数字通信原理第四章
- 格式:doc
- 大小:151.50 KB
- 文档页数:6
第四章习题
4-1
(1)线性码与非线性码 (2)分组码与卷积码 (3)检测码与纠错码 (4)系统码与非系统码 4-2
分组码是对每段K 位长得信息、码元以规定得编码规则增加r 个监督码元,组成码长为n 得码子 分组码的结构为:
<———————————— 码元长n=k+r ————————————> 4-3
(1)最小码距为3 (2)能检2位错码 (3)能纠一位错码
(4)检测2个错码,纠正一个错码 4-4
(1) H=()I Q r T
1
11001111
011=∴Q T
1
011101
110
11=
Q G=(Q I k )
⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡=∴10
11000
110010011100100110001G 可知是(7,4)码 (2)G C m m m m c c c c c c c )()(32106543210==
可得全部码为 0000000,0001101,0010011,0011110,0100111,0101010,
0110100.0111001,1000110,1001011,1010101,1011000,1100001,1100001,
1101100,1110010,1111111 4-5
(1) G C m m m m c c c c c c c )()(32106543210==
∴可得全部码为:0000000,0001110,0010011,0011101,0100101,
0101011,0110110,0111000,1000110,1001001,1010100,1011010,1100010,1101100,1110001,1111111
(2)
][Q G I k = ⎥⎥⎥⎥⎦
⎤⎢⎢⎢
⎢⎣⎡=∴01
1
110101
111Q 110110
111
1
10
T
Q
⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ H=(T
r Q I )=()T r H Q I =
4-6
G=001011100101010110⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦ 将第一行与第二行互换,再用第二行与第三行互换得典型生成矩阵G=100101010110001011⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦
(1) n=6, k=3 ()14131013x x x G x x ⎡⎤
++=⎢⎥⎣⎦
()k G I Q =
∴Q=101110011⎡⎤
⎢⎥⎢⎥
⎢⎥⎣⎦
110011101T Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
()T
r H Q I = 1
1010001
101010
1
01
H ⎡⎤⎢⎥∴=⎢
⎥⎢⎥⎣⎦ (2) 采用标准生成矩阵作为生成矩阵 C=MG
可得所有码字 000000,001011,010110,011101,100101,101110,110011,111000 (3)03d = 能检测2位错码,能纠错1位错码
4-7
141211106521x x x x x x x +++++++ 1413
10
13129121181110
710
9
6985
8747
63
652544
3
()1x x x x x x
x x x
x x x x x x
G x x x x x x x x x x x x x x x x x x ⎡⎤++⎢⎥++⎢⎥⎢⎥++⎢
⎥⎢⎥++⎢⎥++⎢⎥⎢⎥=++⎢
⎥⎢⎥++⎢⎥++⎢⎥⎢⎥++⎢
⎥⎢⎥++⎢⎥++⎢⎥⎣
⎦
1
100100000000000110010000000000011001000000000001100100000000000110010000000
0000110010000
00000001100100000000000110010000000000011001000000000001100100
0000000001100
1G ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎣⎦
⎥ 150000000000000000
000000000000001
()0000000000000000()
0000000000000
0x h x H g x ⎡⎤⎢⎥+⎢
⎥==∴=⎢⎥⎢⎥⎣⎦
4-8
方程可化为矩阵形式得
01234560111001011100100010001101
00011
00a a a a a a a ⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦
01234560111001011100100010001101
00011
00a a a a a a a ⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢
⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦
将它画
为标准型得10010110
11010010000101
010
1H ⎡⎤⎢⎥⎢
⎥=⎢⎥
⎢⎥⎣⎦ 1
001011011010010000101
0100
01
H ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 10111001011
1
000101100
010********
Q G ⎡⎤⎡
⎤⎢⎥⎢⎥∴=∴=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦10111001011
1000101100
1
010
1
10
1
Q G ⎡⎤⎡⎤⎢⎥⎢⎥∴=∴=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣
⎦ 4-9
(1)
1412985411311874311965210854()..........()()()()1k x x x x x x x g x x x x x x x G x G x xg x x x x x x x g x x x x x x -⎡⎤+++++⎡⎤
⎢⎥⎢⎥+++++⎢⎥⎢⎥
=∴=⎢⎥⎢⎥
+++++⎢⎥⎢⎥⎢⎥+++++⎣⎦⎣⎦
101001100110000010100110011000001010011001100000101001100110000010100110011G ⎡⎤
⎢⎥⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦
(2)C=MG 当m=10011时有码101110001100101产生码多项式为
141211106521x x x x x x x +++++++
4-10 略
4-11 (1)
由生成多项式
0100011(1100)(1100101)00101110
00110110001100100011(1011)(1011100)00101110001101⎢⎥⎢
⎥=⎢⎥
⎢⎥
⎣⎦
⎡⎤⎢⎥⎢
⎥=⎢⎥
⎢⎥
⎣⎦
12()1,()1g x g x x ==+ 可
知 n=21
12
k k n =∴=
12(),()g x g x 表示当输入为(100………) 时,输出分别为(10),(11)电路图为
(3)
112
*(110010)*(10)1100100*(110010)*(11)1010110
c u g c u g ======
输出为12()(11100100110100)c c c == 4-12
653
354224332
()1
1010000110100()()0
011010()0001101()1x x x x g x x x x x g x G x G xg x x x x g x x x ⎡⎤++⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥++⎢⎥⎢
⎥⎢⎥==∴=⎢⎥⎢⎥⎢⎥
++⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎣⎦
++⎣⎦⎣⎦
化成标准形式10001101
1
00
1000110110010111111000110
11
1G Q ⎡⎤⎡⎤⎢⎥⎢⎥⎢
⎥⎢⎥=∴=⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦
101110111001110111001001110111001T Q H ⎡⎤⎡⎤
⎢⎥⎢⎥=∴=⎢⎥⎢⎥
⎢⎥⎢⎥⎣⎦⎣⎦
(2)四位码为一组有
0100011(1100)(1100101)0010111000110110001100100011(1011)(1011100)00101110
001101⎢⎥⎢
⎥=⎢⎥
⎢⎥
⎣⎦
⎡⎤⎢⎥⎢
⎥=⎢⎥
⎢⎥
⎣⎦
生成系统码为11001011011100
(3)所有可能码组为0000000,0001101,0010111,0011010,0100011,01011110,0110100,0111001,1000110,1001011,1010001,1011100,1100101, 1101000,1110010,1111111最小码距为3,能检测2位错码,纠1位错码
4-13略
4-14 4-15 略。