ABA 信号 6 (1)
- 格式:pdf
- 大小:568.35 KB
- 文档页数:7
科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON2008N O .10SCI ENC E &TECH NOLOG Y I N FOR M A TI ON工程技术植物作为多细胞的复杂有机体,在维持其正常的新陈代谢,生长发育,以及对外界多种环境刺激与胁迫的适应过程中,各个细胞,组织,器官之间进行着错综复杂的信息交流和多种因子的调节植物激素担任着信号感受和信号传递的重要任务。
脱落酸(absi csi c aci d,A B A)作为植物体内一种重要的植物激素参与多种信号转导途径,尤其在植物抵御外界不良环境影响,如干旱,低温等逆境下起着尤为重要的作用,素有“逆境激素”之称。
1A B A 的发现ABA 最早是在成熟的干棉壳中分离纯化得到的,W .C.l i u 等研究发现它能使棉花幼龄脱落,认为它是一种“脱落素”。
同时C.F.E agl es 等从桦树中提取出了一种抑制生长诱导休眠的物质,命名为“休眠素”。
后经鉴定,二者为同一化学物质,最终被定名为脱落酸。
2A B A 在植物体内的分布及生理作用AB A 在植物体内广泛存在,在植物体的不同部位分配存在着差异,正常植株中,根系比叶片往往含有更多的ABA 。
在细胞水平上,水分充足时细胞内ABA 呈均匀分布[1]。
放射免疫分析表明细胞溶质、核、叶绿体和细胞壁中都存在标记A B A ,并且标记量没有差异[2]。
干旱导致ABA 重新分布:法国薰衣草受胁迫后(-2.6M P a 水势)叶片总AB A 从900pm ol /g 鲜重增加到3600pm ol /g 鲜重,其中细胞壁A B A 水平增加T 4倍,增值最多。
W i l ki nson 也发现干旱使质外体AB A 水平增加[3]。
最初有人认为是由于叶绿体膜破裂导致ABA 外泄,但后来研究发现叶绿体和核ABA 都有增加(分别为2倍和3倍)。
Re n s bu r g (1996)则报告胁迫下植物叶绿体A BA 含量没有改变,因此质外体A BA 浓度增加可能使根的释放量或合成增加[4]。
信号完整性仿真流程
信号完整性仿真是一种通过计算机辅助工程(CAE)软件模拟电子系统中信号质量的过程,主要关注的是高速数字信号在传输过程中受到的各种干扰对信号质量的影响。
简要流程如下:
1. 模型建立:根据设计需求,创建电路板、连接器、电缆等模型,并定义元器件参数及互连结构。
2. 设置边界条件:设定电源网络、信号激励(如上升沿、下降沿、数据眼图等)、负载条件等边界条件。
3. 选择仿真类型:进行瞬态仿真分析信号时域行为,如延时、振铃、过冲等;进行频域仿真分析信号频谱特性,如插入损耗、串扰、反射系数等。
4. 执行仿真:运行仿真软件,计算并输出仿真结果,如眼图、时序图、S参数等。
5. 结果分析:解读仿真结果,评估信号完整性是否满足设计要求,如是否满足建立保持时间、是否存在严重的噪声干扰或信号衰减等。
6. 优化设计:根据仿真结果对设计方案进行优化调整,如调整布线拓扑、添加端接电阻、优化电源/地平面布局等,然后再进行仿真验证,直至满足信号完整性要求。
植物 PP2C 蛋白磷酸酶 ABA 信号转导及逆境胁迫调控机制研究进展张继红;陶能国【摘要】蛋白磷酸酶(protein phosphatase,PP)是蛋白质可逆磷酸化调节机制中的关键酶,而 PP2C 磷酸酶是一类丝氨酸/苏氨酸残基蛋白磷酸酶,是高等植物中最大的蛋白磷酸酶家族,包含76个家族成员,广泛存在于生物体中。
迄今为止,在植物体内已经发现了4种 PP2C 蛋白磷酸酶。
蛋白激酶和蛋白磷酸酶协同催化蛋白质可逆磷酸化,在植物体内信号转导和生理代谢中起着重要的调节作用,蛋白质的磷酸化几乎存在于所有的信号转导途径中。
大量研究表明,PP2Cs 参与多条信号转导途径,包括PP 2C 参与 ABA 调控,对干旱、低温、高盐等逆境胁迫的响应,参与植物创伤和种子休眠或萌发等信号途径,其调控机制不同,但酶催化活性都依赖于 Mg2+或Mn2+的浓度。
植物 PP2C 蛋白的 C 端催化结构域高度保守,而 N 端功能各异。
文中还综述了高等植物PP 2C 的分类、结构、ABA 受体与 PP2Cs 蛋白互作、PP2C 基因参与 ABA 信号途径以及其他逆境信号转导途径的研究进展。
%Protein phosphatase is the most important and pivotal enzymes in reversible protein phosphorylation regula-ting mechanisms.While the PP2C phosphatase is a kind of serine/threonine residues of protein phosphatase,is the largest protein phosphatase family in higherplants,there are 76 family members,widely exists in living organisms. So far,four kinds of PP2C protein phosphatases have been found in plants.Protein kinase and protein phosphatase catalyzed reversible protein phosphorylation,play an important role in plant signal transduction and physiological me-tabolism,protein phosphorylation exist in almost thesignal transduction pathway.Numerous academic studies have shown that plant PP2Cs are involved in multiple signal transduction pathways including PP 2C involved in ABA sig-naling pathway,the response to drought,low temperature,salt stress,participated in the plant wound and seed dor-mancy or germination signal pathway,and exist the different regulation mechanism and the enzyme catalytic activity were dependent on the concentrations of Mg2+ or Mn2+ .In plant PP2Cs protein C-terminal,there are a highly con-served catalytic domains,as well as in their N-terminal,their function are different.The review would provide a brief overview of classification,structure of PP 2Cs ,the interaction between ABA receptor and PP2Cs protein,the recent progresses about their roles in ABA and other stress signal transduction pathway in higher plant.【期刊名称】《广西植物》【年(卷),期】2015(000)006【总页数】7页(P935-941)【关键词】蛋白磷酸酶;ABA;信号转导;逆境胁迫;研究进展【作者】张继红;陶能国【作者单位】湘潭大学化工学院生物工程系,湖南湘潭 411105;湘潭大学化工学院生物工程系,湖南湘潭 411105【正文语种】中文【中图分类】Q945.78环境胁迫是限制植物生长和作物产量的重要因素,蛋白质激酶在植物逆境胁迫信号转导中的作用已有较多报道,而关于催化其可逆反应的蛋白磷酸酶与干旱等逆境胁迫的报道却不多,而且不一致(Schweighofer et al.,2004)。
行为训练法的基本原理一、基本概念1.名称:应用行为分析法、行为训练法、行为技术、行为改变技术(简称:ABA ) 2.理论基础与原理3.ABA 是行为科学的应用分支是关于人类行为和学科的科学,一个关于行为原理的系统应用学科,旨在改善行为 将孤独症视为一种行为不足或行为过度综合症,该症状可以通过精心的训练计划得到改善是一种科学实践的框架,而不是一个精确的训练计划4.ABA 的有效性建立在:科学方法论的基础上行为规律和研究发现的基础上 是动态的持续的行为改善来自于熟练的操作5.ABA 干预的基本原则提高学习能力,即“学习如何学习”不仅在于教新的行为。
还涉及到用更合适的行为替代问题行为强调的是如何获得适应性行为。
因为当孩子的适应性行为能力越强时,出现问题行为的几率就越低通过数据的收集了解学生的进步 附:关于“行为”的几个重要表述ABA 不仅仅是针对孤独症的一种干预方法,有着悠久的历史,并且在许多不同的领域都被采用:儿童管理、发育障碍、教育和特殊教育、康复、临床心理、自我管理、预防、运动心理、健康行为、老人医学。
二、行为改变技术1、行为改变的公式:——将ABA 的原理放进实践操作之中应用(ABA)在实践种操作行为的改变主要包含一下几个步骤:控制结果(行为发生之后的结果) 改变或调整三个元素种的一项或两项2、回合操作教学法(DTT)DTT五元素:指令、辅助、反应、结果(强化)、停顿DTT回合公式:(辅助)指令→ 反应→ 结果→ 停顿↑∣下一回合刺激三要素(指令、刺激物、环境)反应过程中注意:1反应标准一致 2注意反应中的不良行为三、ABA与孤独症1.为什么ABA适合孤独症孤独症儿童的障碍最终体现在行为上他们有严重的信息输入障碍医学上因病因不明而无法“对症”,行为改变则为矫治孤独症儿童提供了切入点2.ABA的四大设计的特点孤独症的人际关系障碍是因直觉障碍导致行为训练从障碍结果入手非专业人员也可操作训练的效果可以预测和量化3.ABA的四个操作特点对行为进行分解,在DTT中操作操作中伴随指令和辅助,对孩子的反应有预期性的行为标准(目标行为)反复教,注重巩固和泛化从“一对一”开始,逐步进展到“小组”和“集体课”ABA训练的主要技巧(回合式教学法DTT)应用行为分析法(ABA)是根据行为理论发展演变出的一套完整的行为训练方法。
植物ABA信号转导与植物抗逆性研究概述植物生长发育和响应环境胁迫的各种信号都需要通过信号转导通路来实现。
ABA是一种在水分胁迫、高温、低温、重金属等环境胁迫下显著积累的类激素分子,对植物的抗逆性具有关键作用。
本文将就植物ABA信号转导及参与植物抗逆的机制进行讨论。
ABA合成和信号传递ABA是由MEP途径合成的,最初的化合物是萜类化合物,然后到达ABA的核酸类化合物。
ABA需要在植物体内快速传导,以便在环境压力下迅速响应。
ABA信号传递与ABA感受受体和共同的信号分子有关,其中包括Ca2+、ROS以及与ABA共同响应的信号分子,例如亚硫酸和腺苷酸。
ABA在植物细胞内高浓度激活胞浆型和细胞核型的钙离子通道,并且促使ROSCa2+信号的范围扩大。
钙信号进一步促进了一系列ABA响应基因的表达,例如抗氧化基因和受体激酶基因。
此外,ABS-RESISTANT6(ABI6)和ABA INSENSITIVE4(ABI4),是ABRE家族转录因子的主要成员,它们通过ABA介导的途径表达,并且参与抗逆性响应。
ABA信号转导及抗逆性的机制植物ABA信号的转导途径涉及了复杂数字级联级反应,并与ABA受体和一系列ABA响应因子有关。
另外,ABA在调节细胞水位方面的重要性贡献众所周知。
ABA能够介导离子/水研究中重要基因的表达,例如钙离子通道CNGC2、ABI2和黄酮基苷酸酯酶(FLAVIN-CONTAINING MONOOXYGENASE 1, FMO1)等。
ABA通过激活Ca2+信号的通路调节离子渗透调节因子(IonOsmosisRegulatoryFactors,IORFs)和活性氧抗氧化酶(ActiveOxygenantioxidative enzyme, AOE),以及由ABA受体介导的细胞中心体(Centrin)和黄素类胡萝卜素,从而提高植物生长发育和抗逆力。
此外,ABA信号通路中一直具有关键作用的信号分子为MPK3/MAPK6和SnRK2蛋白激酶。
依赖aba途径调节气孔运动
在植物生理学中,"aba" 是脱落酸(Abscisic Acid)的缩写,它是一种植物激素,对植物生长发育和应激响应起到重要的调控作用。
气孔运动是指植物叶表皮上的气孔开合过程,这一过程对植物的气体交换和水分调节至关重要。
下面是依赖ABA 调节气孔运动的主要过程:
1. 水分胁迫响应:当植物受到外界水分胁迫的刺激时,例如土壤干旱或空气干燥,植物体内会产生更多的脱落酸(ABA)。
2. ABA感知和信号传导:植物细胞中存在感知ABA 的受体,一旦感知到高浓度的ABA,就会引发一系列信号传导通路。
3. K+和Cl-离子的调控:ABA 通过调节离子通道的活性,特别是K+(钾)和Cl-(氯)通道,影响细胞内外的离子浓度。
4. 气孔运动:ABA 的信号传导最终影响到植物叶片中的气孔。
ABA 通过调节气孔周围的配子细胞和保护细胞的膨压状态,以及对气孔孔口的影响,调节气孔的开合状态。
5. 水分保持:ABA 调控气孔的开合状态,减缓水分的蒸腾流失,有助于植物在干旱或水分胁迫条件下减少水分损失,提高水分利用效率。
这个过程有助于植物在面临水分胁迫时保持水分平衡,提高植物的抗旱能力。
同时,通过ABA 调控气孔运动,植物还能够在适当的条件下实现气体交换,维持正常的生长和新陈代谢。
ABA 在植物的生长发育、应激响应等方面的作用,使其成为植物生理学中一个非常重要的调节因子。
外源信号ABA对茶鲜叶内含物质的影响摘要筛选出在适度低温胁迫下表现强的信号(ABA),外部喷施到正常条件下的茶树,研究该信号对茶树鲜叶内含物变化的影响。
结果表明:喷施适量ABA能明显影响鲜叶中的香气成分,为提高茶叶品质提供了理论依据。
关键词外源信号;ABA;茶鲜叶;内含物质;影响虽然加工过程是形成茶叶品质的关键,但鲜叶中的多酚类、氨基酸、水浸出物和芳香物质等内含物质的组成与含量是茶叶品质形成的物质基础。
鲜叶的品质除与茶树品种和栽培措施相关以外,还与环境条件密切相关。
不同环境条件对鲜叶内含物质产成不同的影响。
近年来越来越多的研究表明,在逆境胁迫下,茶树体内的某些信号物质会发生变化,改变茶树体内代谢水平,会导致茶树叶片内含物质发生变化。
已有研究表明,如干旱和淹水胁迫均会显著降低没食子酸和咖啡碱等茶叶品质成分的合成。
成龄茶树叶片在冬季低温胁迫的影响下,单糖和双糖的含量均伴随温度的降低而递增。
因此,探讨逆境下产生的胁迫信号对茶树鲜叶品质的影响,可为通过利用外源信号来调控茶叶品质提供理论基础[1-2]。
本研究选用广东地区的主栽茶树品种黄枝香作为研究材料,通过不同浓度的外援胁迫信号处理茶树,分析茶树鲜叶水浸出物、儿茶素、多酚类、黄酮类、氨基酸、咖啡碱、水溶性糖、醚浸出物等内含物质的变化,为下一步研究提供理论基础。
1 材料与方法1.1 试验设计经过对低温胁迫试验处理的叶片内信号的测定后,筛选出ABA(脱落酸)作为喷施信号。
喷施方式采用叶面喷施,设5个ABA浓度处理,分别为0(CK)、50、100、150、200 mg/L。
3次重复,4株茶树为1次重复。
1.2 试验方法各处理喷施ABA 10 d后采摘新梢一芽3、4叶,分别测定水浸出物、儿茶素、多酚类、黄酮类、氨基酸、咖啡碱、水溶性糖、醚浸出物。
各试验处理完成后,各重复随机选取生育状况基本一致的新梢,采摘一芽3、4叶。
生化分析所用鲜叶迅速用蒸汽固定法固样。
2 结果与分析从表1可以看出,喷施ABA可以显著提高鲜叶水溶性糖的含量,喷施150mg/L ABA的处理鲜叶水溶性糖含量最高。
脱落酸(ABA)受体研究(原创)脱落酸(ABA)受体研究(原创)植物激素是植物体内合成的一批微量信号分子,通过整合不断变化的外界环境与内部发育信号,从分子、细胞、组织和器官水平上调控植物的生理生化反应和形态建成,确保植物正常的生长发育。
受体是激素初始作用发生的位点,植物激素受体是指能与植物激素专一结合,并在结合后能引起特定的激素生理生化效应的物质。
脱落酸(abscisic acid,ABA)调节种子发育、幼苗生长、叶片气孔行为和营养生长向生殖生长转变等诸多植物生长发育过程,并在调节植物逆境适应性方面起着关键的作用。
植物细胞的ABA受体可能是多重的,在不同的条件下介导不同的生物学效应时,可能有不同的受体参与其中。
目前已经发现多个不同的受体。
ABA一、FCA受体Razem等采用抗-抗ABA抗体(AB2)筛选ABA处理过的大麦糊粉层cDNA表达文库,获得一全长cDNA(aba33),进而进行体外富集表达和蛋白特性鉴定,得到体外表达的具有潜在ABA受体特征的大麦糊粉蛋白ABAP1蛋白,该蛋白可在体外结合ABA。
ABAP1与拟南芥调控植物开花时间的蛋白FCA的氨基酸序列类似。
FLC(识别、结合并启动、调控MADS基因的表达)是一种MADS(能够编码具有调控功能的DNA结合蛋白)转录因子,是成花过渡过程中的主要抑制因子。
FCA是细胞核内一种RNA结合蛋白,通过与FLC的mRNA结合控制开花时间。
在RNA3′-末端的加工因子FY(跟染色质修饰或RNA修饰有关)参与下FCA通过mRNA前体成熟前剪切和多聚腺苷化自我调控自身的表达。
FCA是作为一种ABA受体调控植物开花的时间,但并不参与种子萌发和气孔关闭,推测在植物体内肯定还存在其他类型的ABA受体。
二、ABAR受体我国科学家在蚕豆中纯化了一个ABA结合蛋白ABAR,该蛋白质为镁离子螯合酶的H亚基((magnesium-chelatase H subunit,ABAR/CHLH))(Zhang et al.,2002)。
ABA与植物的抗逆性ABA与植物的抗逆性若为沙(西北农林科技大学 712100)摘要:脱落酸(ABA)是一种重要的植物激素,在植物对胁迫环境抗逆性中发挥重要作用。
植物细胞的ABA受体是多重的,在不同条件下介导不同的生物学效应,这些效应调节植物的生理化反应,从而适应环境。
文章综述了近年来国内外有关ABA与植物抗逆性研究的一些进展,重点介绍逆境胁迫中ABA的作用及其研究进展。
关键词:脱落酸(ABA)干旱胁迫低温胁迫高温胁迫盐胁迫植物受气候环境条件影响很敏感,农作物更为敏感。
农业是对资源最为依赖的脆弱产业,也是最易受气象环境影响的领域。
全球每年因气象因素、金属污染造成农作物的损失高达数千亿美元,在中国由于受干旱、低温等灾害的影响,每年造成的损失也达到几十亿甚至上百亿美元的损失。
由于受不利气象因子及其它环境因子的影响,使作物经常生长在逆境胁迫中,所以提高作物的抗逆性,保证粮食安全已引起各国政府的普遍关注。
目前提高作物抗逆性的重要途径之一,就是利用外源激素调控、提高作物的抗逆境能力,其中脱落酸对作物抗逆性的影响以及在农业中的应用已经越来越受到人们的关注。
脱落酸(abscisic acid,ABA)是一种植物体内存在的具有倍半萜结构的植物内源激素,具有控制植物生长、抑制种子萌发及促进衰老等效应,随着研究的不断深入,发现ABA在植物干旱、高盐、低温等逆境胁迫反应中起重要作用,它是植物的抗逆诱导因子。
脱落酸(abscisic acid,ABA)作为一种调节植物生长的激素,由美国艾迪科特于1963 年从未成熟的棉铃中分离所得促进脱落的物质,称为脱落素Ⅱ。
1965 年,英国研究小组的韦尔林等从槭树叶片中分离得到了相同的物质,最初发现它的作用与控制植物休眠有关,称为休眠素。
1965年证实,脱落素II 和休眠素为同一种物质,统一命名为脱落酸[1]。
随后对其生理功能进行了深入的研究,逆境环境下,植物体合成大量脱落酸,用于促进气孔关闭;促进水分吸收,增加共质体途径水流;降低叶片伸展率,诱导抗旱特异性蛋白质合成,调整保卫细胞离子通道,诱导相关基因的表达。
植物中的ABA信号通路与生理功能研究植物中的ABA信号通路与生理功能一直是植物生物学领域的研究热点。
ABA(即脱落酸)是一种植物内源激素,广泛参与调控植物的生长、发育和逆境响应等生理过程。
本文将从ABA的合成与降解、信号感知和传递、以及在植物生理功能中的作用等几个方面进行探讨。
一、ABA的合成与降解ABA的合成过程主要发生在植物的叶绿体和线粒体中。
该合成过程涉及多个酶的参与,包括9-氧羧化酶(NCED)、脱羧酶(ABA2)和脱落酸8’-羟化酶(CYP707A)等。
ABA的合成受到多种内外因素的调控,如干旱、寒冷和盐胁迫等,这些因素能够促进ABA的合成,从而增加植物对逆境的适应能力。
ABA的降解过程则主要发生在植物的根系和果实中,其主要途径是通过ABA 8’-羟化酶(CYP707A)催化,将ABA转化为脱落酸醛酸(PA)和脱落酸酸(DPA),最终进一步分解成不活性的物质。
ABA 的降解过程对于植物的生长和发育具有重要意义,它能够控制植物的生长节律和开花时间等。
二、ABA的信号感知和传递ABA的信号感知主要通过植物细胞膜上的ABA受体和胞内的信号转导分子完成。
研究发现,植物中存在多个类型的ABA受体,包括G 蛋白偶联受体(GPCRs)、内源性配体激活的转录因子(TFs)以及蛋白酪氨酸激酶(PKs)等。
这些受体对于ABA信号的感知起着重要的作用。
ABA信号的传递主要通过ABA受体激活的信号转导通路完成。
目前,已经发现了多个与ABA信号传递相关的蛋白激酶和磷酸酶,它们能够介导植物细胞内的信号转导、转录调控和蛋白翻译等过程。
这些信号通路的研究有助于揭示ABA的分子机制以及植物对逆境的响应机制。
三、ABA在植物生理功能中的作用ABA在植物生理功能中发挥着重要的调控作用。
首先,ABA能够调节植物的种子萌发和休眠,通过控制水分平衡和生长抑制物质的合成作用,从而使种子实现及时和适量的萌发。
其次,ABA还能够调控植物的根系发育和逆境响应。
ABA-dependent and ABA-independent signaling in response to osmotic stress inplantsTakuya Yoshida,Junro Mogami and Kazuko Yamaguchi-ShinozakiPlants have adaptive robustness to osmotic stresses such as drought and high salinity.Numerous genes functioning in stress response and tolerance are induced under osmotic conditions in diverse plants.Various signaling proteins,such astranscription factors,protein kinases and phosphatases,play signal transduction roles during plant adaptation to osmotic stress,with involvement ranging from stress signal perception to stress-responsive gene expression.Recent progress has been made in analyzing the complex cascades of geneexpression during osmotic stress response,and especially in identifying specificity and crosstalk in abscisic acid (ABA)-dependent and ABA-independent signaling pathways.In this review,we highlight transcriptional regulation of geneexpression governed by two key transcription factors:AREB/ABFs and DREB2A operating respectively in ABA-dependent and ABA-independent signaling pathways.AddressesLaboratory of Plant Molecular Physiology,Graduate School ofAgricultural and Life Sciences,The University of Tokyo,Tokyo 113-8657,JapanCorresponding author:Yamaguchi-Shinozaki,Kazuko (akys@mail.ecc.u-tokyo.ac.jp )Current Opinion in Plant Biology 2014,21:133–139This review comes from a themed issue on Cell signalling and gene regulation 2014Edited by Xiangdong Fu and Junko Kyozuka/10.1016/j.pbi.2014.07.0091369-5266/#2014Published by Elsevier Ltd.All right reserved.IntroductionAs sessile organisms facing various environmental chal-lenges,higher plants have adaptive robustness at mol-ecular,cellular and physiological levels to environmental stress.Water deficit is a major factor restricting plant growth,survival,yield and distribution.Under osmotic stress conditions such as drought and high salinity,numerous genes functioning in stress response and tol-erance are induced,and abscisic acid (ABA),a key plant stress-signaling hormone,is accumulated [1–3].Osmotic stress-responsive gene expression is regulated byABA-dependent and ABA-independent pathways [2].The cis -acting element,ABA-responsive element (ABRE),and a group of transcription factors,ABRE-binding protein/ABRE-binding factors (AREB/ABFs),have pivotal functions in ABA-dependent gene expres-sion.Similarly,a cis -element,dehydration-responsive element/C-repeat (DRE/CRT),and DRE-/CRT-binding protein 2(DREB2)transcription factors play key roles in ABA-independent gene expression in response to osmotic stress.In this review,we focus on recent progress in the study of transcriptional regulatory networks governed by AREB/ABFs and DREB2A transcription factors in osmo-tic stress signaling,with particular emphasis on the func-tional interaction of ABA-dependent and ABA-independent pathways.Various signaling proteins,such as transcription factors,kinases and phosphatases,are involved in expression of osmotic stress-responsive genes;their roles have been extensively reviewed elsewhere [4,5].The pivotal role of AREB/ABF transcription factors in ABA-dependent gene expressionAmong group-A bZIP transcription factors in Arabidopsis thaliana (Arabidopsis ),nine AREB/ABF transcription fac-tors have a bZIP domain and four conserved domains containing Ser/Thr kinase phosphorylation sites [6 ].Consistent with increased AREB1/ABF2,AREB2/ABF4and ABF3expression induced by drought,high salinity and ABA in vegetative tissues [7],overexpression studies have shown that these three AREB/ABFs are positive regulators of ABA signaling under drought stress con-ditions [7–10].These studies and investigation of the areb1areb2abf3triple mutant [11]have jointly demon-strated that the three AREB/ABFs function as master transcription factors cooperatively regulating ABRE-de-pendent gene expression in ABA signaling during response to drought stress.AREB/ABF transcription factors are activated in an ABA-dependent manner through multiple-site phosphoryla-tion of their conserved domains by SNF1-related kinase 2s (SnRK2s)[10,12,13].Nine of 10Arabidopsis SnRK2s are activated by osmotic stress,with 3subclass III SnRK2s,SRK2D/SnRK2.2,SRK2E/SnRK2.6/OST1and SRK2I/SnRK2.3,also strongly activated by ABA [14].The three SnRK2s co-localize and interact with AREB/ABFs in plant cell nuclei [11,15].Furthermore,expres-sion of most downstream genes of AREB1/ABF2,Available online at ScienceDirectAREB2/ABF4and ABF3is substantially impaired in the srk2d/e/i triple mutant [15],and ABA-dependent phos-phorylation of AREB/ABFs is completely eliminated [16,17].These findings support the view that the three subclass III SnRK2s regulate ABA-responsive gene expression through phosphorylation of AREB/ABFs under osmotic stress conditions (Figure 1).The srk2d/e/i triple mutant displays an extreme ABA-insensitive phenotype in regard to seed germination,seedling growth,stomatal regulation and osmotic stress-responsive gene expression [15,16,18].AREB1/ABF2,AREB2/ABF4and ABF3regulate expression of one-third of SnRK2downstream genes [15];other than these three AREB/ABFs,however,little is known about the transcription factors functioning downstream of SnRK2s.To gain a comprehensive understanding of signaling networks governed by the three subclass III SnRK2s,two phosphoproteome studies using the srk2d/e/itriple mutant have been performed [19 ,20 ].A com-parative phosphoproteome analysis of the srk2d/e/i mutant and wild-type plants after dehydration or ABA treatment identified 32phosphopeptides as candidates for SnRK2substrates,including two phosphopeptides corresponding to AREB1/ABF2,AREB2/ABF4,ABF3or ABF1[19 ].Although phosphopeptides corresponding to other tran-scription factors were undetected,SNRK2-SUB-STRATE 1(SNS1)was identified as a novel SnRK2substrate (Figure 1).The sns1mutant shows increased sensitivity to ABA in post-germination stages,with the expression of ABA-responsive genes such as RD29B and RAB18being slightly increased.Given that SNS1is of unknown function,further analyses are required to reveal its precise roles in ABA signaling.Another phosphoproteome study using the srk2d/e/i mutant identified 84phosphopeptides as possible SnRK2sub-strates,including eight proteins classified as transcription134Cell signalling and gene regulation 2014Figure 1ABAABA-independentpathway ABA-dependentpathwayAREB/ABFsInteraction???PYR/PYL/RCARPP2CSubclass III SnRK2Other substratesAREB1DREB2AInduction ofstress-responsive genes Inhibition of stomatal openingModulation of ABA sensitivityOther responsesCE ABRE Target geneAREB2FBH3/AKS1KAT1mRNASNS1KAT1AREB3EELTAF5ABF3ABF1DRE Current Opinion in Plant BiologyABA-dependent signaling pathway and crosstalk with ABA-independent signaling in response to osmotic stress.The four AREB/ABF transcription factors,AREB1,AREB2,ABF3,and ABF1,play key roles in ABA-dependent gene expression.As pivotal positive regulators downstream of PP2C-PYR/PYL/RCAR ABA receptor complexes in ABA signaling,subclass III SnRK2s phosphorylate a variety of substrates,including AREB/ABFs,FBH3/AKS1,and SNS1,and modulate their activities.Recent studies suggest that crosstalk occurs between the AREB/ABF-SnRK2pathway in ABA signaling and the ABA-independent pathway.Transcription factors and DNA-binding proteins are shown in colored ellipses.Dashed lines indicate possible although unconfirmed routes.PYR/PYL/RCAR,pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor;PP2C,protein phosphatase 2C;CE,coupling element.factors and DNA-binding proteins[20 ].Results of previous studies imply that physiological roles of the remaining proteins,including AREB3,ENHANCED EM LELVEL(EEL),FLOWERING BHLH3(FBH3) and TATA BINDING PROTEIN-ASSOCIATED FAC-TOR5(TAF5),but not AREB1/ABF2,are associated with developmental processes rather than osmotic stress responses[6 ,21,22](Figure1).Although10RNA-binding proteins were also identified as candidate SnRK2sub-strates,their roles in ABA signaling are still undetermined. Collectively,these phosphoproteome analyses suggest that AREB/ABFs are predominant transcription factors func-tioning downstream of the three subclass III SnRK2s during ABA signaling in response to osmotic stress.The view derived from the phosphoproteome studies has been further supported by a reverse genetic approach showing that ABF1is a transcription factor that functions down-stream of SnRK2s[23 ].Despite lower expression levels of ABF1compared with AREB1/ABF2,AREB2/ABF4and ABF3,even under stress conditions,the areb1areb2abf3 abf1quadruple mutant displays increased sensitivity to drought,decreased sensitivity to ABA in primary root growth,and impaired expression of ABA-responsive genes and osmotic stress-responsive genes compared with the areb1areb2abf3triple mutant.Transcriptome analyses have revealed that70%of downstream genes of the three subclass III SnRK2s are down-regulated in the areb1areb2 abf3abf1quadruple mutant.These results favor the view that these SnRK2s regulate ABA-responsive gene expres-sion under osmotic stress primarily through the four AREB/ ABF transcription factors(Figure1). Phosphoproteome and transcriptome approaches have pro-vided further new insights into the role of the three subclass III SnRK2s in ABA signaling.FBH3,identified as a possible SnRK2substrate,and its homologs are bHLH transcription factors activating CONSTANS(CO)expres-sion duringfloral regulation[21].Interestingly,FBH3and CO expression is impaired in both late-flowering areb1areb2 abf3abf1and early-flowering srk2d/e/i mutants[20 ,23 ], although their phenotypes are contradictory.Given that otherflowering-associated proteins,such as MOS3and XRN3,are also possible SnRK2substrates[20 ],SnRK2s may intricately andfinely regulate thefloral transition in ABA signaling via a variety of substrates,including AREB/ ABFs and FBH3.Surprisingly,FBH3and CO are involved in stomatal opening[24,25].FBH3is identical to ABA-responsive kinase substrate1(AKS1),which is negatively regulated in guard cells by SRK2E/SnRK2.6/OST1-de-pendent phosphorylation[24](Figure1).FBH3/AKS1is a transcriptional activator of KAT1,which encodes the major inward-rectifying K+channel involved in stomatal opening.Because KAT1is also negatively regulated by SnRK2E/SnRK2.6/OST1-dependent phosphorylation [26],SnRK2-mediated ABA signaling might inhibit sto-matal opening through transcriptional and posttranscrip-tional mechanisms.Studies exploiting these recently identified putative SnRK2substrates are needed to under-stand the global regulatory roles of subclass III SnRK2s in ABA signaling.Negative regulatory mechanisms of DREB2A activity in ABA-independent gene expression DREB2proteins are members of the AP2/ERF family of plant-specific transcription factors.Among eight DREB2s in Arabidopsis,DREB2A and DREB2B are highly induced by drought,high salinity and heat stress[27,28].Despite the instability of DREB2A proteins in planta,studies of Arabidopsis overexpressing a constitutively active form of DREB2A,which harbors an internal deletion of the domain involved in protein stability,have revealed that DREB2A plays pivotal roles in ABA-independent gene expression under osmotic and heat stress conditions [28,29].Because DREB2A,which induces many genes encoding proteins involved in stress response and tolerance,has adverse effects on plant growth,its transcript and protein levels are tightly regulated.An attempt to elucidate tran-scriptional regulatory mechanisms of DREB2A has ident-ified GROWTH-REGULATING FACTOR7(GRF7)as a transcriptional repressor of osmotic-stress responsive genes including DREB2A[30 ](Figure2).GRF proteins are putative transcription factors harboring two conserved domains.Among nine GRFs in Arabidopsis,GRF7interacts with a short DREB2A promoter region that suppresses its expression under unstressed growth conditions.GRF7 knockout and knockdown mutants,showing increased DREB2A expression,display enhanced salinity tolerance as well as growth retardation.In addition,transcriptome analysis has revealed that hundreds of osmotic stress-responsive genes are up-regulated in the grf7knockout mutant compared with wild-type plants grown under nor-mal conditions,suggesting that GRF7is a repressor reg-ulating a wide range of osmotic-stress responsive genes during unstressed growth conditions.In addition to transcriptional repression under normal growth conditions,a ubiquitin–proteasome pathway is pro-posed to degrade leaky expression of the DREB2A protein. DREB2A-INTERACTING PROTEIN1(DRIP1),a ubi-quitin E3ligase harboring a C3HC4-type RING domain, has been identified as an interacting protein of DREB2A by yeast two-hybrid screening[31].Whereas DRIP1over-expression delays the expression of DREB2A downstream genes in response to dehydration,their expression is increased in double knockout mutants of DRIP1and its homolog DRIP2.Furthermore,greenfluorescent protein (GFP)-DREB2A fusion proteins are stably expressed in the drip1drip2mutant,which displays growth retardation under normal growth conditions and enhanced drought stress tolerance.These results suggest that DRIP1and DRIP2negatively regulate drought stress-responsive gene expression by targeting DREB2A to26S proteasomeCrosstalk in ABA signaling Yoshida,Mogami and Yamaguchi-Shinozaki135proteolysis (Figure 2).Despite the crucial role of DRIPs in DREB2A degradation,a recent study has shown that DREB2A protein levels,which are rapidly increased in response to heat stress,are reduced by prolonged heat stress even in the drip1drip2mutant [32].Given that stabilization of DREB2A is required,but not sufficient for substantial induction of its downstream genes [32],DREB2A degra-dation and activation might be regulated by many yet-to-be-identified proteins in addition to DRIPs.DREB2A and DRIPs are a well-characterized transcrip-tion factor/ubiquitin E3ligase combination that regulates osmotic stress-responsive genes.A similar regulatoryinteraction has recently been identified between the transcription factor AtERF53and two homologous C3HC4-type RING E3ligases,RING domain ligase 2(RGLG2)and RGLG1[33].The expression of AtERF53,an AP2/ERF transcription factor belonging to a non-DREB2subfamily [34],is induced significantly by drought and high salinity but only slightly by ABA treat-ment [33,35].AtERF53interacts and co-localizes with RGLG2and RGLG1,both of which mediate AtERF53ubiquitination in vitro .By contrast to wild-type plants,AtERF53-GFP fusion proteins are stably expressed in the rglg1rglg2mutant that displays enhanced drought stress tolerance.Because AtERF53is involved in induction of136Cell signalling and gene regulation 2014Figure 2Current Opinion in Plant BiologyABA-independentpathway ABA-dependentpathwayABA PYR/PYL/RCARPP2C Subclass III SnRK2StabilizationGRF7?GTE GTEHSE ABREDREB2A DREB2A (inactive)DREB2A (active)DREB2A??Ub OtherE3ligases?DRIP 1/2Proteolysis26S proteasomeDRE Target geneTranscriptionUbUbUbUb UbOsmotic stress-responsive geneTranscriptionAREB/ABFsActivationABA-independent signaling pathway and crosstalk with ABA-dependent signaling in response to osmotic stress.DREB2A is the key transcription factor in ABA-independent gene expression in response to osmotic stress.DREB2A protein levels are tightly regulated by ubiquitin E3ligases such as DRIP1and DRIP2.In addition,DREB2A expression is repressed by GRF7under unstressed growth conditions.Crosstalk between ABA-independent and ABA-dependent pathways is suggested on the basis of recent findings that GRF7is involved in repression of ABA-inducible genes and osmotic stress-inducible genes and that DREB2A is induced by AREB/ABFs.Transcription factors and DNA-binding proteins are shown in colored ellipses.Dashed lines indicate possible although unconfirmed routes.PYR/PYL/RCAR,pyrabactin resistance1/PYR1-like/regulatory components of ABA receptor;PP2C,protein phosphatase 2C;GTE,GRF7-targeting cis -element;HSE,heat shock element;Ub,ubiquitin.stress-responsive genes such as COR15A and COR15B[35],AtERF53and RGLGs may function as positiveand negative regulators,respectively,of osmotic stress-responsive gene expression.As each group of AP2/ERFtranscription factors and RING-type ubiquitin ligasescomprises many genes[34,36],comprehensive analysesof these genes may provide further insights into transcrip-tional networks in response to osmotic stress. Crosstalk between ABA-dependent and ABA-independent pathwaysAs evidenced by the fact that multiple dehydration-inducible genes are induced by exogenous ABA treat-ment[2],the global transcriptional network activated inresponse to osmotic stress is cooperatively but not exclu-sively regulated by ABA-dependent and ABA-indepen-dent pathways.Despite the importance of crosstalkbetween ABA-dependent and ABA-independent path-ways,knowledge of how the two signaling pathwaysregulate each other has been limited until recently.The three subclass III SnRK2s likely participate in theconvergence of ABA-dependent and ABA-independentsignaling[6 ](Figure1).Activated by osmotic stress aswell as by ABA,these SnRK2s substantially regulateABA-dependent and ABA-independent gene expression[15].Analysis of multiple knockout mutants of all10SnRK2s in Arabidopsis has further implied that the threeSnRK2s are essential to both osmotic stress response andABA signaling[37].In-gel kinase assay results,however,indicate that osmotic stress activates SnRK2s in an ABA-independent manner[38,39].Consistent with theseresults,a recent phosphoproteome study has revealedthat phosphopeptides corresponding to the three subclassIII SnRK2s are phosphorylated after5min of treatmentwith ABA but not by osmotic stresses such as NaCl andmannitol[40 ].On the other hand,short-term osmoticstress has been found to phosphorylate a phosphopeptidecorresponding to SRK2A/SnRK2.4,SRK2B/SnRK2.10,SRK2G/SnRK2.1or SRK2H/SnRK2.5,which are subclassI SnRK2s not activated by ABA,and phosphopeptidescorresponding to MAP3K and MAP4K.Although subclassIII SnRK2s appear to be activated by autophosphoryla-tion during ABA signaling,novel proteins not yet charac-terized may be responsible for SnRK2activation inresponse to osmotic stress.Analyses of DREB2A promoters have provided newinsights into crosstalk between ABA-dependent andABA-independent signaling(Figure2).Given that anABRE motif-containing short promoter region is requiredfor dehydration-responsive DREB2A expression,transientexpression and chromatin immunoprecipitation(ChIP)analyses have demonstrated that DREB2A is regulatedby AREB1/ABF2,AREB2/ABF4and ABF3during ABAsignaling under osmotic stress[41].Interestingly,severalAP2/ERF transcription factors including DREB2A interactwith AREB1/ABF2,AREB2/ABF4and ABF3[42](Figure1),but it is unclear whether these interactions have functional significance in gene expression.It is note-worthy that expression of ABA-inducible genes(including AREB2/ABF4)and osmotic stress-inducible genes is increased in the grf7mutant[30 ].Thisfinding implies that GRF7has roles in repressing both ABA-dependent and ABA-independent gene expression(Figure2).By contrast to DREB2A,transcriptional regulatory mechan-isms of AREB/ABF s are poorly understood.Further studies of AREB/ABF promoters may help to elucidate whole transcriptional networks governed by ABA-dependent and ABA-independent signaling.Transcriptional networks under osmotic stress have been recently investigated using large-scale data analyses.A differential network analysis based on machine learning, an intelligent data mining technique,was used to reana-lyze an abiotic stress-responsive gene expression data set. The analysis identified two novel genes whose mutants are sensitive to salt stress[43].Integrated transcriptome and metabolome analyses have revealed the roles of ABA-dependent and ABA-independent signaling in metabolic alterations under osmotic stress conditions in Arabidopsis and rice[44,45].Cytokinin signaling is also reportedly decreased by dehydration stress in these two species[45]. Thisfinding supports the idea that crosstalk between ABA and cytokinin plays key roles in osmotic stress signaling[46].Furthermore,transcriptome and metabo-lome profiling of Arabidopsis grown under mild osmotic stress conditions has shown that cell proliferation and expansion are mainly regulated by ethylene and gibber-ellin signaling in developing leaves[47].Importantly,a large-scale phenotyping study,which measured the rosette size of Arabidopsis grown in soil using an auto-mated platform,has suggested that improved drought stress tolerance under lethal conditions is not well corre-lated with superior growth under moderate drought con-ditions[48].Thus,more attention must be focused on the roles of other plant hormones besides ABA to understand the molecular mechanisms used by plants to rigorously control their tolerance and growth under osmotic stress conditions.ConclusionsIn this review,we demonstrated that four AREB/ABF transcription factors,AREB1/ABF2,AREB2/ABF4, ABF3and ABF1,regulate most downstream genes of three subclass III SnRK2s in ABA-dependent gene expression. Under unstressed conditions,transcriptional and protein levels of DREB2A,a key transcription factor in the ABA-independent pathway,are properly regulated by GRF7 and DRIPs,respectively.Given that AREB/ABF and DREB2A expression is regulated by the three subclass III SnRK2s,these kinases might serve as a convergence point in the crosstalk between ABA-dependent and ABA-independent gene expression.Because AREB/ABF and DREB2A transcription factors are conserved in land plantsCrosstalk in ABA signaling Yoshida,Mogami and Yamaguchi-Shinozaki137[6 ,34],these transcription factors are available for applied research.Their orthologous genes have indeed been shown to participate in stress-responsive gene expression in crops such as rice and soybean as well as Arabidopsis [6 ,49].For future application of these transcription factors to various crop,timber and other plants,research involving large-scale analyses,such as transcriptome and phospho-proteome analyses,should provide further insights into transcriptional networks under osmotic stress conditions. AcknowledgmentsWe thank E.Toma for skillful editorial assistance.This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas(no. 22119004)from the Ministry of Education,Culture,Sports,Science and Technology of Japan(MEXT),the Program for the Promotion of Basic Research Activities for Innovative Biosciences(BRAIN)of Japan,and the Science and Technology Research Partnership for Sustainable Development(SATREPS)of the Japan Science and Technology Agency (JST)/Japan International Cooperation Agency(JICA). References and recommended readingPapers of particular interest,published within the period of review, have been highlighted as:of special interestof outstanding interest1.Bartels D,Sunkar R:Drought and salt tolerance in plants.CritRev Plant Sci2005,24:23-58.2.Yamaguchi-Shinozaki K,Shinozaki K:Transcriptional regulatorynetworks in cellular responses and tolerance to dehydration and cold stresses.Annu Rev Plant Biol2006,57:781-803.3.Finkelstein R:Abscisic acid synthesis and response.Arabidopsis Book2013,11:e0166/10.1199/tab.0166.4.Fujita Y,Fujita M,Shinozaki K,Yamaguchi-Shinozaki K:ABA-mediated transcriptional regulation in response to osmoticstress in plants.J Plant Res2011,124:509-525.5.Qin F,Shinozaki K,Yamaguchi-Shinozaki K:Achievements andchallenges in understanding plant abiotic stress responsesand tolerance.Plant Cell Physiol2011,52:1569-1582.6. Fujita Y,Yoshida T,Yamaguchi-Shinozaki K:Pivotal role of the AREB/ABF-SnRK2pathway in ABRE-mediated transcription in response to osmotic stress in plants.Physiol Plant2013, 147:15-27.This current review focuses on the roles of AREB/ABF transcriptionfactors and SnRK2kinases in ABA signaling.This paper also summarizes the nomenclature and phylogenetic relationships of the AREB/ABFs andSnRK2s to help promote the link between basic and applied studies.7.Fujita Y,Fujita M,Satoh R,Maruyama K,Parvez MM,Seki M,Hiratsu K,Ohme-Takagi M,Shinozaki K,Yamaguchi-Shinozaki K:AREB1is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance inArabidopsis.Plant Cell2005,17:3470-3488.8.Kang JY,Choi HI,Im MY,Kim SY:Arabidopsis basic leucinezipper proteins that mediate stress-responsive abscisic acid signaling.Plant Cell2002,14:343-357.9.Kim S,Kang JY,Cho DI,Park JH,Kim SY:ABF2,an ABRE-binding bZIP factor,is an essential component of glucosesignaling and its overexpression affects multiple stresstolerance.Plant J2004,40:75-87.10.Furihata T,Maruyama K,Fujita Y,Umezawa T,Yoshida R,Shinozaki K,Yamaguchi-Shinozaki K:Abscisic acid-dependent multisite phosphorylation regulates the activity of atranscription activator AREB1.Proc Natl Acad Sci U S A2006, 103:1988-1993.11.Yoshida T,Fujita Y,Sayama H,Kidokoro S,Maruyama K,Mizoi J,Shinozaki K,Yamaguchi-Shinozaki K:AREB1,AREB2,and ABF3are master transcription factors that cooperatively regulateABRE-dependent ABA signaling involved in drought stresstolerance and require ABA for full activation.Plant J2010,61:672-685.12.Uno Y,Furihata T,Abe H,Yoshida R,Shinozaki K,Yamaguchi-Shinozaki K:Arabidopsis basic leucine zipper transcriptionfactors involved in an abscisic acid-dependent signaltransduction pathway under drought and high-salinityconditions.Proc Natl Acad Sci U S A2000,97:11632-11637. 13.Fujii H,Verslues PE,Zhu JK:Identification of two proteinkinases required for abscisic acid regulation of seedgermination,root growth,and gene expression inArabidopsis.Plant Cell2007,19:485-494.14.Boudsocq M,Barbier-Brygoo H,Laurie`re C:Identification of ninesucrose nonfermenting1-related protein kinases2activated by hyperosmotic and saline stresses in Arabidopsis thaliana.J Biol Chem2004,279:41758-41766.15.Fujita Y,Nakashima K,Yoshida T,Katagiri T,Kidokoro S,Kanamori N,Umezawa T,Fujita M,Maruyama K,Ishiyama K et al.: Three SnRK2protein kinases are the main positive regulators of abscisic acid signaling in response to water stress inArabidopsis.Plant Cell Physiol2009,50:2123-2132.16.Fujii H,Zhu JK:Arabidopsis mutant deficient in3abscisic acid-activated protein kinases reveals critical roles in growth,reproduction,and stress.Proc Natl Acad Sci U S A2009,106:8380-8385.17.Fujii H,Chinnusamy V,Rodrigues A,Rubio S,Antoni R,Park SY,Cutler SR,Sheen J,Rodriguez PL,Zhu JK:In vitro reconstitution of an abscisic acid signalling pathway.Nature2009,462:660-664.18.Nakashima K,Fujita Y,Kanamori N,Katagiri T,Umezawa T,Kidokoro S,Maruyama K,Yoshida T,Ishiyama K,Kobayashi Met al.:Three Arabidopsis SnRK2protein kinases,SRK2D/SnRK2.2,SRK2E/SnRK2.6/OST1and SRK2I/SnRK2.3,involved in ABA signaling are essential for the control of seed development and dormancy.Plant Cell Physiol2009,50:1345-1363.19.>Umezawa T,Sugiyama N,Takahashi F,Anderson JC,Ishihama Y, Peck SC,Shinozaki K:Genetics and phosphoproteomics reveala protein phosphorylation network in the abscisic acidsignaling pathway in Arabidopsis thaliana.Sci Signal2013,6:rs8. This is thefirst study integrating genetics with phosphoproteomics to investigate protein phosphorylation networks in Arabidopsis.By applying a phosphoproteomic approach to the triple knockout mutant of the three subclass III SnRK2kinases,the authors identifies multiple components of the ABA-responsive protein phosphorylation network governed by the SnRK2s,including AREB/ABFs,AtMPK1,AtMPK2and SNS1.20.Wang P,Xue L,Batelli G,Lee S,Hou YJ,Van Oosten MJ,Zhang H, Tao WA,Zhu JK:Quantitative phosphoproteomics identifiesSnRK2protein kinase substrates and reveals the effectors of abscisic acid action.Proc Natl Acad Sci U S A2013,110:11205-11210.This phosphoproteomic study using the triple knockout mutant of the three subclass III SnRK2s also identifies candidate substrates of the SnRK2s in ABA signaling,including proteins involved inflowering time regulation,RNA and DNA binding,miRNA and epigenetic regulation, signal transduction,chloroplast function and many other cellular pro-cesses.Given that the srk2d/e/i triple mutant shows the earlyflowering phenotype,the authors suggest that the SnRK2s are important for flowering time regulation.21.Ito S,Song YH,Josephson-Day AR,Miller RJ,Breton G,Olmstead RG,Imaizumi T:FLOWERING BHLH transcriptionalactivators control expression of the photoperiodicflowering regulator CONSTANS in Arabidopsis.Proc Natl Acad Sci U S A 2012,109:3582-3587.22.Mougiou N,Poulios S,Kaldis A,Vlachonasios K:Arabidopsisthaliana TBP-associated factor5is essential for plant growth and development.Mol Breed2012,30:355-366.23.Yoshida T,Fujita Y,Maruyama K,Mogami J,Todaka D,Shinozaki K,Yamaguchi-Shinozaki K:Four Arabidopsis AREB/ ABF transcription factors function predominantly in geneexpression downstream of SnRK2kinases in abscisic-acidsignaling in response to osmotic stress.Plant Cell Environ2014 /10.1111/pce.12351.138Cell signalling and gene regulation2014。