基于自适应稀疏表示的高光谱遥感图像分类
- 格式:pdf
- 大小:836.15 KB
- 文档页数:5
基于机器学习的高光谱图像分类方法研究高光谱图像分类是从高光谱遥感图像中提取出不同地物的特征,并将其分配到相应的类别中的过程。
高光谱图像具有丰富的光谱信息,因此在地物分类和识别中具有广泛的应用。
近年来,随着机器学习方法的发展,基于机器学习的高光谱图像分类方法成为研究热点之一。
本文将重点探讨基于机器学习的高光谱图像分类方法的研究进展和应用现状。
高光谱图像分类算法的关键在于选择合适的特征提取方法和分类器。
特征提取是高光谱图像分类的前提,其目的是从图像中提取出能够有效表征不同地物的特征。
常用的特征提取方法包括光谱特征提取、空间特征提取和频谱特征提取。
光谱特征提取是指从高光谱图像的光谱波段中提取特征,如反射率、发射率等。
空间特征提取是指从高光谱图像的空间分布中提取特征,如纹理、形状等。
频谱特征提取是指从高光谱图像的频域中提取特征,如能量、频率等。
在特征提取之后,需要选择合适的分类器对提取到的特征进行分类。
常用的高光谱图像分类器包括支持向量机(SVM)、随机森林(Random Forest)、人工神经网络(Artificial Neural Network)等。
支持向量机是一种基于间隔最大化的分类方法,其优点是对小样本和非线性数据有较好的适应能力。
随机森林是一种集成学习方法,通过构建多个决策树进行分类,具有较强的鲁棒性和精度。
人工神经网络是一种仿生学习模型,可以模拟人脑神经元的工作原理,具有较强的非线性建模能力。
以支持向量机为例,介绍基于机器学习的高光谱图像分类方法的一般流程。
首先,对高光谱图像进行预处理,包括波段选择、波段去噪、图像辐射定标等。
然后,从预处理后的图像中提取特征,常用的特征提取方法包括主成分分析(Principal Component Analysis)、线性判别分析(Linear Discriminant Analysis)等。
接着,将提取到的特征作为训练样本输入到支持向量机模型中进行训练。
基于堆栈式稀疏自编码器的高光谱影像分类戴晓爱;郭守恒;任淯;杨晓霞;刘汉湖【摘要】为挖掘高光谱影像数据的内在光谱特征,该文基于深度学习理论,引用堆栈式稀疏自编码器构建原始数据的深层特征表达。
首先通过稀疏自编码器,得到原始数据的稀疏特征表达。
其次通过逐层学习稀疏自编码器构建深度神经网,输出原始数据的深度特征。
最后将其连接到支持向量机分类器,完成模型的精调。
实验结果分析表明:基于堆栈式稀疏自编码器的最优分类模型,总体精度可达87.82%,优于实验中的其他方法,证明了深度学习方法在高光谱影像处理中具有良好的分类性能。
%To extract rich features of hyperspectral image, this study explores the deep features of the raw data by using a stacked sparse autoencoderin the deep learning theory. First we create a sparse expression of raw hyperspectral image using sparse autoencoder. Then a deep neural network generating the deep features of raw data is built through learning stacked sparse autoencoder layer by layer. In addition, the deep feature-related model parameters are precisely calibrated by the statistical learning algorithm of the support vector machine (SVM). The performance of the experiment indicates that the overall accuracy of classification model based on stacked sparse autoencoder reaches 87.82%, superior to other experimental methods. From our experiments, it follows that the deep learning theory and stacked sparse autoencoder are of high potential in hyperspectral remote sensing image classification.【期刊名称】《电子科技大学学报》【年(卷),期】2016(045)003【总页数】5页(P382-386)【关键词】深度神经网;特征提取;高光谱影像分类;堆栈式稀疏自编码器;支持向量机【作者】戴晓爱;郭守恒;任淯;杨晓霞;刘汉湖【作者单位】成都理工大学地学空间信息技术国土资源部重点实验室成都610059;成都理工大学地学空间信息技术国土资源部重点实验室成都 610059;成都理工大学地学空间信息技术国土资源部重点实验室成都 610059;成都理工大学地学空间信息技术国土资源部重点实验室成都 610059;成都理工大学地学空间信息技术国土资源部重点实验室成都 610059【正文语种】中文【中图分类】TP751.1高光谱影像分类是高光谱影像处理中的重要环节,由于Hughes现象[1]的影响,在不进行降维处理的情况下传统分类算法很难在高光谱影像分类中取得理想结果[2]。
基于支持向量机的高光谱遥感影像分类高光谱遥感影像分类是指利用高光谱遥感图像中的多个光谱波段信息,通过对图像进行分类处理,将不同的地物或地物类型分为不同的类别。
支持向量机(Support Vector Machine,SVM)是一种经典的机器学习算法。
它基于统计学习理论,通过在高维特征空间中寻找最优超平面来进行分类和回归。
在高光谱遥感影像分类中,支持向量机能够有效地处理高维特征数据,并具有较好的分类性能。
我们需要进行数据预处理。
对高光谱遥感影像数据进行无人工选择的特征提取,保留具有代表性的光谱波段。
然后对图像进行预处理,如辐射校正、大气校正、几何校正等,以提高数据的质量。
然后,我们需要对预处理后的数据进行特征选择。
特征选择是为了减少维数,去除冗余的特征,并找出最具有区分性的特征。
常用的特征选择方法有相关系数法、信息增益法、主成分分析等。
接下来,我们将选取一部分数据作为训练样本集,用来训练支持向量机分类器。
支持向量机分类器能够根据所提供的训练样本学习出一个超平面,将不同类别的数据分开。
在训练过程中,支持向量机通过最大化间隔的方法来找到最优的分类超平面,从而提高分类的准确性。
我们将使用训练好的分类器对测试样本进行分类。
通过将测试样本进行特征提取和预处理,并输入到训练好的支持向量机分类器中,就可以得到测试样本的分类结果。
在高光谱遥感影像分类中,支持向量机可以充分利用光谱信息和空间信息来进行分类。
支持向量机还具有较强的泛化能力和鲁棒性,能够处理多类别、不平衡和噪声干扰等问题。
基于支持向量机的高光谱遥感影像分类是一种有效的分类方法。
它能够利用高光谱遥感影像的多个光谱波段信息,通过支持向量机算法实现对地物类型的分类。
这种方法能够提高遥感影像分类的准确性和稳定性,并对遥感数据的应用具有一定的实际意义和应用价值。
高光谱遥感图像的特征提取和分类算法探究遥感技术已经成为了现代地球科学中不可或缺的一部分,这种技术通过对地球表面的各种信息进行多波段、多角度、多时相的采集和处理,可以形成一系列高分辨率遥感图像。
其中,高光谱遥感图像是一种获取地表物质高光谱信息的遥感技术,这种技术可以获取大量的物质光谱信息,为我们研究地球科学和环境变化提供了重要的数据来源。
在高光谱遥感图像中,物质对不同波长的电磁辐射的反射和吸收的不同程度是其与众不同的特性。
由于不同的物质对不同波段的辐射产生的反应不同,固有光谱和在远距离上的高光谱遥感图像可以很好地区分不同物质。
在高光谱遥感图像研究中,特征提取和分类算法是研究的两个重要方面。
因此,本篇文章将探讨高光谱遥感图像的特征提取和分类算法的研究进展和应用现状。
一、特征提取在高光谱遥感图像中,特征提取是一项至关重要的技术。
特征提取的主要任务是将高光谱遥感图像中每个像元的光谱信息转化成低维空间的特征,以减少信息冗余和处理量,同时保留物体空间分布和分类信息。
常用的特征提取方法包括如下几种。
1. 主成分分析(PCA)PCA是一种线性变换的方法,可以将高维空间中的数据降维到低维度的特征空间。
在高光谱遥感图像中,PCA方法可以对数据矩阵进行特征值分解,得到协方差矩阵的主特征向量。
这些主成分可以描述遥感图像的大部分空间信息,对于多波段数据的降维处理非常有效。
2. 独立成分分析(ICA)ICA是一种非线性变换的方法,可以将遥感图像中的光谱信息进行分离和隔离,从而得到更加明确的光谱信息。
在高光谱遥感图像中,ICA可以对数据矩阵进行特征值分解,找到可以独立分离的成分。
这些成分可以帮助我们更好地理解高光谱遥感图像中的光谱结构,并提高物体检测和分类的准确率。
3. 小波变换(WT)WT是一种非平稳信号的频域分析方法,可以用于多尺度分析和特征提取。
在高光谱遥感图像中,WT可以将数据矩阵分解为一组小波系数,这些系数可以反映不同尺度下的物体信息。
基于TSNE和多尺度稀疏自编码的高光谱图像分类董安国; 张倩; 刘洪超; 梁苗苗【期刊名称】《《计算机工程与应用》》【年(卷),期】2019(055)021【总页数】6页(P176-181)【关键词】高光谱图像; 深度学习; 多尺度空间特征; 流形学习【作者】董安国; 张倩; 刘洪超; 梁苗苗【作者单位】长安大学理学院西安 710064; 江西理工大学信息工程学院江西赣州 341000【正文语种】中文【中图分类】TP751 引言随着高光谱遥感技术的快速发展,引起了农业、医学、环境科学等其他领域的高度重视,而高光谱图像(Hyperspectral Image,HSI)分类是高光谱遥感技术中热门研究的问题。
高光谱数据存在维数“灾难”、同谱异类及同类异谱的现象[1],因此,对数据进行降维处理,提取数据的隐含特征,剔除数据的冗余信息对于高光谱图像分类有很大的帮助[2]。
近年来,深度学习在特征提取方面展现了巨大优势。
Lin等人[3]采用自编码(Auto-encoder,AE)加逻辑回归(Logistic Regression,LR)的网络结构进行HSI分类,但其只考虑了光谱波段的相关性。
Chen等人使用栈式自编码[4]和深度置信网络[5]进行深度空谱特征学习,但其只用了主成分分析(Principal Component Analysis,PCA)降维,提取空间信息时模型中训练了邻域的所有像元,增加了计算复杂度。
王立伟等人[6]采用深度学习与迁移学习相结合的方法处理HSI分类问题,并取得了良好的分类效果。
多尺度特征[7](Multiscale Feature,MF)和流形学习(Manifold Learning,ML)近年来在HSI分类中也取得了较好的分类效果。
姚琼等人[8]利用3DGobar多视图,提出3DGobar多视图主动学习的HSI的分类算法。
Fang等人[9]利用多尺度空间邻域内自适应一致性约束,提出多尺度自适应稀疏表示策略(MASR)。
高光谱遥感图像的分类与识别算法研究摘要:随着高光谱遥感技术的发展,高光谱遥感图像的分类与识别成为了研究的热点之一。
高光谱图像拥有丰富的光谱信息和空间信息,对地物的识别和分类具有较高的准确性和精度。
本文主要介绍了高光谱遥感图像的分类与识别算法的研究现状和发展趋势,并重点讨论了几种常见的分类与识别方法,并对未来的研究方向进行了展望。
1. 引言高光谱遥感技术是一种获取地球物体光谱反射率的近地空间技术。
与传统的遥感技术相比,高光谱遥感技术能够获取更多的连续谱段信息,能够提供更多的反射波段,有助于地物的识别和分类。
传统的遥感图像分类与识别算法在高光谱图像上存在一定的局限性,因此,高光谱遥感图像的分类与识别算法研究成为了一个重要的课题。
2. 高光谱图像分类方法2.1 基于光谱信息的分类方法基于光谱信息的分类方法是最基础的一种分类方法。
光谱信息代表了目标在不同波长下的响应情况,通过光谱信息可以对不同地物进行分类。
常见的方法包括像元分解法、主成分分析法等。
2.2 基于空间信息的分类方法高光谱图像不仅包含了光谱信息,还包含了空间信息。
基于空间信息的分类方法可以充分利用像素点的空间分布特征进行分类。
常见的方法包括最大似然法、支持向量机等。
2.3 基于特征提取的分类方法特征提取是一种将高维数据转化为低维特征向量的方法,可以提取出地物的显著特征。
常见的特征提取方法包括小波变换、主成分分析、线性光谱混合等。
3. 高光谱图像识别方法高光谱图像的识别主要是通过对图像中地物的特征进行提取和匹配,从而实现对地物的自动识别。
常见的识别方法包括主成分分析法、广义Hough变换法等。
4. 研究现状与发展趋势目前,高光谱遥感图像的分类与识别算法已经取得了一些进展。
然而,在实际应用中仍然存在一些挑战,如遥感图像的分辨率、遥感图像的质量等。
因此,未来的研究方向可以从以下几个方面展开:4.1 提高分类和识别的准确性和精度当前的高光谱遥感图像分类与识别算法还存在一些问题,如准确性和精度不高。
遥感图像的分类方法
遥感图像的分类方法常见有以下几种:
1. 监督分类方法:该方法需要先准备一些具有标签的样本数据集进行训练,并从中学习模式进行分类。
常见的监督分类方法包括最大似然分类、支持向量机等。
2. 无监督分类方法:该方法不需要标签样本数据集,通过对图像像素进行统计分析和聚类来确定类别。
常见的无监督分类方法包括K均值聚类、高斯混合模型等。
3. 半监督分类方法:该方法结合监督和无监督分类方法的优势,同时利用有标签和无标签样本数据进行分类。
常见的半监督分类方法包括标签传播、半监督支持向量机等。
4. 深度学习分类方法:近年来,随着深度学习方法的发展,基于卷积神经网络(CNN)的遥感图像分类方法变得流行。
这些方法通过搭建深度学习网络模型并使用大量的标签样本进行训练,能够实现较高的分类精度。
除了以上几种方法外,还有基于纹理特征、形状特征等的分类方法。
不同的分类方法适用于不同的遥感图像场景和实际需求。
综合考虑数据集大小、分类效果、计算时间等因素,选择合适的分类方法对于遥感图像的分类任务非常重要。
高光谱图像处理技术的前沿技术和发展趋势高光谱图像处理技术是指对多光谱或高光谱图像进行处理,以提取和分析图像中的信息和特征。
随着高光谱遥感技术的发展,高光谱图像处理技术也得到了广泛应用,并取得了许多重要的研究成果。
本文将从前沿技术和发展趋势两个方面对高光谱图像处理技术进行详细介绍。
一、前沿技术1. 高光谱图像分类算法高光谱图像具有较高的光谱和空间分辨率,可以提供丰富的信息,因此在分类算法方面有较大的发展空间。
传统的高光谱图像分类算法主要包括最大似然分类算法、支持向量机分类算法等。
近年来,随着深度学习技术的兴起,基于深度学习的高光谱图像分类算法也取得了较好的效果,如卷积神经网络、循环神经网络等。
2. 高光谱图像压缩算法高光谱图像数据量庞大,传输和存储需要较大的开销。
高光谱图像压缩算法是高光谱图像处理技术中重要的研究方向之一。
传统的高光谱图像压缩算法主要包括无损压缩和有损压缩。
无损压缩算法主要通过数据压缩和编码来降低数据的冗余性,有损压缩算法则在保持图像质量的前提下,通过舍弃一部分信息来减少数据量。
近年来,基于稀疏表示和压缩感知的高光谱图像压缩算法受到了广泛关注。
3. 高光谱图像超分辨率重建算法高光谱图像的空间分辨率较低,存在着不同程度的模糊和失真。
高光谱图像超分辨率重建算法是高光谱图像处理技术中的重要内容。
传统的高光谱图像超分辨率重建算法主要是通过利用多帧或多波段的信息来提高图像的空间分辨率。
近年来,基于深度学习的高光谱图像超分辨率重建算法取得了较好的效果,如生成对抗网络。
二、发展趋势1. 高光谱图像处理技术与人工智能的结合高光谱图像数据具有较高的维度和复杂性,传统的高光谱图像处理技术往往需要人工进行特征提取和分类。
随着人工智能技术的快速发展,高光谱图像处理技术也逐渐与人工智能技术相结合,如深度学习、机器学习等。
人工智能技术可以通过学习和训练自动提取高光谱图像中的特征和信息,进一步提高高光谱图像处理的效果和速度。
遥感图像分类的自适应模糊C均值算法一、引言在遥感图像处理中,分类是一个非常重要的问题。
图像分类通常是通过将图像分成不同的类别来实现的,其核心是利用计算机技术自动化实现。
这一技术不仅可以加快分类速度,还可以提高分类精度和准确性。
随着遥感技术的发展,图像数据量非常大,分类难度也越来越大。
因此,如何快速准确地实现遥感图像分类成为一个热门问题。
二、自适应模糊C均值算法自适应模糊C均值算法是一种改进的C均值聚类方法,是基于模糊、自适应和数据压缩技术的。
自适应模糊C均值算法可以自适应地确定聚类中心和模糊度参数,从而提高分类精度。
模糊度是指每个像素属于某一类别的程度。
自适应模糊C均值算法可以调整每个像素的模糊度来正确地划分不同的类别。
三、自适应模糊C均值算法的流程1.预处理将原始图像转化为灰度图像,将图像进行归一化处理。
确定聚类数和模糊度范围。
2.初始化随机生成聚类中心的初值。
初始化聚类中心的模糊度参数。
3.更新聚类中心通过计算每个像素到聚类中心的距离,以及该像素的模糊度参数,更新聚类中心的位置和模糊度参数。
4.更新像素模糊度计算每个像素到每个聚类中心的距离,更新其模糊度。
当像素模糊度小于预设值时,将其划分到对应的类别中。
重复以上步骤直到所有像素的模糊度均小于设定阈值。
5.分类结果输出分类结果。
四、自适应模糊C均值算法的优缺点优点:1. 算法速度快,适用于大规模图像数据处理。
2. 算法具有较高的分类准确率。
3. 算法具有自适应性和可扩展性。
缺点:1. 需要人为地确定聚类中心和模糊度范围,需要经过多次试验。
2. 算法对噪声敏感,对低空间分辨率图像分类效果不佳。
五、自适应模糊C均值算法在遥感图像分类中的应用自适应模糊C均值算法已经被广泛使用在遥感图像分类中。
例如,基于自适应模糊C均值算法的遥感图像分类方法可以有效地实现对大面积土地利用的分类。
此外,自适应模糊C均值算法还可以用于城市土地覆盖分类、农作物遥感监测以及水资源遥感监测等方面的研究。
高光谱图像分类算法的研究与实现随着高光谱遥感技术的快速发展,获取高光谱数据集的难度越来越小,但如何从大量的光谱数据中提取有用的信息,成为研究者们所关注的重要问题。
分类作为高光谱图像应用的核心问题之一,属于监督学习的范畴,具有广泛的应用前景。
本文将介绍高光谱图像分类算法的研究现状和实现方法。
一、高光谱图像分类算法研究现状高光谱图像分类算法是从多光谱图像或全色图像中提取光谱信息以分类物体的遥感应用算法。
目前,高光谱图像分类算法主要有以下几种:1. 基于统计学习的分类算法统计学习是通过对大量实例进行学习和推断来构造模型,对观测数据进行分类或回归预测的方法。
在高光谱图像分类中,常用的统计学习算法包括KNN、SVM、决策树等。
这些算法快速高效,特别是在小样本分类中表现优秀,但是在对特征提取方法不足和噪声较多的情况下,分类精度有待提高。
2. 基于神经网络的分类算法神经网络是一种模拟人脑神经系统的学习算法,具有一定的自适应性,可增加模型的分析能力。
在高光谱图像分类中,常用的神经网络算法包括BP神经网络、SOM神经网络、CNN神经网络等。
这些算法具有极强的图像处理和模式匹配能力,但是需要大量样本,且模型复杂,训练速度较慢。
3. 基于深度学习的分类算法深度学习是近年兴起的一种基于神经网络的学习算法,包括卷积神经网络(CNN)、循环神经网络(RNN)等,具有很强的自适应性和泛化能力。
在高光谱图像分类中,深度学习算法具有很大的优势,目前在高光谱遥感分类领域有很多应用。
二、高光谱图像分类算法实现方法1. 特征提取特征提取是高光谱图像分类算法的重要环节。
目前,特征提取方法主要包括基础特征提取、频域特征提取、小波变换特征提取和稀疏表示特征提取等。
基础特征提取是最常用的方法之一,包括光谱信息和空间信息。
以光谱信息为例,可以采用平均值、标准差或者主成分分析等方法来提取基础特征。
空间信息可以通过纹理信息、梯度等方式来提供基础特征。
基于稀疏表示和词袋模型的高光谱图像分类
任越美;张艳宁;魏巍;张秀伟
【期刊名称】《计算机科学》
【年(卷),期】2014(041)010
【摘要】为增强高光谱图像稀疏表示分类方法中稀疏字典的表征能力并充分利用高光谱图像的光谱信息和空间信息,提出了一种新的基于稀疏表示和词袋模型的高光谱遥感图像分类方法.首先利用词袋模型算法结合高光谱遥感图像数据集生成各类别专业码本,作为字典中对应的原子构造稀疏表示字典.在计算每个像元的对应稀疏表示字典中的稀疏表示特征时,利用空间连续性约束对像元的稀疏表示系数进行空间维的约束.最后根据最小重构误差实现高光谱图像分类.高光谱遥感数据实验结果表明:所提方法能有效提高分类效果,并且其分类精度和Kappa系数都优于其他稀疏表示方法以及单独使用光谱信息的方法.
【总页数】4页(P113-116)
【作者】任越美;张艳宁;魏巍;张秀伟
【作者单位】西北工业大学计算机学院西安710072;河南工业职业技术学院计算机工程系南阳473000;西北工业大学计算机学院西安710072;西北工业大学计算机学院西安710072;西北工业大学计算机学院西安710072
【正文语种】中文
【中图分类】TP751
【相关文献】
1.基于独立空谱残差融合的联合稀疏表示高光谱图像分类 [J], 卢佳;保文星
2.基于二级字典的联合稀疏表示高光谱图像分类 [J], 陈善学; 陈雯雯
3.基于字典优化的联合稀疏表示高光谱图像分类 [J], 陈善学;王欣欣
4.基于空间预处理联合稀疏表示高光谱图像分类 [J], 陈善学;王欣欣
5.基于二次空间处理的联合稀疏表示高光谱图像分类 [J], 陈善学;张欣
因版权原因,仅展示原文概要,查看原文内容请购买。
高光谱图像稀疏解混与分类算法研究随着遥感技术的飞速发展,高光谱遥感图像数据已经广泛地应用于环境监测、矿产勘探、军事目标识别等领域。
因此,高光谱遥感图像数据的处理十分重要且具有实际应用价值。
高光谱图像数据的解混精度和高光谱遥感图像的分类精度影响着高光谱遥感图像数据的后续应用,因此,高光谱图像的解混和分类是高光谱遥感图像处理中的关键性问题,也是后续研究和应用的重要基础。
其中,在高光谱图像数据解混算法中,基于稀疏约束的解混算法已经成为解混算法的热点。
现有的多目标稀疏解混算法虽然能解决传统稀疏解混算法中不能直接优化非凸<sub>0</sub>L范数和权重参数不能自适应选择的问题,但是仍存在因随机分组策略的缺陷及拐点选解具有单一性,从而导致高光谱图像数据解混精度不高的问题。
在高光谱图像分类算法中,现有的高光谱图像生成式对抗网络(Generative Adversarial Network,GAN)分类算法虽然能够解决高光谱图像数据冗余度大,标记样本有限的问题,但是仍存在不能提取全部的光谱特征和空谱联合特征的不足之处,使得高光谱图像分类精度有待提升。
本文针对现有高光谱图像稀疏解混算法和高光谱图像分类算法的不足,做了以下两方面的研究工作:首先,针对现有高光谱图像多目标稀疏解混算法中存在因随机分组策略的不足及拐点选解具有单一性而导致高光谱图像解混精度不高的问题,本文提出一种基于大规模多目标进化算法(Evolutionary Algorithm for Large-scale Many-objective Optimization,LMEA)的高光谱图像稀疏解混算法。
首次引入LMEA算法中的决策变量分组策略,并提出有约束拐点区域选解策略来提升高光谱图像数据稀疏解混的精度。
本文将该算法应用于基于光谱特征的二目标稀疏解混框架和基于空谱联合特征的三目标稀疏解混框架中,使用常用的模拟和真实高光谱图像数据集进行对比实验,提出算法均获得最好的解混效果,也证明了使用空谱联合特征提高了算法对噪声的鲁棒性。