高二数学上学期期末考试七中模拟题
- 格式:doc
- 大小:190.50 KB
- 文档页数:7
【必考题】高二数学上期末模拟试卷带答案一、选择题1.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .33B .3 C .13D .232.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,并且不许有空盒,那么任意一个小球都不能放入标有相同标号的盒子中的概率是( ) A .320B .720C .316D .254.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?5.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .636.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020217.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( ) A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯8.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?9.执行如图的程序框图,如果输出的是a=341,那么判断框( )A .4k <B .5k <C .6k <D .7k <10.设数据123,,,,n x x x x L 是郑州市普通职工*(3,)n n n N ≥∈个人的年收入,若这n 个数据的中位数为x ,平均数为y ,方差为z ,如果再加上世界首富的年收入1n x +,则这1n +个数据中,下列说法正确的是( )A .年收入平均数大大增大,中位数一定变大,方差可能不变B .年收入平均数大大增大,中位数可能不变,方差变大C .年收入平均数大大增大,中位数可能不变,方差也不变D .年收入平均数可能不变,中位数可能不变,方差可能不变11.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2912.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91二、填空题13.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.14.执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.15.若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___ 16.为调查某校学生每天用于课外阅读的时间,现从该校名学生中随机抽取名学生进行问卷调查,所得数据均在区间上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在(单位:分钟)内的学生人数为____.17.下图是华师一附中数学讲故事大赛7位评委给某位学生的表演打出的分数的茎叶图.记分员在去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是____________.18.如图所示的程序框图,输出的S 的值为( )A .12 B .2 C .1- D .12- 19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.在区间[,]-ππ内随机取出两个数分别记为a 、b ,则函数222()2f x x ax b π=+-+有零点的概率为__________.三、解答题21.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率.22.2018年中秋节到来之际,某超市为了解中秋节期间月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:()1求频率分布直方图中a的值;()2以频率作为概率,试求消费者月饼购买量在600g1400g~的概率;()3已知该超市所在销售范围内有20万人,并且该超市每年的销售份额约占该市场总量的5%,请根据这1000名消费者的人均月饼购买量估计该超市应准备多少吨月饼恰好能满足市场需求(频率分布直方图中同一组的数据用该组区间的中点值作代表)?23.甲,乙两人玩摸球游戏,每两局为一轮,每局游戏的规则如下:甲,乙两人均从装有4只红球、1只黑球的袋中轮流不放回摸取1只球,摸到黑球的人获胜,并结束该局.(1)若在一局中甲先摸,求甲在该局获胜的概率;(2)若在一轮游戏中约定:第一局甲先摸,第二局乙先摸,每一局先摸并获胜的人得1分,后摸井获胜的人得2分,未获胜的人得0分,求此轮游戏中甲得分X的概率分布及数学期望.24.某公司为研究某产品的广告投入与销售收入之间的关系,对近五个月的广告投入x (万元)与销售收入y(万元)进行了统计,得到相应数据如下表:广告投入x(万元)91081112销售收入y(万元)2123212025(1)求销售收入y关于广告投入x的线性回归方程y bx a=+$$$.(2)若想要销售收入达到36万元,则广告投入应至少为多少.参考公式:()()()121ni iiniix x y ybx x∧==--=-∑∑,ˆˆ•a yb x=-25.如下图是某校高三(1)班的一次数学知识竞赛成绩的茎叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求分数在[50,60)的频率及全班人数; (2)求频率分布直方图中的,x y ;(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.26.甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:mm ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42. 从生产的零件内径的尺寸看、谁生产的零件质量较高.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】如图所示,作三条辅助线,根据已知条件,这些小三角形全等,ABC ∆包含9 个小三角形,同时又在DEF ∆内的小三角形共有6 个,所以(|)P B A =6293= ,故选D. 2.C解析:C 【解析】 【分析】由频率分布直方图得的性质求出0.030a =;样本数据低于130分的频率为:0.7;[)80,120的频率为0.4,[)120,130的频率为0.3.由此求出总体的中位数(保留1位小数)估计为:0.50.41203123.30.3-+⨯≈分;样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等,总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等. 【详解】由频率分布直方图得:()0.0050.0100.0100.0150.0250.005101a ++++++⨯=,解得0.030a =,故A 错误;样本数据低于130分的频率为:()10.0250.005100.7-+⨯=,故B 错误;[)80,120的频率为:()0.0050.0100.0100.015100.4+++⨯=, [)120,130的频率为:0.030100.3⨯=.∴总体的中位数(保留1位小数)估计为:0.50.412010123.30.3-+⨯≈分,故C 正确; 样本分布在[)90,100的频数一定与样本分布在[)100,110的频数相等, 总体分布在[)90,100的频数不一定与总体分布在[)100,110的频数相等,故D 错误.故选C . 【点睛】本题考查命题真假的判断,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查数形结合思想,是基础题.因为条形分布直方图的面积表示的是概率值,中位数是位于最中间的数,故直接找概率为0.5的即可;平均数是每个长方条的中点乘以间距再乘以长方条的高,将每一个数值相加得到.3.B解析:B 【解析】 【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案. 【详解】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有236⨯=种选择; 如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有236⨯=种选择,得到第5球独占一盒的选择有4(66)48⨯+=种,第二类,第5球不独占一盒,先放14-号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9436⨯=,根据分类计数原理得,不同的方法有364884+=种.而将五球放到4盒共有2454240C A ⨯=种不同的办法,故任意一个小球都不能放入标有相同标号的盒子中的概率84724020P == 故选:B . 【点睛】本题主要考查了分类计数原理,关键是如何分步,属于中档题.4.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】根据程序框图:1,1S i ==;3,2S i ==;7,3S i ==;15,4S i ==;31,5S i ==,结束. 故选:C . 【点睛】本题考查了程序框图,意在考查学生的计算能力和理解能力.5.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.6.C解析:C【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯L 的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯L , 11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭Q,111113355720172019S ∴=++++⨯⨯⨯⨯L 11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L 1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.7.C解析:C 【解析】根据平均数的概念,其平均数为52x +,方差为2258⨯,故选C.8.C解析:C 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a的值为170.则分析各个选项可得程序中判断框内的“条件”应为k6<?故选:C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.C解析:C【解析】由程序框图可知a=4a+1=1,k=k+1=2;a=4a+1=5,k=k+1=3;a=4a+1=21,k=k+1=4;a=4a+1=85,k=k+1=5;a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.10.B解析:B【解析】∵数据x1,x2,x3,…,x n是郑州普通职工n(n⩾3,n∈N∗)个人的年收入,而x n+1为世界首富的年收入则x n+1会远大于x1,x2,x3,…,x n,故这n+1个数据中,年收入平均数大大增大,但中位数可能不变,也可能稍微变大,但由于数据的集中程序也受到x n+1比较大的影响,而更加离散,则方差变大.故选B11.A解析:A【解析】【分析】首先求得x的平均值,然后利用线性回归方程过样本中心点求解m的值即可.【详解】由题意可得:810111214115x++++==,由线性回归方程的性质可知:99112744y=⨯+=,故21252835275m++++=,26m∴=.故选:A.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.12.B解析:B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.【解析】∵阴影部分面积为∴飞镖落在黑色部分的概率为故答案为点睛:(1)当试验的结果构成的区域为长度面积体积等时应考虑使用几何概型求解;(2)利用几何概型求概率时关键是试验的全部结果构成的区域和事件发解析:2【解析】∵阴影部分面积为221141262222R R R ππ⎛⎫-⨯-⨯⨯= ⎪ ⎪⎝⎭∴飞镖落在黑色部分的概率为22222R R ππ=-故答案为22π- 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解;(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域;(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.14.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y 的值为63.故答案为63.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【解析】【分析】将三个数都转化为10进制的数然后比较大小即可【详解】故最大【点睛】本题考查了不同进制间的转化考查了学生的计算能力属于基础题解析:a【解析】【分析】将三个数都转化为10进制的数,然后比较大小即可。
一、选择题1.(0分)[ID :13328]在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49D .292.(0分)[ID :13312]将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为( ) A .112B .15C .115D .2153.(0分)[ID :13299]2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .634.(0分)[ID :13290]从区间0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn5.(0分)[ID :13269]为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元6.(0分)[ID :13266]已知线段MN 的长度为6,在线段MN 上随机取一点P ,则点P 到点M ,N 的距离都大于2的概率为( ) A .34B .23C .12D .137.(0分)[ID:13258]执行如图的程序框图,如果输出的是a=341,那么判断框()A.4k<B.5k<C.6k<D.7k<8.(0分)[ID:13255]类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D为BE中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A.17B.14C.13D.4139.(0分)[ID:13250]一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为()A.−0.9B.0.9C.3.4D.4.310.(0分)[ID:13242]如图,边长为2的正方形有一内切圆.向正方形内随机投入1000粒芝麻,假定这些芝麻全部落入该正方形中,发现有795粒芝麻落入圆内,则用随机模拟的方法得到圆周率π的近似值为()A.3.1B.3.2C.3.3D.3.411.(0分)[ID:13241]根据表中提供的全部数据,用最小二乘法得出y关于x的线性回归方程是9944y x =+,则表中m 的值为( )x 8 10 11 12 14 y2125m2835A .26B .27C .28D .2912.(0分)[ID :13240]如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π13.(0分)[ID :13239]甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定14.(0分)[ID :13238]我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( ) A .12B .13C .14D .1515.(0分)[ID :13324]如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .23二、填空题16.(0分)[ID :13416]现有10个数,其平均数为3,且这10个数的平方和是100,则这组数据的标准差是______.17.(0分)[ID :13415]某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B 校学生中抽取______人.18.(0分)[ID :13393]期末考试结束后,某老师随机抽取了本班五位同学的数学成绩进行统计,五位同学平均每天学习数学的时间t (分钟)与数学成绩y 之间的一组数据如下表所示: 时间t (分钟) 30 40 7090 120 数学成绩y3548m8292通过分析,发现数学成绩y 与学习数学的时间t 具有线性相关关系,其回归方程为0.715ˆyt =+,则表格中的m 的值是___. 19.(0分)[ID :13375]从边长为4的正方形ABCD 内部任取一点P ,则P 到对角线AC 2的概率为________.20.(0分)[ID :13369]阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________21.(0分)[ID :13359]某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样法抽取一个容量为45的样本,那么从高一、高二、高三各年级抽取人数分别为 .22.(0分)[ID :13344]为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.23.(0分)[ID :13337]已知AOB ∆中,60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.24.(0分)[ID :13330]在四位八进制数中,能表示的最小十进制数是__________. 25.(0分)[ID :13402]下图给出了一个程序框图,其作用是输入x 的值,输出相应的y 值.若要使输入的x 值与输出的y 值满足关系式y=-2x+4,则这样的x 值___个.三、解答题26.(0分)[ID :13507]在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成[)5,15,[)15,25,[)25,35,[)35,45,[]45,555组,绘制成如图所示的频率分布直方图.(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出45,55的色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在[]概率.27.(0分)[ID:13493]某班60名学生期中考试数学成绩的频率分布直方图如下图所示.(1)求图中a的值及这60名学生数学成绩的中位数;(2)若规定成绩在80分以上为优良,求该班学生中成绩达到优良的人数.28.(0分)[ID:13462]从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论)29.(0分)[ID :13455]为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高()x cm 和体重()y kg 数据如下表所示: 编号 1 2 3 4 5 6 7 8 身高/x cm164160158172162164174166体重/y kg60 46 43 48 48 50 61 52该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.(1)调查员甲计算得出该组数据的线性回归方程为ˆˆ0.7yx a =+,请你据此预报一名身高为176cm 的女高中生的体重;(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为176cm 的女高中生的体重; (3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由. 附:对于一组数据()()()1122,,,,,,n n x y x y x y ,其回归方程ˆˆˆy bx a =+的斜率和截距的最小二乘法估计分别为:()()()121ˆˆ,niii nii x x y y b ay bx x x ==--==--∑∑. 30.(0分)[ID :13451]某医疗器械公司在全国共有100个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这100个销售点的年销量绘制出如下的频率分布直方图.(1)完成年销售任务的销售点有多少个?(2)若用分层抽样的方法从这100个销售点中抽取容量为25的样本,求该五组[2,6),[6,10),____________=,[14,18),[18,22),(单位:千台)中每组分别应抽取的销售点数量.(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取2个,求这两个销售点不在同一组的概率.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D3.A4.C5.A6.D7.C8.A9.B10.B11.A12.A13.C14.A15.D二、填空题16.1【解析】【分析】设这10个数为则这组数据的方差为:由此能求出这组数据的标准差【详解】现有10个数其平均数为3且这10个数的平方和是100设这10个数为则这组数据的方差为:这组数据的标准差故答案为117.40【解析】【分析】设应从B校抽取n人利用分层抽样的性质列出方程组能求出结果【详解】设应从B校抽取n人某市有ABC三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分18.63【解析】回归方程过样本中心点则:即:解得:点睛:(1)正确理解计算的公式和准确的计算是求线性回归方程的关键(2)回归直线方程必过样本点中心19.【解析】如图所示分别为的中点因为到对角线的距离不大于所以点落在阴影部分所在区域由对立事件的概率公式及几何概型概率公式可得到对角线的距离不大于为故答案为20.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n的值为4故答案为421.151020【解析】试题分析:抽取比例为45900=120∴300×120=15200×120=10400×120=20抽取人数依次为151020考点:分层抽22.【解析】【分析】根据系统抽样的特征求出分段间隔即可【详解】根据系统抽样的特征得:从2100名学生中抽取100个学生分段间隔为故答案是21【点睛】该题所考查的是有关系统抽样的组距问题应用总体除以样本容23.6【解析】如图过点作垂线垂足为在中故;过点作垂线与因则结合图形可知:当点位于线段上时为锐角三角形所以由几何概型的计算公式可得其概率应填答案点睛:本题的涉及到的知识点是几何概型的计算问题解答时充分借助24.512【解析】分析:将四位八进制数最小数根据进制进行转换得结果详解:因为四位八进制数最小数为所以点睛:本题考查不同进制数之间转换考查基本求解能力25.2【解析】【分析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算分段函数的函数值并输出【详解】该题考查的是有关程序框图的问题在解题的过程中注意对框图进行分析明确框图的作用三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫⎪⎝⎭,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.C解析:C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案. 【详解】由捆绑法可得所求概率为242466A A 1A 15P ==. 故答案为C 【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.3.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4mnπ=.故选C . 5.A解析:A 【解析】 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.6.D解析:D 【解析】 【分析】根据题意画出图形,结合图形即可得出结论. 【详解】 如图所示,线段MN 的长度为6,在线段MN 上随机取一点P ,则点P 到点M ,N 的距离都大于2的概率为2163P ==. 故选D . 【点睛】本题考查了几何概型的概率计算问题,是基础题.7.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.8.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF 的面积为1S ,ABC 的面积为2S因为DEF 与ABC 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A9.B解析:B 【解析】 【分析】应用平均数计算方法,设出两个平均数表达式,相减,即可。
一、选择题1.(0分)[ID:13307]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为()(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯2.(0分)[ID:13294]随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是().①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气合格天数的比重下降了③8月是空气质量最好的一个月④6月的空气质量最差A .①②③B .①②④C .①③④D .②③④3.(0分)[ID :13292]某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( )A .13B .47C .23D .564.(0分)[ID :13285]设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( )A .34B .35C .13D .12 5.(0分)[ID :13283]把8810化为五进制数是( )A .324(5)B .323(5)C .233(5)D .332(5)6.(0分)[ID :13279]执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈ ⎪⎝⎭,则输出的x 为( )A .()cos cos αα B .()sin sin αα C .()cos sin αα D .()sin cos αα 7.(0分)[ID :13278]执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261B.425C.179D.5448.(0分)[ID:13277]在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A.151B.168C.1306D.14089.(0分)[ID:13271]某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.193610.(0分)[ID:13268]执行如图所示的程序框图,如果输入的1a=-,则输出的S=A.2B.3C.4D.511.(0分)[ID:13260]要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A.5个B.10个C.20个D.45个12.(0分)[ID:13259]运行如图所示的程序框图,若输出的S的值为480,则判断框中可以填()i>A.60i>B.70i>C.80i>D.9013.(0分)[ID:13258]执行如图的程序框图,如果输出的是a=341,那么判断框()A .4k <B .5k <C .6k <D .7k <14.(0分)[ID :13254]从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( )A .27B .57C .29D .5915.(0分)[ID :13244]甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( )A .38B .34C .35D .45二、填空题16.(0分)[ID :13406]若(9)85a =,(5)301b =,(2)1001c =,则这三个数字中最大的是___17.(0分)[ID :13404]运行如图所示的程序框图,则输出的所有y 值之和为___________.18.(0分)[ID :13391]利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.19.(0分)[ID :13389]玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.20.(0分)[ID :13369]阅读如图所示的程序框图,运行相应的程序,则输出n 的值为___________21.(0分)[ID :13363]对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆy bx =+,且121012103()30x x x y y y +++=+++=,则b =______. 22.(0分)[ID :13362]如图是一个算法的流程图,则输出的a 的值是__________.23.(0分)[ID :13361]袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X 次球,则(4)P X ==_______.24.(0分)[ID :13337]已知AOB ∆中,60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,则AOC ∆为锐角三角形的概率_________.25.(0分)[ID :13349]执行如图程序框图,输出的结果为______.三、解答题26.(0分)[ID :13519]在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相同数字的概率;(2)若两人分别从甲、乙两个盒子中各摸出一球,规定:两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),这样规定公平吗?请说明理由.27.(0分)[ID :13511]冬季历来是交通事故多发期,面临着货运高危运行、恶劣天气频发、包车客运监管漏洞和农村交通繁忙等四个方面的挑战.全国公安交管部门要认清形势、正视问题,针对近期事故暴露出来的问题,强薄羽、补短板、堵漏洞,进一步推动五大行动,巩固扩大五大行动成果,全力确保冬季交通安全形势稳定.据此,某网站推出了关于交通道路安全情况的调查,通过调查年龄在[15,65)的人群,数据表明,交通道路安全仍是百姓最为关心的热点,参与调查者中关注此类问题的约占80%.现从参与调查并关注交通道路安全的人群中随机选出100人,并将这100人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求这100人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(2)现在要从年龄较大的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人进行问卷调查,求第2组恰好抽到1人的概率;28.(0分)[ID:13510]为了减轻家庭困难的高中学生的经济负担,让更多的孩子接受良好的教育,国家施行高中生国家助学金政策,普通高中国家助学金平均资助标准为每生每年1500元,具体标准由各地结合实际在1000元至3000元范围内确定,可以分为两或三档.各学校积极响应政府号召,通过各种形式宣传国家助学金政策.为了解某高中学校对国家助学金政策的宣传情况,拟采用随机抽样的方法抽取部分学生进行采访调查.(1)若该高中学校有2000名在校学生,编号分别为0001,0002,0003,…,2000,请用系统抽样的方法,设计一个从这2000名学生中抽取50名学生的方案.(写出必要的步骤)(2)该校根据助学金政策将助学金分为3档,1档每年3000元,2档每年2000元,3档每年1000元,某班级共评定出3个1档,2个2档,1个3档,若从该班获得助学金的学生中选出2名写感想,求这2名同学不在同一档的概率.29.(0分)[ID:13507]在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、5,15,乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成[) [)15,25,[)25,35,[)45,555组,绘制成如图所示的频率分布直方图.35,45,[](1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在[]45,55的概率.30.(0分)[ID :13502]某高中为了了解高三学生每天自主参加体育锻炼的情况,随机抽取了100名学生进行调查,其中女生有55名.下面是根据调查结果绘制的学生自主参加体育锻炼时间的频率分布直方图:将每天自主参加体育锻炼时间不低于40分钟的学生称为体育健康A 类学生,已知体育健康A 类学生中有10名女生.(Ⅰ)根据已知条件完成下面22⨯列联表,并据此资料你是否认为达到体育健康A 类学生与性别有关?非体育健康A 类学生 体育健康A 类学生 合计 男生女生合计(Ⅱ)将每天自主参加体育锻炼时间不低于50分钟的学生称为体育健康A +类学生,已知体育健康A +类学生中有2名女生,若从体育健康A +类学生中任意选取2人,求至少有1名女生的概率.附:P (20K k ≥) 0.050.010 0.005 0k3.841 6.635 7.879()()()()()22n ad bc k a c b d c d a b -=++++【参考答案】 2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.A3.B4.D5.B6.C7.B8.B9.C10.B11.A12.B13.C14.D15.A二、填空题16.【解析】【分析】将三个数都转化为10进制的数然后比较大小即可【详解】故最大【点睛】本题考查了不同进制间的转化考查了学生的计算能力属于基础题17.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值18.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填:19.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考20.4【解析】由程序框图可知:S=2=0+(﹣1)1×1+(﹣1)2×2+(﹣1)3×3+(﹣1)4×4因此当n=4时满足判断框的条件故跳出循环程序故输出的n的值为4故答案为421.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归22.7【解析】执行程序框图当输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环结束循环输出故答案为【方法点睛】本题主要考查程序框图的循环结构流程图属于中档题解决程序框图问题时一定注意以下几点23.【解析】【分析】由题意可知最后一次取到的是红球前3次有1次取到红球由古典概型求得概率【详解】由题意可知最后一次取到的是红球前3次有1次取到红球所以填【点睛】求古典概型的概率关键是正确求出基本事件总数24.6【解析】如图过点作垂线垂足为在中故;过点作垂线与因则结合图形可知:当点位于线段上时为锐角三角形所以由几何概型的计算公式可得其概率应填答案点睛:本题的涉及到的知识点是几何概型的计算问题解答时充分借助25.【解析】【分析】n=2018时输出S利用三角函数的周期性即可得出【详解】n=2018时输出SS=又的周期为12由图象易知:∴S==故答案为:【点睛】本题的实质是累加满足条件的数据可利用循环语句来实现三、解答题26.27.28.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】分析:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,可得正n 边形面积是13602S n sin n=⨯⨯,按照程序框图规定的运算方法逐次计算,直到达到输出条件即可的结果.详解:在半径为1的圆内作出正n 边形,分成n 个小的等腰三角形,每一个等腰三角形两腰是1,顶角是360n ⎛⎫⎪⎝⎭, 所以正n 边形面积是13602S n sin n =⨯⨯,当6n =时, 2.62S =≈; 当18n =时, 3.08S ≈;当54n =时, 3.13S ≈;符合 3.11S ≥,输出54n =,故选C.点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.解析:A【解析】在A中,1月至8月空气合格天数超过20谈的月份有:1月,2月,6月,7月,8月,共5个,故A正确;在B中,第一季度合格天数的比重为2226190.8462 312931++≈++;第二季度合格天气的比重为1913250.6263303130++≈++,所以第二季度与第一季度相比,空气达标天数的比重下降了,所以B是正确的;在C中,8月空气质量合格天气达到30天,是空气质量最好的一个月,所以是正确的;在D中,5月空气质量合格天气只有13天,5月份的空气质量最差,所以是错误的,综上,故选A.3.B解析:B【解析】【分析】由古典概型及其概率计算公式得:有人表现突出,则B县选取的人表现不突出的概率是6041057=,得解.【详解】由已知有分别从A,B两个县的15人中各选1人,已知有人表现突出,则共有1111 151********C C C C⋅-⋅=种不同的选法,又已知有人表现突出,且B县选取的人表现不突出,则共有1151260C C⋅=种不同的选法,已知有人表现突出,则B县选取的人表现不突出的概率是604 1057=.故选:B.【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.4.D解析:D【解析】【分析】的图象的测度,再代入几何概型计算公式求解,即可得到答案.【详解】对应的弧”,其构成的区域为半圆NP,则弦长超过半径2倍的概率12NP P ==圆的周长,【点睛】本题主要考查了几何概型的概率计算中的“几何度量”,对于几何概型的“几何度量”可以线段的长度比、图形的面积比、几何体的体积比等,且这个“几何度量”只与“大小”有关,与形状和位置无关,着重考查了分析问题和解答问题的能力.5.B解析:B【解析】【分析】利用倒取余数法可得8810化为五进制数. 【详解】因为88÷5=17…3,17÷5=3...23÷5=0 (3)所以用倒取余数法得323,故选:B.【点睛】本题考查十进制数和五进制数之间的转化,利用倒取余数法可解决此类问题.6.C解析:C【解析】【分析】由框图可知程序的功能是输出三者中的最大者,比较大小即可. 【详解】由程序框图可知a 、b 、c 中的最大数用变量x 表示并输出,∵,42ππα⎛⎫∈ ⎪⎝⎭ ∴20cos α12sin α<<<<, 又()y x sin α=在R 上为减函数,y sin xα=在()0∞+,上为增函数, ∴()sin sin αα<()cos sin αα,()sin cos αα<()sin sin αα故最大值为()cos sin αα,输出的x 为()cos sin αα故选:C【点睛】 本题主要考查了选择结构.算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.7.B解析:B【解析】【分析】根据循环结构的条件,依次运算求解,即得解.【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===;满足0105<⨯,故:7,4,4x y n ===;满足4107<⨯,故:11,36,6x y n ===;满足361011<⨯,故:17,144,8x y n ===;满足1441017<⨯,故:25,400,10x y n ===;此时:4001025>⨯,满足输出条件:输出425x y +=故选:B【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题.8.B解析:B【解析】【分析】【详解】分析:利用组合数列总事件数,根据等差数列通项公式确定所求事件数,最后根据古典概型概率公式求结果.详解:共有318C 17163=⨯⨯种事件数,选出火炬手编号为13(1)n a a n =+-,由1、4、7、10、13、16,可得4种,由2、5、8、11、14、17,可得4种,由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯. 选B .点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.9.C解析:C【解析】【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。
2015-2016学年四川省成都七中高二(上)期末数学模拟试卷(理科)(一)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A.46,45,56 B.46,45,53 C.47,45,56D.45,47,532.执行如图的框图,第3次和最后一次输出的A的值是()A.7,9 B.5,11 C.7,11 D.5,93.对于线性回归方程,下列说法中不正确的是()A.直线必经过点B.x增加一个单位时,y平均增加个单位C.样本数据中x=0时,可能有D.样本数据中x=0时,一定有4.如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D﹣ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确的是()A.①②B.②③C.③④D.①④5.若A、B两点的坐标分别是A(3cosa,3sina,1),B (2cosb,2sinb,1),则||的取值范围是( )A.B.C.(1,5) D.6.平面α与正四棱柱的四条侧棱AA1、BB1、CC1、DD1分别交于E、F、G、H.若AE=3,BF=4,CG=5,则DH等于( )A.6 B.5 C.4 D.37.已知直线l的倾斜角为α,且60°<α≤135°,则直线l斜率的取值范围是( )A.B.C.D.8.已知:,求z=x2+y2最小值为()A.13 B.C.1 D.9.已知圆C1:(x+1)2+(y﹣1)2=1,圆C2与圆C1关于直线x﹣y﹣1=0对称,则圆C2的方程为()A.(x+2)2+(y﹣2)2=1 B.(x﹣2)2+(y+2)2=1C.(x+2)2+(y+2)2=1 D.(x﹣2)2+(y﹣2)2=110.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是( )A.﹣2 B.﹣4 C.﹣6 D.﹣8 11.两个圆C1:x2+y2+2x+2y﹣2=0与C2:x2+y2﹣4x﹣2y+1=0的公切线有且仅有()A.1条B.2条C.3条D.4条12.已知直线x+ay﹣1=0是圆C:x2+y2﹣4x﹣2y+1=0的对称轴,过点A(﹣4,a)作圆C的一条切线,切点为B,则|AB|=()A.2 B.6 C.4D.2二、填空题:本大题共4小题,每小题4分,共16分。
2020-2021成都七中(高新校区)高二数学上期末第一次模拟试题含答案一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.如图,ABC ∆和DEF ∆都是圆内接正三角形,且//BC EF ,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在ABC ∆内”,B 表示事件“豆子落在DEF ∆内”,则(|)P B A =( )A .334πB .32πC .13D .233.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .814.执行如图所示的程序框图,若输入8x =,则输出的y 值为( )A .3B .52C .12D .34-5.如果数据121x +、221x +、、21n x +的平均值为5,方差为16,则数据:153x -、253x -、、53n x -的平均值和方差分别为( )A .1-,36B .1-,41C .1,72D .10-,1446.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020217.如果数据12,,,n x x x 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( )A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯8.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.59.运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填( )A .60i >B .70i >C .80i >D .90i >10.从0,1,2,3这四个数中任取两个不同的数组成一个两位数,则这个两位数是偶数的概率为( ) A .27B .57C .29D .5911.如图,在圆心角为直角的扇形OAB 中,分别以,OA OB 为直径作两个半圆,在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .122π- C .2πD .1π12.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球二、填空题13.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.某同学同时掷两颗骰子,得到点数分别为a ,b ,则双曲线2222x y 1a b -=的离心率e 5>的概率是______.15.某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.16.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
2020-2021成都七中初中学校高二数学上期末一模试卷含答案一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .652.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .813.下面的程序框图表示求式子32×35×311×323×347×395的值, 则判断框内可以填的条件为( )A .90?i ≤B .100?i ≤C .200?i ≤D .300?i ≤4.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某教师根据这一问题的思想设计了如图所示的程序框图,若输出m 的值为67,则输入a 的值为( )A .7B .4C .5D .115.下列赋值语句正确的是( ) A .s =a +1 B .a +1=s C .s -1=a D .s -a =16.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变 7.执行如图所示的程序框图,若输入的a ,b ,c 依次为()sin sin αα,()cos sin αα,()sin cos αα,其中,42ππα⎛⎫∈⎪⎝⎭,则输出的x 为( )A .()cos cos ααB .()sin sin ααC .()cos sin ααD .()sin cos αα8.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x 万 8.3 8.6 9.9 11.1 12.1 支出y 万5.97.88.18.49.8根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元9.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.510.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是 ( ) A .310B .25C .12D .3511.运行如图所示的程序框图,若输出的S 的值为480,则判断框中可以填( )A .60i >B .70i >C .80i >D .90i >12.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .29二、填空题13.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.若正方形ABCD 的边长为4, E 为四边形上任意一点,则AE 的长度大于5的概率等于______15.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.16.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).17.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.18.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。
成都七中嘉祥外国语学校数学期末复习试卷(二)考试时间:120分钟总分:150分一、 单选题CBBCC CBBBC BA二、填空题13.[−4,0].14.-115.616.5 2+517.【解析】(1)框图中①、②、③处应填充的式子分别为:(2)若输出的y 值为6,则,解得,当时,此时点P 在正方形的边BC 上;当时,此时点P 在正方形的边DA 上.18.【解析】(1)设事件A 为“方程x 2−2bx +a 2=0有实数根”则Δ= −2b 2−4a 2≥0,即b ≥a ,基本事件共12个:, 1,1 , 1,2 , 1,3 , 2,1 , 2,2 , 2,3 3,1 , 3,2 , 3,3 , 4,1 , 4,2 , 4,3 其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中含有6个基本事件,∴事件A 发生的概率为P A =612=12.(2)设王小一到达的时间为x ,王小二到达的时间为y . x ,y 可以看成平面中的点试验的全部结果所构成的区域Ω={(x ,y )|5≤x ≤6,5≤y ≤6} 两人能碰面记为事件A ,由右图可知所以两人相遇的概率x y y x y 224,8,2-===622462=-=x x 或92==x x 或2=x 9=x19.【解析】若p 为真命题,则f (x )=(2a -6)x 在R 上单调递减,∴ 0<2a -6<1,解得 3<a <.若q 为真命题,令f (x )=x 2-3ax +2a 2+1,则有整理得解得a >.773,322p q a p q a a <<≥≤若且为真,则则且为假,或者 20.【解析】(1)设分数在[)70,80内的频率为x ,根据频率分布直方图,则有()0.010.01520.0250.005101x +⨯++⨯+=,可得0.3x =,所以频率分布直方图为:(2)以中位数准做一条垂直于横轴的直线,这条直线把频率分布直方图分成面积相等的两个部分,由频率分布直方图知中位数要把最高的小长方形三等分, 所以中位数是1170107333+⨯=,所以估计本次考试成绩的中位数为1733。
2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件D.既不充分也不必要条件2.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样3.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切B.相交C.外切D.相离4.已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0 C.2x±y=0 D.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.6.设实数x,y满足,则μ=的取值范围是()A.[,2]B.[,]C.[,2]D.[2,]7.有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()A.200 B.180 C.150 D.2808.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是B.取出的鞋都是左脚的概率是C.取出的鞋都是同一只脚的概率是D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是9.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42?B.z≤20? C.z≤50? D.z≤52?10.某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C D.11.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S()A.2 B.4 C.1 D.﹣1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题∀x∈R,|x|<0的否定是.14.已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.15.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为.16.已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P 作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?18.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.19.某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)20.已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.22.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.2016-2017学年四川省成都七中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题p:“a=﹣2”是命题q:“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”成立的()A.充要条件B.充分非必要条件C.必要非充分条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:若“直线ax+3y﹣1=0与直线6x+4y﹣3=0垂直”,则6a+3×4=0,解得a=﹣2,故p是q成立的充要条件,故选:A2.成都七中为了全面落实素质教育,切实有效减轻学生课业负担,拟从林荫、高新两个校区的初高中学生中抽取部分学生进行调查,事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按年级分层抽样D.系统抽样【考点】收集数据的方法.【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:事先已了解到初中三个年级、高中三个年级学生的课业负担情况有较大差异,而男女生课业负担差异不大,按年级分层抽样,这种方式具有代表性,比较合理.故选:C.3.圆(x+2)2+y2=4与圆(x﹣2)2+(y﹣1)2=9的位置关系为()A.内切 B.相交C.外切D.相离【考点】圆与圆的位置关系及其判定.【分析】求出两圆的圆心和半径,计算两圆的圆心距,将圆心距和两圆的半径之和或半径之差作对比,判断两圆的位置关系.【解答】解:圆(x+2)2+y2=4的圆心C1(﹣2,0),半径r=2.圆(x﹣2)2+(y﹣1)2=9的圆心C2(2,1),半径R=3,两圆的圆心距d==,R+r=5,R﹣r=1,R+r>d>R﹣r,所以两圆相交,故选B.4.已知双曲线的离心率为2,那么双曲线的渐近线方程为()A.B.x±y=0 C.2x±y=0 D.【考点】双曲线的简单性质.【分析】利用双曲线的离心率,转化求出a,b关系,即可求解双曲线的渐近线方程.【解答】解:双曲线的离心率为2,可得,即,可得,双曲线的渐近线方程为:y=±,即.故选:D.5.函数f(x)=x2﹣x﹣2,x∈[﹣5,5],在定义域内任取一点x0,使f(x0)≤0的概率是()A.B.C.D.【考点】几何概型;一元二次不等式的解法.【分析】先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3【解答】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==,故选C6.设实数x,y满足,则μ=的取值范围是()A.[,2] B.[,]C.[,2]D.[2,]【考点】简单线性规划.【分析】根据不等式组画出可行域,得到如图所示的△ABC及其内部的区域.设P(x,y)为区域内一点,根据斜率计算公式可得μ=表示直线OP的斜率,运动点P得到PQ斜率的最大、最小值,即可得到μ=的取值范围.【解答】解:作出不等式组表示的平面区域,得到如图所示的△ABC及其内部的区域其中A(1,2),B(4,2),C(3,1),设P(x,y)为区域内的动点,可得μ=表示直线OP的斜率,其中P(x,y)在区域内运动,O是坐标原点.运动点P,可得当P与A点重合时,μ=2达到最大值;当P与C点重合时,μ=达到最小值.综上所述,μ=的取值范围是[,2]故选:A7.有5名高中优秀毕业生回母校成都7中参加高2015级励志成才活动,到3个班去做学习经验交流,则每个班至少去一名的不同分派方法种数为()A.200 B.180 C.150 D.280【考点】排列、组合的实际应用.【分析】根据题意,分2步进行分析,①、先将5个人分成3组,分析可得有2种分组方法:分成2﹣2﹣1的三组或分成3﹣1﹣1的三组,分别求出每种情况的分组方法数目,由分类计数原理可得分组方法数目,②、将分好的3组对应三个班级,由排列数公式可得其方法数目,进而由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析,①、先将5个人分成3组,若分成2﹣2﹣1的三组,有=15种情况,若分成3﹣1﹣1的三组,有=10种情况,一共有15+10=25种分组方法;②、将分好的3组对应三个班级,有=6种方法,则一共有25×6=150种不同分派方法,故选:C.8.柜子里有3双不同的鞋,随机地取2只,下列叙述错误的是()A.取出的鞋不成对的概率是B.取出的鞋都是左脚的概率是C.取出的鞋都是同一只脚的概率是D.取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是【考点】古典概型及其概率计算公式.【分析】利用等可能事件概率计算公式分别求解,能求出结果.【解答】解:∵柜子里有3双不同的鞋,随机地取2只,∴基本事件总数n==15,在A中,取出的鞋是成对的取法有3种,∴取出的鞋不成对的概率是:1﹣=,故A 正确;在B中,取出的鞋都是左脚的取法有=3种,∴取出的鞋都是左脚的概率为:,故B正确;在C中,取出的鞋都是同一只脚的取法有:=6,∴取出的鞋都是同一只脚的概率是p==;在D中,取出的鞋一只是左脚的,一只是右脚的,由题意,可以先选出左脚的一只有=3种选法,然后从剩下两双的右脚中选出一只有=2种选法,所以一共6种取法,∴取出的鞋一只是左脚的,一只是右脚的,但它们不成对的概率是,故D错误.故选:D.9.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是()A.z≤42? B.z≤20? C.z≤50? D.z≤52?【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量z的值,模拟程序的运行过程,可得答案.【解答】解:第一次执行z=2x+y后,z=1,不满足输出条件,应满足进行循环的条件,则x=1,y=1,第二次执行z=2x+y后,z=3,不满足输出条件,应满足进行循环的条件,则x=1,y=3,第三次执行z=2x+y后,z=5,不满足输出条件,应满足进行循环的条件,则x=3,y=5,第四次执行z=2x+y后,z=11,不满足输出条件,应满足进行循环的条件,则x=5,y=11,第五次执行z=2x+y后,z=21,不满足输出条件,应满足进行循环的条件,则x=11,y=21,第六次执行z=2x+y后,z=43,满足输出条件,故进行循环的条件可以为z≤42?,故选:A10.某学校随机抽查了本校20个同学,调查他们平均每天在课外从事体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…[35,40],作出的频率分布直方图如图所示,则原始的茎叶图可能是()A.B.C D.【考点】频率分布直方图;茎叶图.【分析】由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,即可得出结论.【解答】解:由频率分布直方图可得,[25,30),[30,35)的频率相同,频数为3,故选:B.11.如图,在等腰梯形ABCD中,AB∥CD,且AB=2AD,设∠DAB=θ,θ∈(0,),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,则()A.随着角度θ的增大,e1增大,e1e2为定值B.随着角度θ的增大,e1减小,e1e2为定值C.随着角度θ的增大,e1增大,e1e2也增大D.随着角度θ的增大,e1减小,e1e2也减小【考点】椭圆的简单性质.【分析】连接BD、AC,假设AD=t,根据余弦定理表示出BD,进而根据双曲线的性质可得到a的值,再由AB=2c,e=可表示出e1=,最后根据余弦函数的单调性可判断e1的单调性;同样表示出椭圆中的c'和a'表示出e2的关系式,最后令e1、e2相乘即可得到e1e2的关系.【解答】解:连接BD,AC设AD=t,则BD==∴双曲线中a=, e 1= ∵y=cosθ在(0,)上单调减,进而可知当θ增大时,y==减小,即e 1减小∵AC=BD ∴椭圆中CD=2t (1﹣cosθ)=2c ∴c'=t (1﹣cosθ)AC +AD=+t ,∴a'=(+t ), e 2==∴e 1e 2=×=1 故选B .12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( )A .2B .4C .1D .﹣1 【考点】椭圆的简单性质.【分析】通过已知条件,写出双曲线方程,结合已知等式及平面几何知识得出点M 是△F 1PF 2的内心,利用三角形面积计算公式计算即可.【解答】解:∵椭圆方程为+=1, ∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0), ∴双曲线方程为,设点P (x ,y ),记F 1(﹣3,0),F 2(3,0), ∵=,∴=,整理得:=5,化简得:5x=12y ﹣15,又∵,∴5﹣4y 2=20,解得:y=或y=(舍), ∴P (3,), ∴直线PF 1方程为:5x ﹣12y +15=0,∴点M到直线PF1的距离d==1,易知点M到x轴、直线PF2的距离都为1,结合平面几何知识可知点M(2,1)就是△F1PF2的内心.故﹣===2,故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.命题∀x∈R,|x|<0的否定是∃x0∈R,|x0|≥0.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,去判断.【解答】解:因为命题是全称命题,根据全称命题的否定是特称命题,所以命题的否定:∃x0∈R,|x0|≥0.故答案为:∃x0∈R,|x0|≥0.14.已知双曲线x2﹣my2=1的虚轴长是实轴长的3倍,则实数m的值是.【考点】双曲线的简单性质.【分析】利用双曲线x2﹣my2=1的虚轴长是实轴长的3倍,列出方程求解即可.【解答】解:双曲线x2﹣my2=1的虚轴长是实轴长的3倍,可得:=3,解得m=.故答案为:.15.在平面直角坐标系xOy中,曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8.【考点】圆的一般方程.【分析】x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2,根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积.【解答】解:x>0,y>0时,方程化为(x﹣1)2+(y﹣1)2=2,其面积为=+2根据图象的对称性,可得曲线x2+y2=2|x|+2|y|围成的图形的面积为6π+8,故答案为6π+8.16.已知圆C:(x﹣1)2+y2=r2(r>0)与直线l:y=x+3,且直线l上有唯一的一个点P,使得过点P作圆C的两条切线互相垂直.设EF是直线l上的一条线段,若对于圆C上的任意一点Q,,则的最小值是4+4.【考点】直线和圆的方程的应用.【分析】由圆的对称性知直线l上的唯一点P与圆心C(1,0)所在直线必与直线l垂直,求得PC所在直线方程,与直线l求得交点P,再根据对称性可得r=2,由题意,知|EF|取得最小值时,一定关于直线y=﹣x+1对称,画出图形,通过图形观察,当两圆相内切时,求得最小值.【解答】解:根据圆的对称性知直线l上的唯一点P与圆心C(1,0)所在直线必与直线l垂直,则PC所在直线的方程为x+y=1,与直线y=x+3联立求得P(﹣1,2),再根据对称性知过点P(﹣1,2)的两条切线必与坐标轴垂直,r=2;由题意,知|EF|取得最小值时,一定关于直线y=﹣x+1对称,如图所示,因此可设以点P(﹣1,2)为圆心,以R为半径的圆,即(x+1)2+(y﹣2)2=R2与圆C内切时,的最小值即为2R,由相切条件易知2R=2(|CP|+2)=2(2+2)=4+4.故答案为:4+4.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500).(1)求居民收入在[3000,3500)的频率;(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;(3)为了分析居民的收入与年龄、职业等方面的关系,按收入从这10000人中用分层抽样方法抽出100人作进一步分析,则应在月收入为[2500,3000)的人中抽取多少人?【考点】频率分布直方图.【分析】(1)根据频率=小矩形的高×组距来求;(2)根据中位数的左右两边的矩形的面积和相等,所以只需求出从左开始面积和等于0.5的底边横坐标的值即可,运用取中间数乘频率,再求之和,计算可得平均数,求出众数即可;(3)求出月收入在[2500,3000)的人数,用分层抽样的抽取比例乘以人数,可得答案.【解答】解:(1)月收入在[3000,3500)的频率为0.0003×500=0.15;(2)从左数第一组的频率为0.0002×500=0.1;第二组的频率为0.0004×500=0.2;第三组的频率为0.0005×500=0.25;∴中位数位于第三组,设中位数为2000+x,则x×0.0005=0.5﹣0.1﹣0.2=0.2⇒x=400.∴中位数为2400(元)由1250×0.1+1750×0.2+2250×0.25+2750×0.25+3250×0.15+3750×0.05=2400,样本数据的平均数为2400(元);众数是:=2250,和=2750;(3)月收入在[2500,3000)的频数为0.25×10000=2500(人),∵抽取的样本容量为100.∴抽取比例为=,∴月收入在[2500,3000)的这段应抽取2500×=25(人).18.口袋中装有4个形状大小完全相同的小球,小球的编号分别为1,2,3,4,甲、乙、丙依次有放回地随机抽取1个小球,取到小球的编号分别为a,b,c.(1)在一次抽取中,若有两人抽取的编号相同,则称这两人为“好朋友”,求甲、乙两人成为“好朋友”的概率;(2)求抽取的编号能使方程a+b+2c=6成立的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)将甲、乙依次取到小球的编号记为(a,b),利用列出法求出基本事件个数和甲、乙两人成为好朋友包含的情况种数,由此能求出甲、乙两人成为“好朋友”的概率.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),求出基本事件个数,利用列举法求出丙抽取的编号能使方程a+b+2c=6成立包含的基本事件个数,由此能求出抽取的编号能使方程a+b+2c=6成立的概率.【解答】解:(1)将甲、乙依次取到小球的编号记为(a,b),则基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.记“甲、乙两人成为好朋友”为事件M,则M包含的情况有:(1,1),(2,2),(3,3),(4,4),共4个人,故甲、乙两人成为“好朋友”的概率为P(M)==.(2)将甲、乙、丙依次取到小球的编号记为(a,b,c),则基本事件有n=4×4×4=64个,记“丙抽取的编号能使方程a+b+2c=6成立”为事件N,当丙抽取的编号c=1时,工+子4,∴(a,b)分别为(1,3),(2,2),(3,1),当丙抽取的编号c=2时,a+b=2,∴(a,b)为(1,1),当丙抽取的编号c=3或c=4时,方程a+b+2c=6不成立.综上,事件N包含的基本事件有4个,∴.19.某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得统计数据.(1)①求线性回归方程y=x+;②谈谈商品定价对市场的影响;(2)估计在以后的销售中,销量与单价服从回归直线,若该产品的成本为4.5元/件,为使科研所获利最大,该产品定价应为多少?(附:=,=﹣,=8.5,=80)【考点】线性回归方程.【分析】(1)①根据公式求出和的值,求出回归方程即可;②根据b的值判断即可;(2)求出关于w的表达式,结合二次函数的性质求出w的最大值即可.【解答】解:(1)①依题意:==﹣20,=﹣=80+20×8.5=250,∴回归直线的方程为y=﹣20x+250;②由于=﹣20<0,则x,y负相关,故随定价的增加,销量不断降低.(2)设科研所所得利润为w,设定价为x,∴w=(x﹣4.5)(﹣20x+250)=﹣20x2+340x﹣1125,∴当时,w max=320,故当定价为8.5元时,w取得最大值.20.已知⊙C:x2+y2﹣2x﹣4y﹣20=0,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0.(1)求证:直线l与⊙C恒有两个交点;(2)若直线l与⊙C的两个不同交点分别为A,B.求线段AB中点P的轨迹方程,并求弦AB的最小值.【考点】直线和圆的方程的应用.【分析】(1)求出圆C的圆心和半径,整理直线方程为m(2x+y﹣7)+(x+y﹣4)=0,求出直线2x+y ﹣7=0,x+y﹣4=0的交点,判断它在圆内,即可得证;(2)由题意知,设点P(x,y)为弦AB的中点,连接CP,则CP⊥PQ,由平面几何知识可得点P的轨迹方程是以CQ为直径的圆,求得圆心和半径,注意运用中点坐标公式,再由当Q(3,1)是弦AB 的中点时,|AB|最小,运用勾股定理即可得到所求值.【解答】解:(1)证明:⊙C:x2+y2﹣2x﹣4y﹣20=0,即(x﹣1)2+(y﹣2)2=25,圆心C(1,2),半径r=5,又直线l:(2m+1)x+(m+1)y﹣7m﹣4=0,化为m(2x+y﹣7)+(x+y﹣4)=0,由解得,则直线l恒过定点Q(3,1),由|CQ|==<5,可得Q在圆C内,则直线l与⊙C恒有两个交点;(2)由题意知,设点P(x,y)为弦AB的中点,由(1)可知CP⊥PQ,点P的轨迹方程是以CQ为直径的圆,线段CQ的中点为(2,),|CQ|=,则线段AB中点P的轨迹方程为;由圆的几何性质可知,当Q(3,1)是弦AB的中点时,|AB|最小.弦心距,⊙C的半径为5,可得|AB|min=2=4.21.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在整数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2?若存在,求出m的取值范围;若不存在,请说明理由.【考点】直线与抛物线的位置关系.【解答】解:(1)设P(x,y)(x>0)是曲线C上任意一点,那么点P(x,y)满足:,化简得y2=4x(x>0).(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).设l的方程为x=λy+m,由得y2﹣4λy﹣4m=0,△=16(λ2+m)>0,于是①,又,②,又,于是不等式②等价于③,由①式,不等式③等价于m2﹣6m+1<4λ2④对任意实数λ,4λ2的最小值为0,所以不等式④对于一切π成立等价于m2﹣6m+1<0,即.由此可知,存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有|FA|2+|FB|2<|AB|2,且m的取值范围为.22.已知椭圆的上顶点M与左、右焦点F1,F2构成三角形MF1F2面积为,又椭圆C的离心率为,左右顶点分别为P,Q.(1)求椭圆C的方程;(2)过点D(m,0)(m∈(﹣2,2),m≠0)作两条射线分别交椭圆C于A,B两点(A,B在长轴PQ同侧),直线AB交长轴于点S(n,0),且有∠ADP=∠BDQ.求证:mn为定值;(3)椭圆C的下顶点为N,过点T(t,2)(t≠0)的直线TM,TN分别与椭圆C交于E,F两点.若△TMN的面积是△TEF的面积的λ倍,求λ的最大值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;直线与椭圆的位置关系.【解答】解:(1)椭圆离心率,又,解得a=2,b=1,∴椭圆.(2)由已知AB必有斜率,设AB:y=k(x﹣n)(k≠0),A(x1,y1),B(x2,y2).联立.⇒k(x1﹣n)(x2﹣m)+k(x1﹣m)(x2﹣m)=0⇒2x1x2﹣(m+n)(x1+x2)+2mn=0⇒mn=4.(3)设E(x3,y3),F(x4,y4),因为,直线TM方程为:x=t(y﹣1),直线TN:3x﹣ty﹣t=0,联立,联立,所以E到直线TN:3x﹣ty﹣t=0的距离,,∴,(取等条件),λ的最大值为.。
高二上学期(xuéqī)期末模拟考试数学范围:直线和圆、圆锥曲线满分是:160分时间是:120分钟一、填空题:〔本大题一一共14小题,每一小题5分,一共70分.请把答案填写上在答题纸...相应位置上〕1.假设直线的倾斜角为,那么 = ▲.2. 两条直线和互相垂直,那么等于▲ . 3.假设抛物线的焦点坐标为,那么抛物线的HY方程是▲.4. 点到直线的间隔等于,且在不等式表示的平面区域内,那么点的坐标是▲.5. 过点M且被圆截得弦长为的直线的方程为▲.6.假设实数满足的最大值是▲.7.圆上一点到直线的间隔的最小值为▲.C yxOAB〔第148.方程(fāngchéng) 的曲线是焦点在轴上的双曲线,那么的取值范围是 ▲ . 9.经过点,渐近线方程为的双曲线的方程为 ▲ .10.椭圆的离心率为,那么双曲线的离心率为▲. 11. 设是椭圆上一点,为焦点,,那么▲ .12. 椭圆的中心为,右焦点为、右顶点为,右准线与轴的交点为,那么的最大值为 ▲ .13. :圆M : ,直线的倾斜角为,与圆M 交于两点,假设(O 为原点),那么l 在x 轴上的截距为 ▲ .14.如图,在平面直角坐标系中,点A 为椭圆:〔〕的左顶点(dǐngdiǎn),在椭圆E上,假设四边形为平行四边形,且,那么椭圆E的离心率等于▲.中学2021-2021年度第一学期期末模拟考试范围:直线和圆、圆锥曲线满分是:160分时间是:120分钟一.填空题〔本大题一一共14小题,每一小题5分,一共70分.请将答案填在相应的横线上〕1、________________________________2、______________________________3、________________________________4、______________________________5、________________________________6、______________________________7、________________________________ 8、______________________________9、 10、11、 12、13、 14、二、解答(jiědá)题〔本大题一一共6小题,一共计90分.解容许写出文字说明、证明过程或者演算步骤.〕15.〔此题满分是14分〕〔1〕直线过直线和的交点,且与直线垂直,求直线l的方程.〔2〕求经过点,和直线相切,且圆心在直线上的圆方程.16.〔此题满分是14分〕三点(sān diǎn).(1)求以为焦点且过点P的椭圆的HY方程;(2)设点关于直线的对称点分别为求以为焦点且过点的双曲线的HY方程.17.〔此题满分是15分〕某企业消费A、B两种产品,消费每一吨产品所需的劳动力、煤和电耗如下表:产品品种劳动力〔个〕煤〔吨〕电〔千瓦〕A产品 3 9 4B产品10 4 5 消费每吨A产品的利润是7万元,消费每吨B产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业消费A、B两种产品各多少吨,才能获得最大利润?18.〔此题满分(mǎn fēn)是15分〕如图,直角三角形的顶点坐标,直角顶点,顶点在x轴上,点P为线段的中点〔1〕求边所在直线方程;〔2〕M为直角三角形ABC外接圆的圆心,求圆M的方程;〔3〕假设动圆过点P且与圆M内切,求动圆N的圆心N的轨迹方程.19.〔本小题满分是16分〕点,圆C:过点,F点为抛物线的焦点,直线与圆相切. 〔1〕求m的值与抛物线的方程;〔2〕设点,点为抛物线上的一个动点,求的取值范围.20. 〔此题满分(mǎn fēn)是16分〕椭圆E:的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设是圆C上任意一点.〔1〕求圆C的方程;〔2〕假设直线与直线l交于点,且G为线段的中点,求直线FG被圆C 所截弦长;〔3〕在平面上是否存在一点P,使得恒成立?假设存在,求出点P坐标;假设不存在,请说明理由.内容总结。
成都七中高二上期末复习题(3)参考答案1.D斜二测法作图要注意:①与x轴垂直的直线,在直观图中画为与''轴x成0013545或者角的直线;②与x轴平行的线段,在直观图中与'x轴平行,且长度保持不变;与y轴平行的线段,在直观图中与'y轴平行,且长度为原来的一半.可计算直观图中梯形下底长为1+2,所以该平面图形的面积为222)211(21+=⋅++⋅=S,选D.2.D根据题意,由于,A、B、C、D为原正方体的顶点,则在原来的正方体中,折叠为立体图形可知,AB与CD为两个相邻的面对角线,因此所成的角为60︒,故可知答案为D. 3.C用一个平面去截正方体,对于截面的边界①三角形只能是直角三角形和锐角三角形②不会是直角梯形,而是等腰梯形,或者一般梯形;③菱形,可以对称的平行截面饿到.④正五边形不能得到.⑤正六边形,过各个面的底边的中点得到,成立,故选C.4.A解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又三角形A1DB为等边三角形,∴∠DA1B=60°,故选A5.C A:过两条平行直线,有且只有一个平面,A正确;B:如果四点中存在三点共线,则四点共面,B正确;C:两条直线没有公共点,可平行也可异面,C错误;D:垂直于同一个平面的两条直线平行,两直线共面,D正确.6.D ∵ABDRT∆中,ADAB=,则045=∠ABD,∴045=∠DBC,又045=∠BCD,∴DCBD⊥,又平面ABD⊥平面BCD,且面⋂ABD面BCD=BD,⊂CD面BCD,∴⊥CD面ABD,又∵⊂AB面ABD,∴ABCD⊥,又DDCADADAB=⋂⊥,,⊥AB 面ADC,又⊂AB面ABC,则平面ADC⊥平面ABC,选D.7.B根据频率分布直方图可知成绩介入100~60的频率为()8.01001.0015.0025.003.0=⨯+++,所以4808.0600=⨯.8.B;解法一:由排列组合知识可知,所求概率24213PC==;解法二:任取两个数可能出现的情况为(1,2)、(1,3)、(1,4)、(2,3)、(2,4)、(3,4);符合条件的情况为(1,3)、(2,4),故13P =.. 9.B 解:因为空间四边形OABC 如图,,,,点M 在线段OA 上,且OM=2MA ,N 为BC 的中点,所以=.所以=.10.A 设PAB ∆边AB 上的高为h ,由1133222PABS AB h h h ==⨯>⇒>,故所求概率为32133p -==. 11.163总的数对有1644=⨯,满足条件的数对有3个,故概率为163=P 12.2113第一次执行,2,1,2===y x z ,第二次执行,3,2,3===y x z ,第三次执行,5,3,5===y x z ,第四次执行,8,5,8===y x z ,第五次执行,13,8,13===y x z ,第六次执行,21,13,21===y x z ,第七次执行,34,21,34===y x z ,退出循环,输出1321. 13.7 ()()()1,0,11,2,31,2,3ka b k k k -=--=----,由()ka b -与b 垂直()14390k a b b k k k ∴-=---+-=∴=14.4,4,0- 根据题意,由于函数()f x 函数值的程序,若输出的y 值为4,那么分情况讨论,当x<0时,则有2(2)4224x x x +=∴+=-∴=-,当x=0,则有y=4,当x>0,则2(2)4224x x x -=∴-=∴=,综上可知x 的取值有0,-4,4.15.56解不等式125x x -++≤,得32,x -≤≤由几何概型求解公式得所求概率为56. 16.(Ⅰ)42,0.42,100,1m n M N ====,图形见解析;(Ⅱ)342人;(Ⅲ)15.17.(Ⅰ)110;(Ⅱ)5618.(1)详见试题解析;(2)二面角A-PB-D. (1)由勾股定理得:AD BD ⊥.根据面面垂直的性质定理,可得BD ⊥平面PAD 再由面面垂直的判定定理得:平面PAD ⊥平面MBD ;(2)思路一、由于AD BD ⊥,故可以D 为原点建立空间直角坐标系,利用向量方法可求得二面角A PB D --的余弦值.思路二、作出二面角的平面角,然后求平面角的余弦值. 由(1)知BD ⊥平面PAD ,所以平面PBD ⊥平面PAD 过A 作PD 的垂线,该垂线即垂直平面PBD再过垂足作PB 的垂线,将垂足与点A 连起来,便得二面角A PB D --的平面角 (1)证明:在ABD ∆中,由于4AD =,8BD =,AB =∴222AD BD AB +=,故AD BD ⊥.又PAD ABCD ⊥平面平面,PADABCD AD =平面平面,BD ABCD ⊂平面,BD PAD ∴⊥平面,又BD MBD ⊂平面,故平面MBD ⊥平面PAD 5分 (2)法一、如图建立D xyz -空间直角坐标系,()0,0,0D , ()4,0,0A ,(2,0,,P ()0,8,0,B(2,BP =-, ()4,8,0AB =-.设平面PAB 的法向量()111,,n x y z =,由1111148002800x y n AB x y n BP -+=⎧⎧⋅=⎪⎪⇒⎨⎨-+=⋅=⎪⎪⎩⎩令1111,2,y x z ===则n ⎛∴= ⎝⎭. 设平面P B 的法向量()222,,m x y z =, ()0,8,0DB =由22228002800y m DB x y m BP =⎧⎧⋅=⎪⎪⇒⎨⎨-+=⋅=⎪⎪⎩⎩即2220x +=,令2x =()3,0,1m ∴=-219cos ,n m n m n m⋅==⋅∴二面角A-PB-D 12分法二、由(1)知BD ⊥平面PAD ,所以平面PBD ⊥平面PAD过A 作AE PD ⊥交PD 于E ,则AE ⊥平面PBD再过E 作EF PB ⊥交PB 于F ,连结AF ,则AFE ∠就是二面角A PB D --的平面角由题设得AE EF ==.由勾股定理得:AF === 所以cos EF AFE AF ∠===. ∴二面角A-PB-D 12分 19.略20.(Ⅰ)见解析; (Ⅱ)见解析;(Ⅲ)三棱锥E AFG -与四棱锥P ABCD -的体积比161【解析】 试题分析:(Ⅰ)通过证明AD EF //,AD BC //,从而有BC EF //,然后由直线和平面平行的判定定理可得//BC 平面EFG ;(Ⅱ)利用直线和平面垂直的性质定理可得AE ⊥DH ,再证DH ⊥AG ,由直线和平面垂直的判定定理可得DH ⊥平面AEG ;(Ⅲ)由已知可得13E AFG G AEF AEF V V S GD--==⋅,13P ABCD ABCD V S PA -=⋅,所以111321163AEF E AFG P ABCD ABCD S GD AE EF GD V V AB AD PA S PA --⋅⋅⋅===⋅⋅⋅,此问注意直线和平面关系的运用和体积的转化.试题解析:(Ⅰ),E F 分别为,PA PD 中点,所以AD ∥EF ,∵BC ∥AD, ,∴BC ∥EF ....2分EFG EF EFG BC 平面平面⊂⊄,BC ∴∥平面EFG ............4分 (Ⅱ)∵PA ⊥平面ABCD ,∴PA ⊥DH ,即 AE ⊥DH .......... ∵△ADG ≌△DCH ,∴∠HDC=∠DAG ,∠AGD+∠DAG=90° ∴∠AGD+∠HDC=90° ∴DH ⊥AG又∵AE ∩AG=A ,∴DH ⊥平面AEG ............8分(Ⅲ)由PA ⊥平面ABCD ,得PA CD ⊥,又CD AD ⊥,所以CD ⊥平面PAD , 所以13E AFG G AEF AEF V V S GD --==⋅, 又13P ABCD ABCD V S PA -=⋅ 所以111321163AEF E AFG P ABCD ABCD S GD AE EF GD V V AB AD PA S PA --⋅⋅⋅===⋅⋅⋅ .........12分 考点:1.直线和平面平行的判定;2.直线和平面垂直的判定;3.三棱锥的体积求法 21.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)10【解析】试题分析:(Ⅰ)欲证线面垂直,先考察线线垂直,易证1BC AB ⊥,可试证1BC BC ⊥,由题目给条件易想到利用勾股定理逆定理;(Ⅱ)要想在棱1C C 找到点E ,使得1EA EB ⊥,易知1AB EB ⊥,那么这时就需要使1BE EB ⊥,这时就转化为一个平面几何问题:以矩形11BB C C 的边1BB 为直径作圆,与1C C 的公共点即为所求,易知只有一点即1C C 的中点 ,将以上分析写成综合法即可,找到这一点后,也可用别的方法证明,如勾股定理逆定理;(Ⅲ)求直线与平面所成的角,根据其定义,应作出这条直线在平面中的射影,再求这条直线与其射影的夹角(三角函数值),本题可考虑点E 在平面ABC 的射影,易知平面ABC 与侧面11BB C C 垂直,所以点E 在平面ABC 的射影必在两平面的交线上,过E 做1BC 的垂线交1BC 于F ,则EAF ∠为所求的直线与平面的夹角.试题解析:(Ⅰ)因为1BC =,13BCC π∠=,12C C =,所以1BC =,22211BC BC CC +=,所以1BC BC ⊥ 因为AB ⊥侧面11BB C C ,1BC ⊂平面11BB C C ,所以1BC AB ⊥,又BC AB B =,所以,1C B ⊥平面ABC4分(Ⅱ)取1C C 的中点E ,连接BE ,1BC CE ==,13BCC π∠=,等边1BEB ∆中,3BEC π∠=同理,11111B C C E ==, 1123B C E π∠=,所以116B EC π∠=,可得12BEB π∠=,所以1EB EB ⊥因为AB ⊥侧面11BB C C ,1EB ⊂平面11BB C C ,所以1EB AB ⊥,且EBAB B =,所以1B E ⊥平面ABE ,所以1EA EB ⊥; 8分 (Ⅲ)AB ⊥侧面11BB C C ,AB ⊂平面,得平面11BCC B ⊥平面1ABC , 过E 做1BC 的垂线交1BC 于F ,EF ⊥平面1ABC 连接AF ,则EAF ∠为所求,因为 1BC BC ⊥ ,1EF BC ⊥,所以BCEF ,E 为1CC 的中点 得F 为1C B 的中点,12EF = , 由(2)知AE =,所以1sin 10EAF ∠==13分 考点:空间中直线与平面垂直、直线与平面平行、平面与平面垂直的判定与性质.。
高二上期末考试模拟试题一一、 选择题(共12小题,每小题5分,共60分)1、直线l 的倾斜角为α,且3sin 5α=,则直线l 的斜率是 A. 43- B.34 C.43或43- D. 34或34-2、已知直线0ax by c ++=,其中a 、b 、c 同号,则直线与两坐标轴围成的三角形的面积是A. 2ab cB.22c abC. 2abD. 2ac bc+3、已知空间四边形ABCD ,连AC 、BD ,设M 和G 分别是BC 、CD 的中点,则AB+1()2BD BC += A. AG B. CG C. BC D.12BG 4、正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CC 1的中点,则AE 、BF 所成的角的余弦值是 A. 15- B.15C. D.255、空间四边形OABC 中,OB =OC ,3AOB AOC π∠=∠=,则,COS OA BC =A.12B. C.12- D.06、设A (1,2,11)-,B (4,2,3),C (6,1,4)-,则ABC ∆的形状是A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形 7、若,,x y R ∈且22240x y x y +-+=,则2x y -的最大值是 A. 8 B. 10 C.32 D. 528、设x 、y 满足210,20,250.x y x y x y +-≥⎧⎪-+≥⎨⎪+-≤⎩则z x y =+的最大值是A. 4B. 3C. 2D. 19、如果直线l 、m 与平面α、β、γ满足:l βγ=⋂,//l α,,m m αγ⊂⊥,那么必有 αγαγββαβαβ10、平面上动点P 到定点F (1,0)的距离比P 到y 轴的距离大1,则动点P 的轨迹方程为 A.22y x = B.24y x = C. 22y x =或0(0)y x =≤ D. 24y x =或0(0)y x =≤ 11、曲线12)y x =+≤与直线(2)4y k x =-+有两个交点,则实数k 的取值范围是 A. 53(,]124 B.5(,)12+∞ C.13(,)34 D.5(0,)1212、1B 2、B 是椭圆短轴的两端点,过左焦点1F 作长轴的垂线,交椭圆于P ,若12F B 是|O 1F |和12B B 的比例中项(O 为椭圆中心),则12PF OB 的值为3D.2请把选择题答案填入下表:班级 姓名 学号 分数二、填空题(共4小题,每小题4分,满分16分).将正确答案直接填在横线上.13.在正方体ABCD -1111A B C D 中,1BC 与平面11BDD B 所成角的大小为 .14.设双曲线()222210,0x y a b a b-=>>的右准线与两条渐近线交于A 、B 两点,右焦点为,F 且,FA FB ⊥则双曲线的离心率为 .15.已知向量()2,3,0a =-,(),0,3b k =,若a 与b 成0120角,则k= .16.过点(),P p p 作直线l 与抛物线()220y px p =>仅有一个公共点的直线方程是 .三、 解答题(共6小题,满分74分)17、已知向量 (4,2,4),(6,3,2)a b =--=-,求(1)a b ;(2)∣a ∣、∣b ∣;(3)(2a 3)(a 2)b b +-。
富阳区新登中学2021-2021学年高二数学上学期期末(qī mò)模拟试题一.选择题〔一共10小题,每一小题4分,一共40分〕1.双曲线=1的渐近线方程为〔〕A.y=±B.y=±x C.y=±x D.y=±x2.在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,BB1的中点,那么直线BC1与EF所成角的余弦值是〔〕A.B.C.D.3.a、b、c为三条不重合的直线,下面有三个结论:①假设a⊥b,a⊥c那么b∥c;②假设a⊥b,a⊥c那么b⊥c;③假设a∥b,b⊥c那么a⊥c.其中正确的个数为〔〕A.0个B.1个C.2个D.3个4.设点P为椭圆上一点,F1,F2分别为C的左、右焦点,且∠F1PF2=60°,那么△PF1F2的面积为〔〕A.B.C.D.5.对于曲线:上的任意一点P,假如存在非负实数M和m,使不等式恒成立为坐标原点,M的最小值为,m的最大值为,那么的值是A. 3B. 4C. 5D. 136.直线 l1:ax+〔a+2〕y+1=0,l2:x+ay+2=0,那么“l1∥l2〞是“a=﹣1〞的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.点F为抛物线y 2=﹣8x的焦点,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,那么|PA|+|PO|的最小值为〔〕A.B.C.6 D.4+28.圆O为Rt△ABC的外接圆,AB=AC,BC=4,过圆心O的直线(zhíxiàn)l交圆O于P,Q两点,那么的取值范围是〔〕A.[﹣8,﹣1] B.[﹣8,0] C.[﹣16,﹣1] D.[﹣16,0]9.三棱锥D﹣ABC,记二面角C﹣AB﹣D的平面角为α,直线DA与平面ABC所成的角为β,直线DA与BC所成的角为γ,那么〔〕A.α≥β B.α≤β C.α≥γ D.α≤γ10.如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,那么点P的轨迹是〔〕A、直线B、抛物线C、椭圆D、双曲线的一支二.填空题〔一共6小题,双空每空3分,单空每空4分,一共30分〕11.直线的斜率为;倾斜角大小为______.12.圆:, 那么圆在点处的切线的方程是___________;过点〔2,2〕的切线方程是 .13.某几何体的三视图如下图〔单位:cm〕,那么该几何体的体积为cm3,该几何体的外表积为cm214.m,n,s,t∈R+,m+n=2,,其中m、n是常数,当s+t取最小值时,m、n对应的点〔m,n〕是双曲线一条弦的中点,那么此弦所在的直线方程为.15.在平面(píngmiàn)直角坐标系xoy中,双曲线的左支与焦点为F的抛物线x2=2py〔p>0〕交于M,N两点.假设|MF|+|NF|=4|OF|,那么该双曲线的离心率为.16.在三棱锥T﹣ABC中,TA,TB,TC两两垂直,T在底面ABC内的正投影为D,以下命题:①D一定是△ABC的垂心;②D一定是△ABC的外心;③△ABC是锐角三角形其中正确的选项是〔写出所有正确的命题的序号〕三、解答题〔一共4题,50分〕17.〔满分是12分〕抛物线C:y2=2px的焦点坐标为F〔1,0〕,过F的直线l交抛物线C 于A,B两点,直线AO,BO分别与直线m:x=﹣2相交于M,N两点.〔Ⅰ〕求抛物线C的方程;〔Ⅱ〕证明△ABO与△MNO的面积之比为定值.18.〔满分(mǎn fēn)是12分〕如下图,四棱锥S﹣ABCD中,SA⊥底面ABCD,∠ABC=90°SA=2,,BC=1,,∠ACD=60°,E为CD的中点.〔1〕求证:BC∥平面SAE;〔2〕求直线SD与平面SBC所成角的正弦值.19.〔满分是12分〕如图,在四棱锥P﹣ABCD中,点E是AD的中点,点F在棱PB上,AD ∥BC,AB⊥AD,PA=PD=2,BC=AD=1,AB=,PC=.〔1〕证明:平面CEF⊥平面PAD;〔2〕设=k〔0<k<1〕,且二面角P﹣CE﹣F的大小为30°,务实数k的值.20.〔满分(mǎn fēn)是14分〕对于曲线C上一点T,假设在曲线C上存在异于T的两点,满足|TM|=|TN|,且TM⊥TN,那么称点T为曲线C的“T点〞,△TMN是点T的一个“特征三角形〞.椭圆的一个顶点为B〔0,1〕,A1,A2分别为椭圆G 的左、右顶点.〔 I〕证明:△BA1A2不是点B的“特征三角形〞;〔 II〕当a=2时,点A2是椭圆G的“T点〞,且△A2MN是点A2的“特征三角形〞,求出点M,N的一组坐标;〔 III〕试判断点B是否为椭圆G的“T点〞,假设是,求出其“特征三角形〞的个数;假设不是,请说明理由.高二数学(shùxué)期末复习卷答案一.选择题〔一共10小题,每一小题4分,一共40分〕题号 1 2 3 4 5 6 7 8 9 10答案 C B B A C B A D A C二.填空题〔一共6小题,双空每空3分,单空每空4分,一共30分〕11.; 12.;x=2或者y=213. , 14.x﹣2y+1=015..16.①③④三、解答题〔一共4题,50分〕17.〔满分是12分〕抛物线C:y2=2px的焦点坐标为F〔1,0〕,过F的直线l交抛物线C 于A,B两点,直线AO,BO分别与直线m:x=﹣2相交于M,N两点.〔Ⅰ〕求抛物线C的方程;〔Ⅱ〕证明△ABO与△MNO的面积之比为定值.【解答】解:〔Ⅰ〕由焦点坐标为〔1,0〕可知,p=2∴抛物线C的方程为y2=4x〔Ⅱ〕当直线l垂直于x轴时,△ABO与△MNO相似,∴.当直线l与x轴不垂直时,设直线AB方程为y=k〔x﹣1〕,设M〔﹣2,y M〕,N〔﹣2,y N〕,A〔x1,y1〕,B〔x2,y2〕,由整理(zhěnglǐ)得 k2x2﹣〔4+2k2〕x+k2=0,∵∠AOB=∠MON,∴x1•x2=1.∴.综上18.〔满分是12分〕如下图,四棱锥S﹣ABCD中,SA⊥底面ABCD,∠ABC=90°,,BC=1,,∠ACD=60°,E为CD的中点.〔1〕求证:BC∥平面SAE;〔2〕求直线SD与平面SBC所成角的正弦值.【解答】证明:〔1〕因为,BC=1,∠ABC=90°,所以AC=2,∠BCA=60°,在△ACD中,,AC=2,∠ACD=60°,由余弦定理可得:AD2=AC2+CD2﹣2AC•CDcos∠ACD解得:CD=4所以AC2+AD2=CD2,所以△ACD是直角三角形,又E为CD的中点(zhōnɡ diǎn),所以又∠ACD=60°,所以△ACE为等边三角形,所以∠CAE=60°=∠BCA,所以BC∥AE,又AE⊂平面SAE,BC⊄平面SAE,所以BC∥平面SAE.〔2〕由〔1〕可知∠BAE=90°,以点A为原点,以AB,AE,AS所在直线分别为x轴,y轴,z轴建立空间直角坐标系,那么S〔0,0,2〕,,,.所以,,.设为平面SBC的法向量,那么,即设x=1,那么y=0,,即平面SBC的一个法向量为,所以所以直线SD与平面SBC所成角的正弦值为.19.〔满分(mǎn fēn)是12分〕如图,在四棱锥P﹣ABCD中,点E是AD的中点,点F在棱PB上,AD∥BC,AB⊥AD,PA=PD=2,BC=AD=1,AB=,PC=.〔1〕证明:平面CEF⊥平面PAD;〔2〕设=k〔0<k<1〕,且二面角P﹣CE﹣F的大小为30°,务实数k的值.【解答】〔1〕证明:由PA=PD=2,点E是AD的中点,∴PA⊥AD,ABCE是矩形,∴EC⊥AD,∵平面PAD∩平面ABCD=AD,PE⊂平面PAD,EC∴PA⊥平面ABCDEC⊂平面ABCD∴PA⊥EC.∵BC=AD=1,AD∥BC,AB⊥AD,∴EC⊥AD,AD⊂平面PAD,∴平面CEF⊥平面PAD.〔2〕由〔1〕可得PA⊥AD,EC⊥AD,PA⊥EC,以E为坐标原点,向量,,的方向为x轴,y轴,z轴的正方形建立如下图的空间直角坐标系A﹣xyz.E〔0,0,0〕,P〔0,0,〕,C〔0,,0〕,B〔﹣1,,0〕,设F〔x,y,z〕,那么(nà me)=〔x,y,z﹣〕,=〔﹣1,,﹣〕,∵,∴,可得:x=﹣k,y=,z=,即F〔﹣k,,〕,设平面CEF的法向量为〔p,q,r〕,=〔﹣k,,〕,=〔﹣k,,〕∴,即,令r=,那么q=0,p=,即〔,0,〕,PCE的法向量为=〔﹣1,0,0〕,二面角P﹣CE﹣F的大小为30°,即cos30°=||=||=,解得:k=,故得实数k的值是.20.〔满分(mǎn fēn)是14分〕对于曲线C上一点T,假设在曲线C上存在异于T的两点,满足|TM|=|TN|,且TM⊥TN,那么称点T为曲线C的“T点〞,△TMN是点T的一个“特征三角形〞.椭圆的一个顶点为B〔0,1〕,A1,A2分别为椭圆G 的左、右顶点.〔 I〕证明:△BA1A2不是点B的“特征三角形〞;〔 II〕当a=2时,点A2是椭圆G的“T点〞,且△A2MN是点A2的“特征三角形〞,求出点M,N的一组坐标;〔 III〕试判断点B是否为椭圆G的“T点〞,假设是,求出其“特征三角形〞的个数;假设不是,请说明理由.【解答】〔本小题满分是14分〕解:〔I〕证明:,,因为a>1,所以,即A1B与A2B不垂直.所以△BA1A2不是点B的“特征三角形〞.…〔4分〕〔 II〕当a=2时,椭圆.因为点A2是椭圆G的“T点〞,且△A2MN是点A2的一个“特征三角形〞,不妨设M〔m,n〕,N〔m,﹣n〕〔﹣2<m<2〕.由题意得:解得或者〔舍〕所以〔或者〕….〔8分〕〔III〕点B是椭圆G的“T点〞.不妨设点B的“特征三角形〞为△BPQ.设直线(zhíxiàn)BP的方程为y=kx+1〔k>0〕,那么直线BQ的方程为,由得〔1+a2k2〕x2+2a2kx=0.因为B〔0,1〕,所以.所以=.同理可得.因为|BP|=|BQ|,所以,即〔k﹣1〕[k2+〔1﹣a2〕k+1]=0.〔1〕所以k=1或者k2+〔1﹣a2〕k+1=0〔2〕.由〔2〕式可得△=〔1﹣a2〕2﹣4=〔a2+1〕〔a2﹣3〕.当时,〔2〕式有两个相等的正根1,所以〔1〕式有三个相等的正根为k=1;当时,〔2〕式有两个不等于1 的正根,所以〔1〕式有三个不相等的正根;当时,〔2〕式无实根,所以〔1〕式只有一个正根为k=1.综上:当时,满足条件的“特征三角形〞有1个.当时,满足条件的“特征三角形〞有3个.….〔14分〕内容总结(1)②假设a⊥b,a⊥c那么b⊥c。
上学期高二数学期末模拟试题07一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.右图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名运动员得分的中位数分别是( )A .31,26B .36,23C .36,26D .31,232.把1 011(2)化为十进制数为( )A .11B .12C .112D .10113.在区间[-1,4]上任意取一个数x ,则x ∈[0,1]的概率是( )A .41 B .51C .31D .214.某校1000名学生中, O 型血有400人,A 型血有300人,B 型血有200人,AB 型血有100人,为了研究血型与性格的关系,按照分层抽样的方法从中抽取样本. 如果从A 型血中抽取了12人,则从AB 型血中应当抽取的人数为( )A.4 B.5 C.6 D.75.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点"的概率为( )。
A .21B .31C .61D .1216. 已知32()32f x axx =++,若(1)4f '-=,则a 的值等于( )A.193B .103C 。
163D .1337。
设有一个线性回归直线方程为x y5.12ˆ-=,则变量x 每增加一个单位时( )A. y 平均增加 1。
5 个单位B. y 平均增加 2 个单位C 。
y 平均减少 1.5 个单位 D. y 平均减少 2 个单位8.函数()y f x =导函数的图象如图所示,则下列说法正确的是( )A .函数()y f x =的递增区间为(1,3)-B .函数()y f x =的递减区间为(3,5)C .函数()y f x =在0x =处取得极大值D .函数()y f x =在5x =处取得极小值9.条件甲:“00>>b a 且",条件乙:“方程122=-by a x 表示双曲线”,那么甲是乙的( )A 。
普通高中2018-2019学年上学期高二期末模拟试题(七)数学全卷满分150分,考试时间120分钟。
★祝考试顺利★注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题作答用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试卷和草稿纸上无效。
3.非选择题作答用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。
考生必须保持答题卡的整洁。
考试结束后,只需上交答题卡。
第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分,每小题只有一个正确答案)在每小题给出的四个选项中,只有一项是最符合题目要求的,选出正确的选项并将该选项在答题卡上涂黑。
1.数列0,-1,0,1,0,-1,0,1,…的一个通项公式是( ) A.21)1(+-n B.cos 2πnC.cos2)1(π+n D.cos 2)2(π+n3. 设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件4. 已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0) B .1362022=+y x (x ≠0) C .120622=+y x (x ≠0) D .162022=+y x (x ≠0) 5.空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为( ) A .平面 B .直线 C .圆 D .线段 6.在ABC ∆中,8,60,75a B C ︒︒===,则b =( ) A....3237.在等比数列1129119753,243,}{a a a a a a a a n 则若中=的值为 ( ) A .9 B .1 C .2 D .38.给出平面区域如图所示,其中A (1,1),B (2,5),C (4,3),若使目标函数(0)Z ax y a =->取得最大值的最优解有无穷多个,则a 的值是A .32B . 1C . 4D . 23 9. 在ABC ∆中,若cos 4cos 3A bB a ==,则ABC ∆是( ) A .直角三角形 B .等腰三角形 C .等腰或直角三角形D .钝角三角形10.在同一坐标系中,方程12222=+y b x a 与02=+by ax )0(>>b a 的图象大致是11.在△ABC 中1,60==∠b A ,其面积为3,则角A 的对边的长为 A.57 B.37 C.21 D.1312.一艘船向正北方向航行,看见正西方有两个灯塔恰好与它在一条直线上,两塔相距10海里,继续航行半小时后,看见一塔在船的南偏西60°,另一塔在船的南偏西45°,则船速(海里/小时)是A .5B .53C .10D .103+10第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4个小题. 每小题4分;共16分.将答案填 在题中横线上.13. (理)已知向量()1,2,k OA =,()1,5,4=OB5=则k= .(文)曲线2)(3-+=x x x f 在点P 0处的切线平行于直线14-=x y ,则P 0点的坐标为 .14.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 求22y x +的最小值_____________.15.过抛物线px y 22=(p >0)的焦点F 作一直线l 与抛物线交于P 、Q 两点,作PP 1、QQ 1垂直于抛物线的准线,垂足分别是P 1、Q 1,已知线段PF 、QF 的长度分别是4,9,那么|P 1Q 1|= .16.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设,i j a (i 、j ∈*N )是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.则4,11a为 .三.解答题:本大题共6个小题. 共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知102:≤≤-x p ;22:210(0)q x x m m -+-≤> ,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。
高二上期末考试模拟试题七数 学(测试时间:120分钟 满分150分)一. 选择题(12×5分=60分,每小题给出的四个选项中,只有一项是符合题目要求的,第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,有一项是符合题目要求的.)1、设R b a ∈,,现给出下列5个条件:①2=+b a ;②2>+b a ;③222>+b a ;④1>ab ;⑤0log <b a ,其中能推出“a ,b 中至少有一个大于1”的条件为( )(A)②③④ (B)②③④⑤ (C)①②③⑤ (D)②⑤ 2、若直线0=++c by ax 经过第一、二、三象限,则( )(A)0,0>>bc ab (B)0,0<>bc ab (C)0,0><bc ab (D)0,0<<bc ab3、若不等式组⎩⎨⎧<->-a x a x 2412的解集非空,则实数a 的取值范围是( )(A) (-1,3) (B)(-3,1) (C)(-∞,-1) (D)(-∞,-3)∪(1,+∞) 4、“a >1”是直线0=-x a y 与直线a x y =-有且仅有两个交点的( )(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件5、AB 是过抛物线y x =2的焦点弦,且4=AB ,则AB 的中点到直线01=+y 的距离是( )(A)25 (B)2 (C)411(D)3 6、用一个与圆柱母线成︒60角的平面截圆柱,截口是一个椭圆,则此椭圆的离心率是( )(A)22 (B)21 (C)23 (D)337、已知25≥x , 则4254)(2-+-=x x x x f 有( )(A)最大值45 (B)最小值45(C)最大值1 (D)最小值1 8、已知直线)2(2:-=-x k y l 与圆02222=--+y x y x 相切,则直线l 的一个方向向量v为 ( )(A)(2,-2) (B)(1,1) (C)(-3,2) (D)(1,21) 9、已知函数42)6()(-+-=a x a x f 在⎥⎦⎤⎢⎣⎡1,54上0)(>x f 恒成立,则a 的取值范围是( )(A)),722(+∞ (B)),310(+∞ (C)]6,722( (D)]6,310( 10、如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )(A ){}22,02|≤<<<-x x x 或(B ){}22,22|≤<-<≤-x x x 或(C )⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 (D ){}0,22|≠<<-x x x 且11、已知动点),(y x P 满足y x y x 43)2()1(1022+=-+-,则此动点P 的轨迹是( )(A)椭圆 (B)双曲线 (C)抛物线 (D)两相交直线12、已知椭圆的一个焦点和对应的准线分别是抛物线22x y =的焦点与准线,则椭圆短轴的右端点的轨迹方程是( )(A))0(212>-=x y x (B))0)(1(22>-=x y x (C))0)(81(412>-=x y x (D))0)(41(212>-=x y x第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题;每小题4分,共16分.把答案填在题中的横线上.)13、若直线)0,0022>>=+-b a by ax (始终平分圆014222=+-++y x y x 的圆周,则ba 11+的最小值为14、),(y x P 是椭圆12322=+y x 上的动点,则y x 2-的的取值范围是 15、已知一椭圆的两焦点为)0,5(),0,5(21F F -,有一斜率为98-的直线被椭圆所截得的弦的中点为(2,1),则此椭圆方程为16、给出下列四个命题①两条直线平行的充要条件是它们的斜率相等;②过点),(00y x 与圆222r y x =+相切的直线方程为200r y y x x =+;③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;④抛物线上任意一点M 到焦点的距离等于该点M 到准线的距离。
高二上期期末检测模拟试题数学 试题 参考答案一、单选题(本大题共8小题,共40分。
在每小题列出的选项中,选出符合题目的一项)1、【答案】B2、【答案】D解析:由题意,得存在实数x ,y ,使得AD x AB y AC =+成立,即(5,6,)(2,1,3)(1,4,2)x y λ−=−+−−,所以52,64,32,x y x y x y λ=− −=−+ =− 解得2,1,8,x y λ==− = 故选D. 3、【答案】C解析:由535S S =,且21(21)n n S n a −=−,得()312355a a a a =++,所以120a a +=,设等差数列{}n a 的公差为d ,则()()341248a a a a d +−+==,所以121d a ==−,,所以5147a a d =+=. 4、【答案】A 5、【答案】D解析:()57134a a a a +=+,则4q = ,∴4624a q a ==故选:D 6、【答案】D 7、【答案】C小题,共9、【答案】ACD解析:因为数列是一类特殊的函数,其自变量n +∈N ,故数列的图象是一群孤立的点,A 正确;数列1,0,1,0,…与数列0,1,0,1,…的对应项不一样,故不是同一数列,B 错误; ,…前四项的规律,可知一个通项公式可以是()1nna n n +=∈+N ,C 正确; 10、【答案】ABD解析:当倾斜角为90°时,斜率不存在,故A 选项正确;设(0,2)关于直线1y x =+的对称点为(),m n ,则满足212122n mn m − =−+ =+ ,解得:11m n = = ,故点(0,2)关于直线1y x =+的对称点为(1,1),B 正确;当在x 轴和y 轴上截距都等于0时,此时直线为y x =,故C 错误;直线20x y −−=与两坐标轴的交点坐标为()2,0与()0,2−,故与两坐标轴围成的三角形的面积为12222××=,D 正确. 故选:ABD. 11、【答案】BC解析:因为双曲线22:1169x y C −=,所以5c =,又因为12112102022P P F P F S c y y =⋅=⋅⋅= ,所以4P y =,所以选项A 错误;将其代入22:1169x y C −=得2241169x −=,即20||3x =,由对称性,不妨取P 的坐标为20,43,可知2133PF =, 由双曲线定义可知1213372833PF PF ++ 所以121337|||350|33PF PF +=+=,所以选项B 正确; 由对称性,对于上面点P , 在12PF F 中,12371321033PF c PF =>=>=, 且24012020553PF k −==>−,所以12PF F 为钝角三角形,选项C 正确; 因为122920tan tan 22PF F b S θθ===,所以9πtan tan 2206θ=<=, 即π26θ<,所以12π3F PF θ∠=<,所以选项D 错误(余弦定理也可以解决); 12、【答案】ABD 解析:作出如图所示图形:对A,由抛物线定义及题意得222sin 302M M py py +==− , 即2212MM py p y+= =−,解得3p =,故A 正确; 对B,3p =,则30,2F,当直线l 的斜率不存在时,显然不合题意,设()11,M x y ,()22,N x y ,设直线l 的方程为y kx =22py =得2690x kx −−=,则12126,9x x k x x +==−, 121322MON S x x =×−=△当且仅当0k =时等号成立,故B 正确;对C,121212123322OM ON x x y y x x kx kx ⋅=+=+++ ()()()221212393919162424k x x k x x k k k =++++=−++⋅+故MON ∠钝角,则不存在直线l ,使得90OMF ONF ∠+∠>°,故C 错误; 对D,26x y =,即216y x =,故13y x ′=,1x ,在点N 2x ,为121x x =−,故相切的两条直线互相垂直,故D 正确.故选:ABD.三、填空题(本大题共4小题,共20分) 13、【答案】解析:将2220x y x ++=化为标准式得()2211x y ++=,故半径为1; 圆心()1,0−到直线y kx =,由弦长为1可得1=,解得k =.故答案为:.14、【答案】33,84解析:设00(,)P x y ,则有2200143x y +=,即2200443x y −=.①由题意知12(2,0),(2,0)A A −,设直线1PA 的斜率为1k ,直线2PA 的斜率为2k ,则001200,22y y k k x x ==+−, 所以212204y k k x ⋅=−.② 由①②得1234k k ⋅=−.因为2[2,1]k ∈−−,所以1k 的取值范围为33,84,故选B.15、【答案】21nn + 解析:由题意,11a =,当(,1]x n n ∈+时,{}1x n =+,(22{},21x x n n n n ⋅∈+++ ,{{}}x x ⋅的取值依次为2221,2,,21n n n n n n ++++++ ,…,221n n ++,共1n +个,即11n n a a n +=++,由此可得(1)1211123,22(1)1n n n n a n a n n n n + =++++===− ++, 所以1211121n n a a a n +++=+ . 四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 16、【答案】解析:本题考查抛物线、双曲线的几何性质,直线与抛物线的位置关系.由题意得,02p F,设直线l 的方程为2p x my =+,()11,A x y ,()22,B x y .由22,,2y px p x my = =+消去x 得2220y mpy p −−=,0∆>, 122y y mp ∴+=①,212y y p ⋅=−②.又||(3||AF FB =+,即(3AF FB =+,1122,(3,22p p x y x y∴−−=+−,12(3y y ∴=−+③.将③代入①得21)y mp +=−④,将③代入②得222(3y p +=⑤,再由④⑤解得21m =,故直线l 的斜率1k =±.又抛物线22(0)y px p =>的焦点F 是双曲线22221(0,0)x y a b a b −=>>的右焦点,2p c ∴=.∴直线l 的方程即为()y k x c =−. 由双曲线的左焦点(,0)c −到直线l的距离2d b =>,解得c >,即222c b >.又222b c a =−,()2222c c a ∴>−,即ce a=<, 又1e >,∴双曲线的离心率e ∈. 17、【答案】(1).依题意得()()12111410,28,a d a d a a d +=+=+因为0d ≠,解得12,2.a d ==所以()2122n a n n =+−×=.(2).由(1)得()2222n n n S n n +==+, 所以211111nS n n n n ==−++. 所以11111111223111n n T nn n n =−+−++−=−=+++…. 解析:18、【答案】(解析:(1)1BB ⊥ 平面ABC ,BC ⊂平面ABC , 1BB BC ∴⊥,平面111//A B C 平面ABC , 1BB ∴⊥平面111A B C , 11B C ⊂ 平面111A B C , 111BB B C ∴⊥11111tan B C C BB BB∴∠==1tan B CB ∠==111C BB B CB ∴∠=∠, 1190CBC B CB ∴∠+∠=°, 即11BC B C ⊥,又111A B BB ⊥,1111A B B C ⊥,1111BB B C B = ,1BB ⊂平面11BCC B ,11C B ⊂平面11BCC B , 11A B ∴⊥平面11BCC B , 111A B BC ∴⊥,1111A B B C B = ,1B C ⊂平面11A B C ,11A B ⊂平面11A B C , 1BC ∴⊥平面11A B C , 1A C ⊂ 平面11A B C ,11BC A C ∴⊥.(2)如图,作1A H AC ⊥于H ,在直角梯形11ABB A 中,得1AA =同理可得1CC =在等腰梯形11ACC A 中,()1112AH AC AC =−=则1A H ==1112A AC S AC A H ∴=⋅=△设B 到平面1A AC 的距离为d , 由11A ABC B A AC V V −−=,1113ABC A AC S BB S d ⋅=⋅△△, 则11ABC A AC S BB dS ⋅=△△又1A B =所以直线1A B 与平面1ACC A =.19、【答案】(1)圆C 的方程为22(3)(1)9x y −+−=或22(3)(1)9x y +++= (2)反射光线所在直线的方程为29150x y +−= 解析:(1)设圆222:()()(0)C x a y b r r −+−=>.由题意,得30a b −=①,||r a =②,227r +=③. 由①得3a b =,则3||r b =,代入③得21b =.当1b =时,3a =,3r =,∴圆22:(3)(1)9C x y −+−=;当1b =−时,3a =−,3r =,∴圆22:(3)(1)9C x y +++=.综上所述,圆C 的方程为22(3)(1)9x y −+−=或22(3)(1)9x y +++=. (2) 圆C 与y 轴正半轴相切, ∴圆22:(3)(1)9C x y −+−=. 设(1,2)M −−关于直线4y x =+的对称点为(,)M x y ′, 则21,1214,22y x y x + =− + −− =+ 解得6,3,x y =− = (6,3)M ′∴−,∴反射光线所在直线的斜率1336k −==+∴反射光线所在直线的方程为23(6)9y x −=−+,即29150x y +−=.20、【答案】 解析:解法一:取CD 的中点T ,连接AT ,可得AT CD ⊥, 所以AB AT ⊥,因为PA ⊥平面ABCD ,故以P A ,AB ,AT 所在直线为轴建立空间直角坐标系,如图.可得(,0,0)B a ,1,02C a ,1,02D a −,(0,0,)P b . (1)设平面PBD 的法向量为()111,,x y z =m ,因为(,0,)PB a b =− ,3,02BD a a =−, 所以11110,30,2ax bz ax ay −=−=令1x b =,则(,)b a =m ;设平面P AC 的法向量为()222,,x y z =n ,因为(0,0,)AP b =,1,02AC a =,所以2220,10,2bz ax = = 令21y =,则(n .所以0⋅=m n ,从而平面PBD ⊥平面P AC .(2)易得1,04O a,3,08M a, 设平面OPM 的法向量为()1333,,x y z =n ,因为1,,4OP a b =−,1,08OM a =,所以333331410,8ax ay bz ax −+= 31y =,则1(n ;设平面PMD 的法向量为()2444,,x y z =n ,因为1,2PD a b =−−,7,08MD a =−,所以4444410,270,8ax bz ax −−=−=令47y b =,则2,7)b =n .设二面角O PM D −−的平面角为θ,由tan θ=θ=所以1cos cos ,θ=n =解法二:过点O 作//OT PA ,因为PA ⊥平面ABCD ,所以OT ⊥平面ABCD .因为四边形ABCD 为菱形,所以OC OD ⊥,如图,以OC ,OD ,OT 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,(1,0,0)A −,(1,0,0)C ,(0,B ,D ,(1,0,)P b −.(1)设平面PBD 的法向量为()111,,x y z =m ,因为(1,)PB b =− ,(0,BD =,所以11110,0,x bz −−= = 令11z =,则(,0,1)b =m ;设平面P AC 的法向量为()222,,x y z =n ,因为平面P AC 即为xOz 平面,所以(0,1,0)=n .所以0⋅=m n ,从而平面PBD ⊥平面P AC . (2)易得1,0,02M.设平面OPM 的法向量为()1333,,x y z =n ,因为(1,0,)OP b − ,1,0,02OM=,所以3330,10,2x bz x −+== 可取1(0,1,0)=n ;设平面PMD 的法向量为()2444,,x y z =n ,因为)PD b =− ,12MD=−,所以444440,10,2x bz x +−= −=令4y b =,则2,b =n .设二面角O PM D −−的平面角为θ,则tan θ=θ=所以1cos cos ,θ=n解得b =CD ==12112111222111111113333333222242n n n n n T b b b −−−=−+−++−=−+++++=+++++22、【答案】(1)标准方程为. (2)存在,点(0,0)M .2212x y +=解析:(1)因为椭圆E,所以c a =,所以直线1l 的斜率为-1.如图,设E 的右焦点为F ,右顶点为P ,上顶点为Q ,过点P 作于点D ,则π||14PD PFD ∠=,所以,即1a c c −=−=,解得,则1,b a ==.故椭圆E 的标准方程为.(2)由题意可得点O 是线段AB 的中点. 又||||AC BC =,所以OA OC ⊥.①当直线AC 的斜率存在时,设直线AC 的方程为()()1122,,,,y kx m A x y C x y =+, 由2212x y y kx m+==+ ,得()222214220k x kmx m +++−=, 则()()222(4)421220km k m ∆=−+−>,即22210k m −+>. 由根与系数的关系可得2121222422,2121km m x x x x k k −+=−=++, 由OA OC ⊥可得12120x x y y +=,即()()12120x x kx m kx m +++=, 即()()22121210k x x km x x m++++=,所以()()2222222122402121k m k m m k k +−−+=++, 故22312k m =−. 假设存在点()0,0M x 满足条件,设点M 到直线AC 的距离为d ,则()()2200222213kx m kx m d k m++==+,,a b c 1PD l ⊥|||PF PD =1c =2212x y +=当00x =时,2d 为定值23,即d ②当直线AC 的斜率不存在时,根据椭圆的对称性可得11x y =,所以221112x x +=,故2123x =,点(0,0)到直线AC综上可得,存在点(0,0)M ,使得点M 到直线AC。
高二数学上学期期末考试七中模拟题
(总分150分,考试时间120分钟)
一、
选择题:(每题5分,共60分)
1、若a<1,那么 ( ) (A )
a
1>1, (B)|a|<1, (C)a 2<1, (D)a 3<1
2、若a,b 为实数,且a+b=2,则3a +3b 的最小值为( )
(A )18, (B )6, (C )23, (D )243 3、与不等式
x
x --23≥0同解的不等式是 ( )
(A )(x-3)(2-x)≥0, (B)0<x-2≤1, (C)3
2--x x ≥0, (D)(x-3)(2-x)>0
4、直线3x+2y+6=0的斜率为k ,在y 轴上的截距为b ,则 ( )
(A)k=-23,b=3 (B)k=-32,b=-2 (C)k=-23,b=-3 (D) k=-3
2,b=-3 5、如果直线ax+2y+2=0与直线3x-y-2=0平行,那么a 等于 ( ) (A )-3, (B )-6, (C )-23, (D )3
2 6、已知L 1:x –3y+7=0, L 2:x+2y+4=0, 下列说法正确的是 ( ) (A )L 1到L 2的角为π43
, (B )L 1到L 2的角为
4
π
(C )L 2到L 1的角为
4
3π, (D )L 1到L 2的夹角为π4
3
7、和直线3x –4y+5=0关于x 轴对称的直线方程是 ( ) (A )3x+4y –5=0, (B)3x+4y+5=0, (C)-3x+4y –5=0, (D)-3x+4y+5=0 8、直线y=x+2
3被曲线y=
2
1x
2
截得线段的中点到原点的距离是
( )
(A )29 (B )29 (C )
4
29 (D )
2
29
9、直线y=x –1上的点到圆x 2+y 2+4x –2y+4=0上的点的最近距离是 ( )
(A )22 (B )2-1 (C )22-1 (D )1 10、椭圆
25
2
x
+
9
2
y
=1上一点p 到一个焦点的距离为5,则p 到另一个焦点的
距离为( )
(A )5 (B )6 (C )4 (D )10 11、双曲线:
的准线方程是
19
16
2
2
=-
x
y
( )
(A)y=±716 (B)x=±
5
16 (C)X=±7
16 (D)Y=±5
16
12、抛物线:y=4ax 2的焦点坐标为 ( ) (A )(
a
41,0) (B )(0,
a
161) (C)(0, -
a
161) (D) (
a
161,0)
二、填空题:(每题4分,共16分)
13、若不等式ax 2+bx+2>0的解集是(–
2
1,3
1
),则a-b= .
14、由x ≥0,y ≥0及x+y ≤4所围成的平面区域的面积为 . 15、已知圆的方程⎩⎨⎧-=+=θθs i n
43c o s 45y x 为(θ为参数),则其标准方程
为 . 16、已知双曲线
16
2
x
-
9
2
y
=1,椭圆的焦点恰好为双曲线的两个顶点,椭圆与双
曲线的离心率互为倒数,则椭圆的方程为 .
三、 解答题:(74分)
17、如果a ,b +∈R ,且a ≠b ,求证: 422466b a b a b a +>+(12分)
18、解不等式:|x 1|552<+-x (12分)
19、已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作线段PP 1,求线段PP 1中点M 的轨迹方程。
(12分)
20、斜率为1的直线经过抛物线y x4
2 的焦点与抛物线相交于两点A,B,求线段AB的长。
(12分)
21、某工厂要建造一个长方体无盖贮水池,其容积为4800m3,深为3m,如果池底每1㎡的造价为150元,池壁每1㎡的造价为120元,问怎样设计水池能使总造价最低,最低造价是多少元?(13分)
22、某家具厂有方木料90m3,五合板600㎡,准备加工成书桌和书橱出售,已知生产每张书桌需要方木料0.1m3,五合板2㎡,生产每个书橱需方木料0.2m3,五合板1㎡,出售一张书桌可获利润80元,出售一个书橱可获利润120元,问怎样安排同时生产书桌和书橱可使所获利润最大?(13分)
高二数学上学期期末考试参考答案
一、 选择题:
1、(D ),
2、(B ),
3、(B ),
4、(C ),
5、(B ),
6、(A ),
7、(B ),
8、(D ),
9、(C ), 10、(A ), 11、(D ), 12、(B )。
二、 填空题:
13、-10, 14、 8, 15、(x-5)2
+(y-3)2
=42
, 16、
13
5
2
22
2=+
y x
三、 解答题:
17、证明:(a )422466()b a b a b +-+
)()()
)(()
()()
()2
2
2
2
2
4
4
222
2
4
2
2
4
4
26246>+-=--=---=-+-=b a b a
b a
b a b a
b b a a b a b
b a a
于是422466422466,0)()b a b a b a b a b a b a +>+>+-+即
18、解:得15512
<+-<-x x
,432141320
450
651
551
5522
2
2
<<<<⇒⎩⎨
⎧<<><⇒⎪⎩⎪⎨⎧<+->+-⇒⎪⎩⎪⎨⎧<+-->+-x x x x x x x x x x x x x 或或
所以原不等式的解集为{}4321|<<<<x x x 或
19、解:设点M 的坐标为(x, y) , 点P 的坐标为(x ),00y ,则 x=x 44),(,2
,2
0202
2
0000=+=+=
y x y
x y x P y y 上所以在圆因为 (1)
将 x 44)1(2,2200=+==y x y y x 得代入方程 即
14
2
2
=+y
x
,所以点M 的轨迹是一个椭圆。
20、解:由抛物线的标准方程可知,抛物线焦点的坐标为F (1,0), 所以直线AB 的方程为y=x-1 (1)
将方程(1)代入抛物线方程y 化简为得,4)1(,422x x x =-=
2
23,223016212
-=+==+-x x x x 得
将x 2
22,222:),1(,2121-=+=y y x 得的值代入方程
即A ,B 的坐标分别为(3+2222,223(),222,2--+) 所以8
)
24()24(2
2
=+=
AB
21、解:设水池底面一边的长度为x 米,则另一边的长度为米
x
34800,
又设水池总造价为L 元,根据题意,得
297600
,40,16002976004027202400001600.
2720240000)
1600(720240000)
348003232(1203
4800150有最小值时即当L x x
x x
x x x x
x L ==
=⨯⨯+=⨯+≥+
+=⨯
⨯+⨯+⨯
=
答:当水池的底面是边长为40米的正方形时,水池的总造价最低, 最低总造价是297600元。
22、解:设生产书桌x 张,书橱y 张,由题意得
,0600
2902.01.0⎪⎪
⎩
⎪⎪
⎨
⎧≥≥≤+≤+y o x y x y x 求Z=80x+120y 的最大值最优解为两直线 ⎩⎨
⎧=+=+600
2902.01.0y x y x 的交点A (100,400)。
答:生产书桌100张,书橱400张时,可使生产利润最大。