(2019·武汉示范高中联考)已知函数f (x )=4ln x -mx 2+1(m ∈R ).(1)若函数f (x )在点(1,f (1))处的切线与直线2x -y -1=0平行,求实数m 的值;(2)若对于任意x ∈[1,e ],f (x )≤0恒成立,求实数m 的取值范围.解(1)∵f (x )=4ln x -mx 2+1,∴f ′(x )=4x -2mx ,∴f ′(1)=4-2m ,∵函数f (x )在(1,f (1))处的切线与直线2x -y -1=0平行,∴f ′(1)=4-2m =2,∴m =1.(2)∵对于任意x ∈[1,e ],f (x )≤0恒成立,∴4ln x -mx 2+1≤0,在x ∈[1,e ]上恒成立,即对于任意x ∈[1,e ],m ≥4ln x +1x 2恒成立,令g (x )=4ln x +1x 2,x ∈[1,e ],g ′(x )=2(1-4ln x )x 3,令g ′(x )>0,得1<x <14e ,令g ′(x )<0,得14e <x <e ,当x 变化时,g ′(x ),g (x )的变化如下表:x 14(1,e )14e14(e ,e)g ′(x )+0-g (x )极大值∴函数g (x )在区间[1,e ]上的最大值g (x )max =g (14e )=141244ln e 1(e )+=2e e ,∴m ≥2ee,即实数m 的取值范围是2ee ,+20.(12分)已知函数f (x )=ln x -ax (ax +1),其中a ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围.解(1)依题意知,函数f (x )的定义域为(0,+∞),且f ′(x )=1x -2a 2x -a =2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a,函数f (x )当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a ,函数f (x )-1a,+.(2)①当a =0时,函数f (x )在(0,1]内有1个零点x 0=1;②当a >0时,由(1)知函数f (x )若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;若0<12a <1,即当a >12时,f (x )1上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足0,即ln 12a ≥34,又∵a >12,∴ln 12a <0,∴不等式不成立.∴f (x )在(0,1]内无零点;③当a <0时,由(1)知函数f (x )-1a,+若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;若0<-1a <1,即a <-1时,函数f (x )-1a,1上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].21.(12分)(2019·湖北黄冈中学、华师附中等八校联考)在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边BC 的直线DE 将△ADE 剪去,得到所需的梯形钢板BCED ,记这个梯形钢板的周长为x (单位:米),面积为S (单位:平方米).(1)求梯形BCED 的面积S 关于它的周长x 的函数关系式;(2)若在生产中,梯形BCED 试确定这个梯形的周长x 为多少时,该零件才可以在生产中使用?解(1)∵DE ∥BC ,△ABC 是正三角形,∴△ADE 是正三角形,AD =DE =AE ,BD =CE =3-AD ,则DE +2(3-AD )+3=9-AD =x ,S =(3+AD )·(3-AD )·sin 60°2=3(12-x )(x -6)4(6<x <9),化简得S =34(-x 2+18x -72)(6<x <9).故梯形BCED 的面积S 关于它的周长x 的函数关系式为S =34(-x 2+18x -72)(6<x <9).(2)∵由(1)得S =34(-x 2+18x -72)(6<x <9),令f (x )=S x =x -72x +x <9),∴f ′(x )1令f ′(x )=0,得x =62或x =-62(舍去),f (x ),f ′(x )随x 的变化如下表:x(6,62)62(62,9)f ′(x )+0-f (x )单调递增极大值单调递减∴当x =62时,函数f (x )=S x有最大值,为f (62)=923-36.∴当x =62米时,该零件才可以在生产中使用.22.(12分)(2019·衡水中学调研)已知函数f (x )=k e x -x 2(其中k ∈R ,e 是自然对数的底数).(1)若k =2,当x ∈(0,+∞)时,试比较f (x )与2的大小;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),求k 的取值范围,并证明:0<f (x 1)<1.解(1)当k =2时,f (x )=2e x -x 2,则f ′(x )=2e x -2x ,令h (x )=2e x -2x ,h ′(x )=2e x -2,由于x ∈(0,+∞),故h ′(x )=2e x -2>0,于是h (x )=2e x -2x 在(0,+∞)上为增函数,所以h (x )=2e x -2x >h (0)=2>0,即f ′(x )=2e x -2x >0在(0,+∞)上恒成立,从而f (x )=2e x -x 2在(0,+∞)上为增函数,故f (x )=2e x -x 2>f (0)=2.(2)函数f (x )有两个极值点x 1,x 2,则x 1,x 2是f ′(x )=k e x -2x =0的两个根,即方程k =2x ex 有两个根,设φ(x )=2x e x ,则φ′(x )=2-2x ex ,当x <0时,φ′(x )>0,函数φ(x )单调递增且φ(x )<0;当0<x <1时,φ′(x )>0,函数φ(x )单调递增且φ(x )>0;当x >1时,φ′(x )<0,函数φ(x )单调递减且φ(x )>0.作出函数φ(x )的图象如图所示,要使方程k =2x e x 有两个根,只需0<k <φ(1)=2e,故实数k f (x )的两个极值点x 1,x 2满足0<x 1<1<x 2,由f ′(x 1)=1e x k -2x 1=0得k =112e x x ,所以f (x 1)=1e x k -x 21=112e x x 1e x -x 21=-x 21+2x 1=-(x 1-1)2+1,由于x 1∈(0,1),所以0<-(x 1-1)2+1<1,所以0<f (x 1)<1.。
高考数学备考总复习知识点归纳高考数学知识点总结一.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。
③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。
4)常用数集:N,Z,Q,R,N_.子集、交集、并集、补集、空集、全集等概念。
1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 )3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则 ;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
二.例题讲解:【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系A) M=N P B) M N=P C) M N P D) N P M分析一:从判断元素的共性与区别入手。
2023年高考数学总复习第一章集合与常用逻辑用语第1节集合考试要求1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集;5.能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系表示关系文字语言符号语言集合间的基本关系相等集合A 与集合B 中的所有元素都相同A =B 子集A 中任意一个元素均为B 中的元素A ⊆B 真子集A 中任意一个元素均为B 中的元素,且B 中至少有一个元素不是A 中的元素A B空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}表示4.集合的运算性质(1)A∩A=A,A∩=,A∩B=B∩A.(2)A∪A=A,A∪=A,A∪B=B∪A.(3)A∩(∁U A)=,A∪(∁U A)=U,∁U(∁U A)=A.1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个,非空子集有2n-1个,非空真子集有2n-2个.2.注意空集:空集是任何集合的子集,是非空集合的真子集.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).1.思考辨析(在括号内打“√”或“×”)(1)任何一个集合都至少有两个子集.()(2){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(3)若{x2,1}={0,1},则x=0,1.()(4)对于任意两个集合A,B,(A∩B)⊆(A∪B)恒成立.()2.若集合P={x∈N|x≤2023},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P3.(2021·新高考Ⅰ卷)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}4.(易错题)(2021·南昌调研)集合A={-1,2},B={x|ax-2=0},若B⊆A,则由实数a的取值组成的集合为()A.{-2}B.{1}C.{-2,1}D.{-2,1,0}5.(2021·西安五校联考)设全集U=R,A={x|y=2x-x2},B={y|y=2x,x∈R},则(∁U A)∩B=()A.{x|x<0}B.{x|0<x≤1}C.{x|1<x≤2}D.{x|x>2}6.(2021·全国乙卷)设集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T =()A. B.S C.T D.Z考点一集合的基本概念1.已知集合U={(x,y)|x2+y2≤1,x∈Z,y∈Z},则集合U中元素的个数为()A.3B.4C.5D.62.若集合A={a-3,2a-1,a2-4},且-3∈A,则实数a=________.3.(2022·武汉调研)用列举法表示集合A={x|x∈Z且86-x∈N}=________.4.设A是整数集的一个非空子集,对于k∈A,如果k-1∉A,且k+1∉A,那么称k是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合共有________个.考点二集合间的基本关系例1(1)已知集合A={-1,1},B={x|ax+1=0}.若B⊆A,则实数a的所有可能取值的集合为()A.{-1}B.{1}C.{-1,1}D.{-1,0,1}(2)已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},且B⊆A,则实数m的取值范围是________.训练1(1)(2022·大连模拟)设集合A={1,a,b},B={a,a2,ab},若A=B,则a2022+b2023的值为()A.0B.1C.-2D.0或-1(2)已知集合A={x|log2(x-1)<1},B={x||x-a|<2},若A⊆B,则实数a的取值范围为()A.(1,3)B.[1,3]C.[1,+∞)D.(-∞,3]考点三集合的运算角度1集合的基本运算例2(1)(2021·全国乙卷)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}(2)(2021·西安测试)设全集U=R,M={x|y=ln(1-x)},N={x|2x(x-2)<1},那么图中阴影部分表示的集合为()A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}角度2利用集合的运算求参数例3(1)(2021·日照检测)已知集合A={x∈Z|x2-4x-5<0},B={x|4x>2m},若A∩B 中有三个元素,则实数m的取值范围是()A.[3,6)B.[1,2)C.[2,4)D.(2,4](2)已知集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},若A ∪B =B ,则实数a 的取值范围是()A.a <-2B.a ≤-2C.a >-4D.a ≤-4训练2(1)(2021·全国甲卷改编)设集合M ={x |0<x <4},N x |13≤x <aM ∩N =N ,则a 的取值范围为()A.a ≤13B.a >4C.a ≤4D.a >13(2)集合M ={x |2x 2-x -1<0},N ={x |2x +a >0},U =R .若M ∩(∁U N )=∅,则a 的取值范围是()A.(1,+∞)B.[1,+∞)C.(-∞,1)D.(-∞,1]Venn 图的应用用平面上封闭图形的内部代表集合,这种图称为Venn 图.集合中图形语言具有直观形象的特点,将集合问题图形化.利用Venn 图的直观性,可以深刻理解集合的有关概念,快速进行集合的运算.例1设全集U ={x |0<x <10,x ∈N +},若A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},则A =________,B =________.例2(2020·新高考海南卷)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%例3向100名学生调查对A,B两件事的看法,得到如下结果:赞成A的人数是全体的35,其余不赞成;赞成B的人数比赞成A的人数多3人,其余不赞成.另外,对A,B都不赞成的人数比对A,B都赞成的学生人数的13多1人,则对A,B都赞成的学生人数为________,对A,B都不赞成的学生人数为________.1.(2021·新高考Ⅱ卷)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=()A.{3}B.{1,6}C.{5,6}D.{1,3}2.(2021·郑州模拟)设集合A={x|3x-1<m},若1∈A且2∉A,则实数m的取值范围是()A.(2,5)B.[2,5)C.(2,5]D.[2,5]3.(2021·浙江卷)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=()A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}4.(2022·河南名校联考)已知集合A={a,a2,0},B={1,2},若A∩B={1},则实数a的值为()A.-1B.0C.1D.±15.已知集合A={x∈Z|y=log5(x+1)},B={x∈Z|x2-x-2<0},则()A.A∩B=AB.A∪B=BC.B AD.A B6.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M 的个数是()A.0B.1C.2D.37.(2022·太原模拟)已知集合M={x|(x-2)2≤1},N={y|y=x2-1},则(∁R M)∩N=()A.[-1,+∞)B.[-1,1]∪[3,+∞)C.[-1,1)∪(3,+∞)D.[-1,1]∪(3,+∞)8.设集合A ={x |(x +2)(x -3)≤0},B ={a },若A ∪B =A ,则a 的最大值为()A.-2B.2C.3D.49.(2021·合肥模拟)已知集合A ={-2,-1,0,1,2},集合B ={x ||x -1|≤2},则A ∩B =________.10.(2021·湖南雅礼中学检测)设集合A ={x |y =x -3},B ={x |1<x ≤9},则(∁R A )∩B =________.11.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.12.已知集合A ={a ,b ,2},B ={2,b 2,2a },若A =B ,则a +b =________.13.若全集U ={-2,-1,0,1,2},A ={-2,2},B ={x |x 2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}14.(2020·浙江卷)设集合S ,T ,S ⊆N +,T ⊆N +,S ,T 中至少有2个元素,且S ,T 满足:①对于任意的x ,y ∈S ,若x ≠y ,则xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x ∈S .下列命题正确的是()A.若S 有4个元素,则S ∪T 有7个元素B.若S 有4个元素,则S ∪T 有6个元素C.若S 有3个元素,则S ∪T 有5个元素D.若S 有3个元素,则S ∪T 有4个元素15.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m=________,n=________.16.当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合M={x|ax2-1=0,a>0},N={-12,12,1},若M与N“相交”,则a=________.。
高考数学一轮总复习数与式高考数学一轮总复习数与式在高考数学中,"数与式"是一个非常重要的知识点,也是许多考生备考过程中需要重点复习的内容之一。
本文将对"数与式"的相关概念、性质以及解题技巧进行系统的总结和归纳。
1. 数与式的基本概念数与式是高中数学中非常重要的基础内容,它涉及到数的性质、数的运算以及数的表达方式。
在数与式中,我们需要熟悉并掌握以下几个关键概念:(1)数的种类:自然数、整数、有理数、无理数等。
(2)数的运算:加法、减法、乘法、除法以及开方等。
(3)数的表达方式:分数、百分数、比例等。
2. 数与式的性质在复习数与式时,我们需要掌握一些常见的数与式的性质,以便在解题过程中能够快速准确地运用它们。
以下是一些常见的性质:(1)运算律:加法交换律、加法结合律、乘法交换律、乘法结合律等。
(2)乘方运算:乘方的性质包括乘方运算律、乘方的倒数、乘方的根等。
(3)数的整除性质:整除、最大公因数、最小公倍数等。
3. 数与式的解题技巧在解题过程中,灵活运用数与式的知识和技巧是非常重要的。
以下是一些解题技巧的例子:(1)化简与转化:将复杂的数与式转化为简化形式,以便进行计算和推导。
(2)问题模型:将实际问题转化为数学模型,运用数与式的方法解决实际问题。
(3)选择适当的运算和方法:根据题目给出的条件和要求,选择合适的运算和方法来解决问题。
4. 数与式的应用数与式的知识和技巧在日常生活和实际工作中都有广泛的应用。
以下是一些数与式在实际应用中的例子:(1)金融和投资:利息计算、投资回报率计算等。
(2)工程和建筑:度量单位转换、图纸比例尺计算等。
(3)统计和概率:抽样调查、概率计算等。
综上所述,"数与式"是高考数学中不可忽视的一部分,它对于整体成绩的影响非常大。
通过对数与式的基本概念、性质和解题技巧的全面复习,我们可以更好地应对高考数学考试,取得优异的成绩。
2014届高三数学总复习 不等式证明的基本方法教案 新人教A版选修4-41. 设a 、b∈R +,试比较a +b 2与a +b 的大小.解:∵ (a +b)2-⎝⎛⎭⎪⎫a +b 22=(a -b )22≥0,∴ a +b ≥a +b2. 2. 若a 、b 、c∈R +,且a +b +c =1,求a +b +c 的最大值.解:(1·a +1·b +1·c)2≤(12+12+12)(a +b +c)=3,即a +b +c 的最大值为 3.3. 设a 、b 、m∈R +,且b a <b +m a +m,求证:a >b.证明:由b a <b +m a +m ,得b a -b +m a +m =(b -a )m a (a +m )<0.因为a 、b 、m∈R +,所以b -a <0,即b<a.4. 若a 、b∈R +,且a≠b,M =ab +ba,N =a +b ,求M 与N 的大小关系. 解:∵ a≠b,∴ a b +b>2a ,ba+a>2b ,∴ a b +b +b a +a>2b +2a ,即a b +ba >b +a ,即M>N.5. 用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n>1,n ∈N *)的过程中,用n =k +1时左边的代数式减去n =k 时左边的代数式的结果是A ,求代数式A.解:当n =k 时,左边=1k +1+1k +2+…+1k +k ,n =k +1时,左边=1k +2+1k +3+…+1(k +1)+(k +1),故左边增加的式子是12k +1+12k +2-1k +1,即A =1(2k +1)(2k +2).1. 不等式证明的常用方法(1) 比较法:比较法是证明不等式的一种最基本的方法,也是一种常用方法,基本不等式就是用比较法证得的.比较法有差值、比值两种形式,但比值法必须考虑正负.比较法证明不等式的步骤:作差(商)、变形、判断符号.其中的变形主要方法是分解因式、配方,判断过程必须详细叙述.(2) 综合法:综合法就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直到推出要证明的结论,即为“由因导果”,在使用综合法证明不等式时,常常用到基本不等式.(3) 分析法:分析法就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,直至推出显然成立的不等式,即为“执果索因”.2. 不等式证明的其他方法和技巧(1) 反证法从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定结论是正确的证明方法.(2) 放缩法欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得A≥C1≥C2≥…≥C n ≥B,利用传递性达到证明的目的.(3) 数学归纳法[备课札记]题型1 用比较法证明不等式例1求证:a 2+b 2≥ab +a +b -1.证明:∵ (a 2+b 2)-(ab +a +b -1)=a 2+b 2-ab -a -b +1 =12(2a 2+2b 2-2ab -2a -2b +2) =12[(a 2-2ab +b 2)+(a 2-2a +1)+(b 2-2b +1)] =12[(a -b)2+(a -1)2+(b -1)2]≥0. ∴ a 2+b 2≥ab +a +b -1. 备选变式(教师专享)已知a>0,b>0,求证:a b +ba ≥a + b.证明:(证法1)∵ ⎝⎛⎭⎪⎫a b +b a -(a +b)=⎝ ⎛⎭⎪⎫a b -b +⎝ ⎛⎭⎪⎫b a -a =a -b b +b -aa=(a -b )(a -b )ab=(a +b )(a -b )2ab≥0,∴ 原不等式成立.(证法2)由于ab +b aa +b =a a +b b ab (a +b )=(a +b )(a -ab +b )ab (a +b )=a +bab-1≥2abab-1=1.又a>0,b>0,ab>0,∴ab +ba≥a + b. 题型2 用分析法、综合法证明不等式 例2 已知x 、y 、z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z.证明:(证法1:综合法)因为x 、y 、z 都是正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z .同理可得yzx +z xy ≥2x ,z xy +x yz ≥2y .将上述三个不等式两边分别相加,并除以2,得x yz +y zx +z xy ≥1x +1y +1z. (证法2:分析法)因为x 、y 、z 均为正数,要证x yz +y zx +z xy ≥1x +1y +1z .只要证x 2+y 2+z 2xyz≥yz +zx +xy xyz,只要证x 2+y 2+z 2≥yz +zx +xy ,只要证(x -y)2+(y -z)2+(z -x)2≥0,而(x -y)2+(y -z)2+(z -x)2≥0显然成立,所以原不等式成立.变式训练已知a>0,求证:a 2+1a 2-2≥a +1a-2.证明:要证a 2+1a 2-2≥a +1a-2,只需证a 2+1a 2+2≥a+1a+2,只需证a 2+1a 2+4+4a 2+1a 2≥a 2+1a 2+2+22⎝ ⎛⎭⎪⎫a +1a +2,即证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+1a 2+2, 即证a 2+1a 2≥2,此式显然成立.∴ 原不等式成立.题型3 均值不等式与柯西不等式的应用 例3 求证:a 2+b 2+c 23≥a +b +c3. 证明:∵ (12+12+12)(a 2+b 2+c 2)≥(a+b +c)2, ∴ a 2+b 2+c 23≥(a +b +c )29,即a 2+b 2+c 23≥a +b +c3. 变式训练若实数x 、y 、z 满足x +2y +3z =a(a 为常数),求x 2+y 2+z 2的最小值.解:∵ (12+22+32)(x 2+y 2+z 2)≥(x+2y +3z)2=a 2,即14(x 2+y 2+z 2)≥a 2, ∴ x 2+y 2+z 2≥a 214,即x 2+y 2+z 2的最小值为a 214.备选变式(教师专享)用数学归纳法证明:当n 是不小于5的自然数时,总有2n >n 2成立.证明:(1) 当n =5时,25>52,结论成立.(2) 假设当n =k(k∈N ,k ≥5)时,结论成立,即有2k >k 2,那么当n =k +1时,左边=2k +1=2·2k >2·k 2=(k +1)2+(k 2-2k -1)=(k +1)2+(k -1-2)(k -1+2)>(k +1)2=右边.∴ 也就是说,当n =k +1时,结论成立.∴ 由(1)、(2)可知,不等式 2n >n 2对n∈N ,n ≥5时恒成立.例4 求函数y =1-x +4+2x 的最大值.解:∵y 2=(1-x +2·2+x)2≤[12+(2)2](1-x +2+x)=3×3,∴ y ≤3,当且仅当11-x=22+x 时取“=”号,即当x =0时,y max =3. 备选变式(教师专享)(2011·湖南改编)设x 、y∈R ,求⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值.解:由柯西不等式,得⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2≥(1+2)2=9.∴ ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x 2+4y 2的最小值为9.1. (2013·陕西)已知a 、b 、m 、n 均为正数,且a +b =1,mn =2,求(am +bn)(bm +an)的最小值.解:利用柯西不等式求解,(am +bn)(an +bm)≥(am·an+bn·bm )2=mn·(a+b)2=2·1=2,且仅当am an =bnbmm =n 时取最小值2.2. (2013·湖北)设x 、y 、z∈R ,且满足x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z 的值.解:由柯西不等式可知(x +2y +3z)2=14≤(x 2+y 2+z 2)·(12+22+32),因为x 2+y 2+z 2=1,所以当且仅当x 1=y 2=z 3时取等号.此时y =2x ,z =3x 代入x +2y +3z =14得x =1414,即y =21414,z =31414, 所以x +y +z =3147.3. (2013·江苏)已知a≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.证明:∵ 2a 3-b 3-2ab 2+a 2b =(2a 3-2ab 2)+(a 2b -b 3)=2a(a 2-b 2)+b(a 2-b 2)=(a 2-b 2)(2a +b)=(a +b)(a -b)(2a +b), 又a≥b>0,∴ a +b>0,a -b≥0,2a +b≥0, ∴ (a +b)(a -b)(2a +b)≥0,∴ 2a 3-b 3-2ab 2+a 2b ≥0,∴ 2a 3-b 3≥2ab 2-a 2b.4. (2013·新课标Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明: (1) ab +bc +ca≤13;(2) a 2b +b 2c +c2a≥1.证明:(1) 由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca.由题设得(a +b +c)2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca)≤1,即ab +bc +ca≤13.(2) 因为a 2b +b≥2a,b 2c +c≥2b,c2a +a≥2c,故a 2b +b 2c +c2a+(a +b +c)≥2(a+b +c),即a 2b +b 2c +c2a ≥a +b +c. 所以a 2b +b 2c +c2a≥1.1. 已知正数a 、b 、c 满足abc =1,求证:(a +2)(b +2)(c +2)≥27. 证明:(a +2)(b +2)(c +2)=(a +1+1)(b +1+1)(c +1+1)≥3·3a ·3·3b ·3·3c =27·3abc =27(当且仅当a =b =c =1时等号成立). 2. 已知函数f(x)=m -|x -2|,m ∈R ,且f(x +2)≥0的解集为[-1,1]. (1) 求m 的值;(2) 若a ,b ,c ∈R ,且1a +12b +13c =m ,求证:a +2b +3c≥9.解:(1) ∵ f(x+2)=m -|x|≥0, ∴ |x|≤m ,∴ m ≥0,-m≤x≤m,∴ f(x +2)≥0的解集是[-1,1],故m =1.(2) 由(1)知1a +12b +13c =1,a 、b 、c∈R ,由柯西不等式得a +2b +3c =(a +2b +3c)⎝ ⎛⎭⎪⎫1a +12b +13c ≥(a ·1a +2b ·12b +3c ·13c)2=9.3. 已知x ,y ,z ∈R +,且x +y +z =1(1) 若2x 2+3y 2+6z 2=1,求x ,y ,z 的值.(2) 若2x 2+3y 2+tz 2≥1恒成立,求正数t 的取值范围.解:(1) ∵ (2x 2+3y 2+6z 2)(12+13+16)≥(x+y +z)2=1,当且仅当2x 12=3y 13=6z 16时取“=”.∴ 2x=3y =6z ,又∵ x+y +z =1,∴ x =12,y =13,z =16.(2) ∵ (2x 2+3y 2+tz 2)⎝ ⎛⎭⎪⎫12+13+1t ≥(x +y +z)2=1,∴ (2x 2+3y 2+tz 2)min =156+1t .∵ 2x 2+3y 2+tz 2≥1恒成立, ∴ 156+1t≥1.∴ t ≥6. 4. (1) 求函数y =x -1+5-x 的最大值;(2) 若函数y =a x +1+6-4x 最大值为25,求正数a 的值.解:(1) ∵ (x -1+5-x)2≤(1+1)(x -1+5-x)=8, ∴ x -1+5-x ≤2 2. 当且仅当1·x -1=1·5-x 即x =3时,y max =2 2.(2) (a x +1+6-4x)2=⎝⎛⎭⎪⎫a x +1+232-x 2≤(a 2+4)(x +1+32-x)=52(a 2+4),由已知52(a 2+4)=20得a =±2,又∵ a>0,∴ a =2.1. 算术—几何平均不等式若a 1,a 2,…,a n ∈R +,n>1且n∈N *,则a 1+a 2+…+a n n 叫做这n 个正数的算术平均数,na 1a 2…a n 叫做这n 个正数的几何平均数.基本不等式:a 1+a 2+…+a n n≥n a 1a 2…a n (n∈N *,a i ∈R +,1≤i ≤n).2. 绝对值三角形不等式若a 、b 是实数,则||a|-|b||≤|a±b|≤|a|+|b|. 推论1:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |. 推论2:如果a 、b 、c 是实数,那么|a -c|≤|a-b|+|b -c|,当且仅当(a -b)(b -c)≥0时,等号成立.3. 柯西不等式若a 、b 、c 、d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac+bd)2. 4. 三角不等式设x 1、y 1、x 2、y 2∈R ,则x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.请使用课时训练(B )第2课时(见活页).[备课札记]。
第4模块 第4节
[知能演练]
一、选择题
1.复数z =(a 2-2a )+(a 2-a -2)i (a ∈R )对应的点在虚轴上,则
( )
A .a ≠2或a ≠1
B .a ≠2且a ≠1
C .a =2或a =0
D .a =0
解析:由题意知a 2-2a =0,∴a =2或a =0. 答案:C
2.设z 的共轭复数是z ,若z +z =4,z ·z =8,则
z z 等于
( )
A .i
B .-i
C .±1
D .±i
解析:设z =x +yi (x ,y ∈R ),z =x -yi . 由z +z =4,z ·z =8得
⎩
⎪⎨⎪⎧
x +yi +x -yi =4(x +yi )(x -yi )=8, ∴⎩
⎪⎨⎪⎧
x =2x 2+y 2=8, 解得⎩⎪⎨⎪⎧ x =2y =2或⎩⎪⎨⎪⎧
x =2y =-2
, ∴z
z =x -yi x +yi =x 2-y 2-2xyi x 2+y 2=±i . 答案:D
3.如果实数b 与纯虚数z 满足关系式(2-i )z =4-bi (其中i 为虚数单位),那么b 等于
( )
A .8
B .-8
C .2
D .-2
解析:设z =ai (a ≠0),
由(2-i )z =4-bi ,得(2-i )×ai =4-bi , 即a +2ai =4-bi ,
∴⎩⎪⎨⎪⎧ a =42a =-b ,解得⎩⎪⎨⎪⎧
a =4
b =-8
. 答案:B
4.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数为
( )
A .1-2i
B .-1+2i
C .3+4i
D .-3-4i
解析:向量AB →对应的复数是2+i ,则BA →对应的复数为-2-i ,∵CA →=CB →+BA →
. ∴CA →
对应的复数为(-1-3i )+(-2-i )=-3-4i . 答案:D 二、填空题
5.已知z =(2+2i )2(4+5i )
(5-4i )(1-i ),则|z |=________.
解析:|z |=|(2+2i )2(4+5i )
(5-4i )(1-i )|
=|2+2i |2|4+5i ||5-4i ||1-i |
=22×4141×2=2 2.
答案:2 2
6.若复数z =(a 2
-3)-(a +3)i ,(a ∈R )为纯虚数,则a +i 2007
3-3i
=________.
解析:∵z =(a 2-3)-(a +3)i 为纯虚数,
∴⎩⎨⎧
a 2
-3=0a +3≠0
,解得a =3, ∴a +i 20073-3i =3-i 3-3i =3-i 3(3-i )=33. 答案:
3
3
三、解答题
7.若复数z 1与z 2在复平面上所对应的点关于y 轴对称,且z 1(3-i )=z 2(1+3i ),|z 1|=2,求z 1.
解:设z 1=a +bi ,则z 2=-a +bi ,
∵z 1(3-i )=z 2(1+3i ),且|z 1|=2,
∴⎩⎪⎨⎪⎧
(a +bi )(3-i )=(-a +bi )(1+3i )a 2+b 2=2 解得⎩⎪⎨⎪⎧ a =1b =-1或⎩⎪⎨⎪⎧
a =-1
b =1
,
则z 1=1-i 或z 1=-1+i .
8.已知z 是复数,z +2i 、z 2-i 均为实数(i 为虚数单位),且复数(z +ai )2在复平面上对应
的点在第一象限,求实数a 的取值范围.
解:设z =x +yi (x 、y ∈R ),
∴z +2i =x +(y +2)i ,由题意得y =-2.
z 2-i =x -2i 2-i =15
(x -2i )(2+i )=15(2x +2)+15(x -4)i .
由题意得x =4,∴z =4-2i . ∵(z +ai )2=(12+4a -a 2)+8(a -2)i ,
根据条件,已知⎩
⎪⎨⎪⎧
12+4a -a 2
>0
8(a -2)>0,解得2<a <6,
∴实数a 的取值范围是(2,6).
[高考·模拟·预测]
1. i 是虚数单位,若1+7i
2-i
=a +bi (a ,b ∈R ),则乘积ab 的值是
( )
A .-15
B .-3
C .3
D .15
解析:1+7i 2-i =(1+7i )(2+i )(2-i )(2+i )=-1+3i ,所以a =-1,b =3,故选B.
答案:B
2.复数3+2i 2-3i -3-2i
2+3i
=
( )
A .0
B .2
C .-2i
D .2i
解析:3+2i 2-3i -3-2i 2+3i =(3+2i )(2+3i )-(2-3i )(3-2i )(2+3i )(2-3i )=26i 13=2i ,答案为D.
答案:D
3.已知z
1+i
=2+i ,则复数z =
( )
A .-1+3i
B .1-3i
C .3+i
D .3-i
解析:依题意得z =(1+i )(2+i )=1+3i ,故z =1-3i .选B. 答案:B
4.设z 是复数,α(z )表示满足z n =1的最小正整数n ,则对虚数单位i ,α(i )=
( )
A .8
B .6
C .4
D .2
解析:∵α(z )表示满足z n =1的最小正整数n ,∴α(i )表示满足i n =1的最小正整数n ,∵i 2
=-1,∴i 4=1,∴α(i )=4.
答案:C
5.已知复数z 1=a +2i ,z 2=a +(a +3)i ,且z 1z 2>0,则实数a 的值为
( )
A .0
B .-5
C .0或-5
D .0或5
解析:由已知条件可得z 1z 2=(a +2i )·[a +(a +3)i ]=a 2-2(a +3)+(a 2+5a )i ,又z 1z 2>0,
所以⎩
⎪⎨⎪⎧
a 2-2(a +3)>0a 2+5a =0,解得a =-5,故选B.
答案:B
6.若z =sin θ-35+i (cos θ-4
5
)是纯虚数,则tan θ的值为
( )
A .±3
4
B .±43
C .-34
D.34
解析:由纯虚数定义知,sin θ=35,cos θ≠45,∴cos θ=-45,∴tan θ=-3
4.
答案:C
7.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为________. 解析:因为(z 1-z 2)i =(-2+20i )i =-20-2i ,所以可知复数(z 1-z 2)i 的实部为-20. 答案:-20
8.若2
1-i =a +bi (i 为虚数单位,a ,b ∈R ),则a +b =________.
解析:∵2
1-i =a +bi ,∴1+i =a +bi ,∴a =b =1,∴a +b =2.
答案:2
9.若复数m +2i
1-i (m ∈R ,i 是虚数单位)为纯虚数,则m =________.
解析:因为m +2i 1-i =(m +2i )(1+i )
(1-i )(1+i )
=
m -2+(m +2)i
2
为纯虚数,所以m =2.
答案:2
10.复数1-3i
2+i -(1+i )2在复平面内的对应点位于第________象限.
解析:
1-3i 2+i
-(1+i )2=(1-3i )(2-i )5-2i =-1-7i 5-2i =-1-17i
5,所以其对应点位于
第三象限.
答案:三。