2010安徽高考文科数学试题及答案
- 格式:doc
- 大小:1.07 MB
- 文档页数:10
2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分l50分,考试时间l20分钟。
参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(1-)=i i (C)i (D)i 答案:B 解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)22a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A)15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a 答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12解析:运算时X 顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 . 答案:5.7% 解析:50500099099000=,707001001000=,易知57005.7%100000=.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 . (写出所有正确命题的编号).①ab≤1; ②a +b ≤2; ③a 2+b 2≥2; ④a 3+b 3≥3; 211≥+b a ⑤答案:①,③,⑤ 解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再利a+b2≥易知③正确三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156.(1)AB AC ⋅=bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2. ∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0. 直线AF 2的方程为x=2. 由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
12010年安徽高考文科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
考试结束后,务必将试题卷和答题卡一并上交。
参考公式:椎体体积13V Sh =,其中S 为椎体的底面积,h 为椎体的高. 若111ni y y n ==∑(x 1,y 1),(x 2,y 2)…,(x n ,y n )为样本点,ˆybx a =+为回归直线,则 111n i x x n ==∑,111ni y y n ==∑()()()111111222111nni i n n i i i x y yy x ynx yb x x x nx a y bx====---==--=-∑∑∑∑,a y bx =-说明:若对数据适当的预处理,可避免对大数字进行运算.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设 i 是虚数单位,复数aii1+2-为纯虚数,则实数a 为 (A )2 (B ) -2(C ) 1-2(D )122(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U ⋂等于(A )}{,,,1456 (B ) }{,15(C ) }{4(D ) }{,,,,12345(3)双曲线x y 222-=8的实轴长是(A )2 (B)(C ) 4(D )(4) 若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为(A )-1 (B ) 1 (C ) 3(D ) -3(5)若点(a,b )在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a1,b ) (B )(10a,1-b ) (C ) (a10,b+1) (D )(a 2,2b )(6)设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为(A )1,-1(B )2,-2(C )1,-2 (D )2,-1(7)若数列}{n a 的通项公式是=+++-=1021),23()1(a a a n a n n 则 (A )15 (B )12 (C )-12 (D )-15(8)一个空间几何体的三视图如图所示,则该几何体的表面积为 (A ) 48 (B )(C )(D )80(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B )18(C )16(D )15(10)函数2)1()(x ax x f n-=在区间〔0,1〕 上的图像如图所示,则n 可能是(A )1 (B )2(C)3 (D)4第II卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效..................3。
2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)第21页(共21页)当且仅当a <﹣2或a ≥时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.10。
2010年安徽文一、选择题(共10小题;共50分)1. 已知i2=−1,则i1−3i= A. 3−iB. 3+iC. −3−iD. −3+i2. 设向量a=1,0,b=12,12,则下列结论中正确的是 A. a=bB. a⋅b=22C. a∥bD. a−b与b垂直3. 过点1,0且与直线x−2y−2=0平行的直线方程是 A. x−2y−1=0B. x−2y+1=0C. 2x+y−2=0D. x+2y−1=04. 设数列a n的前n项和S n=n2,则a8的值为 A. 15B. 16C. 49D. 645. 设abc>0,二次函数f x=ax2+bx+c的图象可能是 A. B.C. D.6. 设a=3525,b=2535,c=2525,则a,b,c的大小关系是 A. a>c>bB. a>b>cC. c>a>bD. b>c>a7. 设x,y满足约束条件2x+y−6≥0,x+2y−6≤0,y≥0,则目标函数z=x+y的最大值是 A. 3B. 4C. 6D. 88. 甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是 A. 16B. 29C. 518D. 139. 若A=x x+1>0,B=x x−3<0,则A∩B= A. −1,+∞B. −∞,3C. −1,3D. 1,310. 一个几何体的三视图如图,该几何体的表面积为 A. 280B. 292C. 360D. 372二、填空题(共5小题;共25分)11. 命题"存在x∈R,使得x2+2x+5=0 "的否定是.12. 抛物线y2=4x的焦点坐标是.13. 如图所示,程序框图(算法流程图)的输出值x=.14. 若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是(写出所有正确命题的编号).①ab≤1;②a+≤;③a2+b2≥2;④a3+b3≥3;⑤1a +1b≥2.15. 某地有居民100000户,其中普通家庭99000户,高收入家庭1000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.三、解答题(共6小题;共78分).16. △ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cos A=1213(1)求AB⋅AC;(2)若c−b=1,求a的值..17. 椭圆E经过点A2,3,对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=12(1)求椭圆E的方程;(2)求∠F1AF2的角平分线所在直线的方程.18. 某市2010年4月1日—4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0∼50之间时,空气质量为优:在51∼100之间时,为良;在101∼150之间时,为轻微污染;在151∼200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.19. 设函数f x=sin x−cos x+x+1,0<x<2π,求函数f x的单调区间与极值.20. 设C1,C2,⋯,C n,⋯是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线x相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知r n为递y=33增数列.(1)证明:r n为等比数列;的前n项和.(2)设r1=1,求数列nr n21. 如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90∘,BF=FC,H为BC的中点.(1)求证:FH∥平面EDB;(2)求证:AC⊥平面EDB;(3)求四面体B−DEF的体积.答案第一部分1. B2. D3. A4. A 【解析】a8=S8−S7=64−49=15.5. D【解析】由A、C、D知,f0=c<0,因为abc>0,那么ab<0,从而对称轴x=−b2a>0,由此A、C错误,D符合要求;由B知,f0=c>0,因为abc>0,那么ab>0,从而对称轴x=−b2a<0,由此B错误.6. A 【解析】提示:利用幂函数性质得出a>c,利用指数函数性质可得出b<c.7. C 8. C 【解析】正方形四个顶点可以确定6条直线,甲乙各自任选一条共有36个基本事件.4组邻边和对角线中两条直线相互垂直的情况有5种,包括10个基本事件,根据古典概型公式得到结果p=1036=518.9. C 10. C【解析】该几何体是由两个长方体组成的简单组合体,下面是一个长、宽、高分别为10、8、2的长方体,上面竖着是一个长、宽、高分别为6、2、8的长方体,则其表面积等于下面长方体的表面积与上面长方体的侧面积之和,即S=28×10+8×2+10×2+26×8+2×8=360.第二部分11. 任意x∈R,都有x2+2x+5≠012. 1,013. 12【解析】x=1⇒x=2⇒x=4⇒x=5⇒x=6⇒x=8⇒x=9⇒x=10⇒x=12,不满足继续循环的条件,退出循环,最后输出12.14. ①③⑤【解析】令a=b=1,排除②④;因为2=a+b≥2⇒ab≤1,所以命题①正确;因为a2+b2=a+b2−2ab=4−2ab≥2,所以命题③正确;因为1a +1b=a+bab=2ab≥2,所以命题⑤正确.15. 5.7%【解析】根据题目可知普通家庭中拥有3套或3套以上住房的家庭比例为50990,高收入家庭中拥有3套或3套以上住房的家庭比例为70100,那么该地满足条件的比例大约是50990×99000+70100×1000100000=5.7%.第三部分16. (1)由cos A=1213,得sin A=1−12132=513.又12bc sin A =30,所以bc =156.所以AB⋅AC =bc cos A =156×1213=144.(2)由已知得a 2=b 2+c 2−2bc cos A= c −b 2+2bc 1−cos A=1+2×156× 1−1213=25,所以a =5.17. (1)设椭圆E 的方程为x 2a2+y 2b 2=1 a >b >0 .由e =12,得c a =12,b 2=a 2−c 2=3c 2, 所以x 2+y 2=1, 将A 2,3 代入,有12+32=1, 解得c =2,所以椭圆E 的方程为x 216+y 212=1.(2)由(1)知F 1 −2,0 ,F 2 2,0 ,所以直线AF 1的方程为y =34x +2 ,即3x −4y +6=0.直线AF 2的方程为x =2.由椭圆E 的图形知,∠F 1AF 2的角平分线所在直线的斜率为正数. 设P x ,y 为∠F 1AF 2的角平分线所在直线上任一点,则有3x −4y +6= x −2 .若3x −4y +6=5x −10,得x+2y−8=0,其斜率为负,不合题意,舍去.于是3x−4y+6=−5x+10,即2x−y−1=0.所以∠F1AF2的角平分线所在直线的方程为2x−y−1=0.18. (1)频率分布表:分组频数频率41,5121 1551,6111 3061,7142 71,816181,91101 391,10151 6101,11121(2)频率分布直方图:(3)答对下述两条中的一条即可:(i)该市一个月中空气污染指数有2天处于优的水平,占当月天数的115,有26天处于良的水平,占当月天数的1315,处于优或良的天数共有28天,占当月天数的1415.说明该市空气质量基本良好.(ii)轻微污染有2天,占当月天数的115.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730,超过50%,说明该市空气质量有待进一步改善.19. 由f x=sin x−cos x+x+1,0<x<2π,知fʹx=1+2sin x+π.令fʹx=0,从而sin x+π=−2,得x=π 或 x=3π,当x变化时,fʹx,f x变化情况如下表x0,ππ π,32π32π32π,2πfʹx+0−0+f x↗π+2↘3π↗因此,由上表知f x的单调递增区间是0,π与3π2,2π ,单调递减区间是 π,3π2,极小值为f3π2=3π2,极大值为fπ=π+2.20. (1)将直线y=33x的倾斜角记为θ,则有tanθ=3,sinθ=1,设C n的圆心为λn,0,则由题意得知r nλn =12,得λn=2r n;同理λn+1=2r n+1,从而λn+1=λn+r n+r n+1=2r n+1,将λn=2r n代入,解得r n+1=3r n,故r n为公比q=3的等比数列.(2)由于r1=1,q=3,故r n=3n−1,从而nr n=n31−n,记S n=1r1+2r2+⋯+nr n,则有S n=1+2×3−1+3×3−2+⋯+n31−n, ⋯⋯①S n 3=1×3−1+2×3−2+⋯+n−131−n+n3−n, ⋯⋯②①−②,得2S n=1+3−1+3−2+⋯+31−n−n3−n=1−3−n23−n3−n=3− n+33−n,所以S n=9−1n+331−n=9−2n+331−n.21. (1)如图,设AC与BD交于点G,则G为AC的中点,连接EG,GH.由于H为BC的中点,故GH∥AB,GH=12AB.又EF∥AB,EF=12AB,∴四边形EFHG为平行四边形,∴EG∥FH,而EG⊂平面EDB,FH⊄平面EDB,∴FH∥平面EDB.(2)由四边形ABCD为正方形,有AB⊥BC.又EF∥AB,∴EF⊥BC.而EF⊥FB,又BC∩FB=B∴EF⊥平面BFC,∴EF⊥FH,∴AB⊥FH.又BF=FC,H为BC的中点,∴FH⊥BC,又AB∩BC=B∴FH⊥平面ABCD.∴FH⊥AC.又FH∥EG,∴AC⊥EG,又AC⊥BD,EG∩BD=G,∴AC⊥平面EDB.(3)∵EF⊥FB,∠BFC=90∘,又EF∩FC=E,∴BF⊥平面CDEF.∴BF为四面体B−DEF的高.又BC=AB=2,∴BF=FC=2,所以V B−DEF=1×1×1×2×2=1.。
2010年高考数学真题试卷(全国1卷word 版)及答案(1-18题答案)2010年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷一、选择题(1)cos300°= (A )32- (B )12- (C )12 (D )32(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则z =x-2y 的最大值为(A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=(A )52 (B)7 (C)6 (D)4 2(5)(1-x )2(1-x )3的展开式中x 2的系数是(A)-6 (B )-3 (C)0 (D)3(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于(A )30° (B)45° (C)60° (D)90° (7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =(A )2 (B)4 (C)6 (D)8(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为(A) 23 (B)33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =125-,则(A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的最小值为(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为(A )233 (B) 433 (C) 23 (D) 833第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(13)不等式2232x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)记等差数列{a n }的前n 项和为S ,设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .(18)(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .(19)(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A—DC—C的大小.(21)(本小题满分12分)已知函数f(x)=3a x4-2(3a+2)x2+4x.(Ⅰ)当a=16时,求f(x)的极值;(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.(22)(本小题满分12分)已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设89FA FB−−→-−−→=,求△BDK的内切圆M的方程.2010年高考文科数学参考答案(全国卷1)1.C2.C3.B4.A5.A6.D7.C8.B9.D 10.C 11.D 12.B13.(-2,-1)并(2,+无穷) 14 -24/25 15..30 16.√3/317、{an}是等差数列S3=a1+a2+a3=3a2=12a2=4设公差为da1=4-d a3=4+d2a1,a2,a3+1成等比数列(a2)^2=2a1·(a3+1)4^2=2(4-d)(4+d+1)8=(4-d)(d+5)8=20-d-d^2d^2+d-12=0(d+4)(d-3)=0d=-4 或d=3若d=-4,则a1=8,an=a1+d(n-1)=8-4(n-1)=12-4nSn=(a1+an)n/2=(8+12-4n)n/2=-2n^2+10n若d=3,则a1=1,an=a1+d(n-1)=1+3(n-1)=3n-2Sn=(a1+an)n/2=(1+3n-2)n/2=(3/2)n^2-(1/2)n18、a+b=acosA/sinA+bcosB/sinB合并同类项,a(1-cosA/sinA)=b(cosB/sinB-1)由正弦定理a/b=sinA/sinB得到:cosB-sinB=sinA-cosA(自己带进去化简吧)根据两角和差公式,两边都提取根号2根号2(sin45°cosB-cos45°sinB)=根号2(sinAcos45°-cosAsin45°)即:sin(45°-B)=sin(A-45°)所以:45°-B=A-45°或45°-B+A-45°=180°(舍去)所以A+B=90°,即C=90°。
2010年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-(B)-12 (C)12(D) 2 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A)4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以133364564655()(50)a a a a a a a =====g(5)43(1)(1x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a=1a +由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B CD 中,1BB 与平面1ACD 所成角的余弦值为(A )3 (B(C )23(D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯=o g ,21122ACD SAD CD a ∆==g . 所以131ACD ACD S DD DO S ∆∆===g ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos 3θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos1/3O OO ODOD∠===(10)设123log2,ln2,5a b c-===则(A)a b c<<(B)b c a<< (C) c a b<< (D) c b a<<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】a=3log2=21log3, b=In2=21log e,而22log3log1e>>,所以a<b,c=125-222log4log3>=>,所以c<a,综上c<a<b.【解析2】a=3log2=321log,b=ln2=21log e, 3221log log2e<<<,32211112log log e<<<;c=12152-=<=,∴c<a<b(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么PA PB•u u u v u u u v的最小值为(A) 4-(B)3-+(C) 4-+3-+11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=x(0)x>,∠APO=α,则∠APB=2α,,sinα=||||cos2PA PB PA PBα•=⋅u u u v u u u v u u u v u u u v=22(12sin)xα-=222(1)1x xx-+=4221x xx-+,令PA PB y•=u u u v u u u v,则4221x xyx-=+,即42(1)0x y x y-+-=,由2x是实数,所以2[(1)]41()0y y∆=-+-⨯⨯-≥,2610y y++≥,解得3y≤--或3y≥-+.故min()3PA PB•=-+u u u v u u u v.此时x=【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--•==+-≥u u u v u u u v 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x •=-+-=-+--=+-≥u u u v u u u v(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(C)12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分l50分,考试时间l20分钟。
参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(1)=i i (C)i (D)i 答案:B 解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)22a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A)15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a 答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.答案:5.7% 解析:50500099099000=,707001001000=,易知57005.7%100000=.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是、(写出所有正确命题的编号).①ab≤1;②a+b≤2;③a2+b2≥2;④a3+b3≥3;211≥+ba⑤答案:①,③,⑤解析:①,⑤化简后相同,令a=b=1排除②、易知④,再利a+b 2易知③正确三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156、(1)AB AC ⋅=bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2、∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0、直线AF 2的方程为x=2、由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
2010年普通高等学校招生全国统一考试·文科数学(安徽卷)第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2010安徽,文1)若A ={x |x +1>0},B ={x |x -3<0},则A ∩B =()A.(-1,+∞) B.(-∞,3) C.(-1,3) D.(1,3)答案:C2.(2010安徽,文2)已知i 2=-1,则i(1-3i)=…()A.3-iB.3+i C.-3-iD.-3+i答案:B3.(2010安徽,文3)设向量a =(1,0),b =(21,21),则下列结论中正确的是()A.|a |=|b |B.a ·b =22C.a ∥b D.a -b 与b 垂直答案:D4.(2010安徽,文4)过点(1,0)且与直线x -2y -2=0平行的直线方程是()A.x -2y -1=0 B.x -2y +1=0C.2x +y -2=0 D.x +2y -1=0答案:A5.(2010安徽,文5)设数列{a n }的前n 项和S n =n 2,则a 8的值为()A.15 B.16 C.49 D.64答案:A6.(2010安徽,文6)设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是()C D答案:D7.(2010安徽,文7)设a =5253(,b =53)52(,c =52)52(,则a ,b ,c 的大小关系是()A.a >c >bB.a >b >cC.c >a >bD.b >c >a答案:A8.(2010安徽,文8)设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥−+≥−+,0,062,062y y x y x 则目标函数z =x +y 的最大值是()A.3 B.4 C.6 D.8答案:C9.(2010安徽,文9)一个几何体的三视图如图,该几何体的表面积是()正(主)视图侧(左)视图A.372B.360C.292D.280答案:B10.(2010安徽,文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是()A.83B.184 C.185 D.186答案:C第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.11.(2010安徽,文11)命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.答案:对于任意的x ∈R ,都有x 2+2x +5≠012.(2010安徽,文12)抛物线y 2=8x 的焦点坐标是________________.答案:(2,0)13.(2010安徽,文13)如图所示,程序框图(算法流程图)的输出值x =________________.答案:1214.(2010安徽,文14)某地有居民100000户,其中普通家庭99000户,高收入家庭1000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________________.答案:5.7%15.(2010安徽,文15)若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________________(写出所有正确命题的编号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④a 3+b 3≥3;⑤a 1+b1≥2.答案:①③⑤三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.(2010安徽,文16)△ABC 的面积是30,内角A ,B ,C 所对边长分别为a ,b ,c ,cos A =1312.(1)求AB ·AC ;(2)若c -b =1,求a 的值.解:由cos A =1312,得sin A =2)1312(1−=135. 又21bc sin A =30,∴bc =156. (1)·=bc cos A =156·1312=144. (2)a 2=b 2+c 2-2bc cos A =(c -b )2+2bc (1-cos A )=1+2·156·(1-1312)=25,∴a =5.17.(2010安徽,文17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =21.(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.解:(1)设椭圆E 的方程为22a x +22by =1.由e =21,得a c =21,b 2=a 2-c 2=3c 2,∴224c x +223cy =1. 将A (2,3)代入,有21c +23c=1,解得c =2. ∴椭圆E 的方程为162x +122y =1.(2)由(1)知F 1(-2,0),F 2(2,0),∴直线AF 1的方程为y =43(x +2),即3x -4y +6=0. 直线AF 2的方程为x =2.由椭圆E 的图形知,∠F 1AF 2的角平分线所在直线的斜率为正数. 设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有5|643|+−y x =|x -2|.若3x -4y +6=5x -10,得x +2y -8=0,其斜率为负,不合题意,舍去. 于是3x -4y +6=-5x +10,即2x -y -1=0.∴∠F 1AF 2的角平分线所在直线的方程为2x -y -1=0.18.(2010安徽,文18)某市2010年4月1日~4月30日对空气污染指数的监测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,81,83,82,82,64,79,86,85,75,71,49,45.(1)完成频率分布表;(2)作出频率分布直方图;(3)根据国家标准,污染指数在0~50之间时,空气质量为优;在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染.请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.解:(1)频率分布表.分组频数频率[41,51)2302[51,61)1301[61,71)4304[71,81)6306[81,91)103010[91,101)5305[101,111)2302(2)频率分布直方图:空气污染指数(3)答对下述两条中的一条即可:①该市一个月中空气污染指数有2天处于优的水平,占当月天数的151.有26天处于良的水平,占当月天数的1513.处于优或良的天数共有28天,占当月天数的1514.说明该市空气质量基本良好.②轻微污染有2天,占当月天数的151.污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的3017,超过50%.说明该市空气质量有待进一步改善.19.(2010安徽,文19)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ;(2)求证:AC ⊥平面EDB ;(3)求四面体B —DEF 的体积.(1)证明:设AC 与BD 交于点G ,则G 为AC 的中点,连EG ,GH ,由于H 为BC 的中点,故GH21AB .又EF21AB ,∴EF GH .∴四边形EFHG 为平行四边形.∴EG ∥FH .而EG ⊂平面EDB ,∴FH ∥平面EDB .(2)证明:由四边形ABCD 为正方形,有AB ⊥BC . 又EF ∥AB ,∴EF ⊥BC .而EF ⊥FB ,∴EF ⊥平面BFC .∴EF ⊥FH . ∴AB ⊥FH .又BF =FC ,H 为BC 的中点,∴FH ⊥BC .∴FH ⊥平面ABCD . ∴FH ⊥AC .又FH ∥EG ,∴AC ⊥EG . 又AC ⊥BD ,EG ∩BD =G , ∴AC ⊥平面EDB .(3)解:∵EF ⊥FB ,∠BFC =90°, ∴BF ⊥平面CDEF .∴BF 为四面体B —DEF 的高. 又BC =AB =2,∴BF =FC =2.V B —DEF =31·21·1·2·2=31.20.(2010安徽,文20)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.解:由f (x )=sin x -cos x +x +1,0<x <2π, 知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +4π),令f ′(x )=0,从而sin(x +4π)=-22,得x =π,或x =23π.当x 变化时,f ′(x ),f (x )变化情况如下表:x (0,π)π(π,23π)23π(23π,2π)f ′(x )+0-0+f (x )单调递增↗π+2单调递减↘23π单调递增↗因此,由上表知f (x )的单调递增区间是(0,π)与(23π,2π),单调递减区间是(π,23π),极小值为f (23π)=23π,极大值为f (π)=π+2.21.(2010安徽,文21)设C 1,C 2,…,C n ,…是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y =33x 相切.对每一个正整数n ,圆C n 都与圆C n +1相互外切.以r n 表示C n 的半径,已知{r n }为递增数列.(1)证明:{r n }为等比数列;(2)设r 1=1,求数列{nr n}的前n 项和.解:(1)将直线y =33x 的倾斜角记为θ, 则有tan θ=33,sin θ=21.设C n 的圆心为(λn ,0), 则由题意知n n r λ=21,得λn =2r n ; 同理λn +1=2r n +1,从而λn +1=λn +r n +r n +1=2r n +1,将λn =2r n 代入,解得r n +1=3r n . 故{r n }为公比q =3的等比数列. (2)由于r 1=1,q =3,故r n =3n -1, 从而nr n=n ·31-n . 记S n =11r +22r +…+nr n ,则有S n =1+2·3-1+3·3-2+…+n ·31-n ,①3nS =1·3-1+2·3-2+…+(n -1)·31-n +n ·3-n .② ①-②,得32n S=1+3-1+3-2+…+31-n -n ·3-n=3231n −−-n ·3-n =23-(n +23)·3-n .∴S n =49-21(n +23)·31-n =43)32(91nn −⋅+−.。
2010年安徽高考文科数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3页至第4页。
全卷满分150分,考试时间120分钟。
考生注意事项:答题前,务必在试题卷、答题卡规定填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出书写的答案无效.........,在试题卷....、草稿纸上答题无效........。
考试结束后,务必将试题卷和答题卡一并上交。
参考公式: 椎体体积13V Sh =,其中S 为椎体的底面积,h 为椎体的高.若111ni y y n==∑(x 1,y 1),(x 2,y 2)…,(x n ,y n )为样本点,ˆy bx a =+为回归直线,则 111ni x xn==∑,111ni y y n==∑()()()111111222111nni i nni i i xy y y xy n x yb x x x nxa y bx====---==--=-∑∑∑∑,a y bx =-说明:若对数据适当的预处理,可避免对大数字进行运算.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设 i 是虚数单位,复数ai i1+2-为纯虚数,则实数a 为(A )2 (B ) -2 (C ) 1-2(D )12(2)集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U ⋂等于(A )}{,,,1456 (B ) }{,15 (C ) }{4 (D ) }{,,,,12345(3)双曲线x y 222-=8的实轴长是(A )2 (B) (C ) 4 (D )(4) 若直线x y a 3++=0过圆x y x y 22++2-4=0的圆心,则a 的值为(A )-1 (B ) 1 (C ) 3(D ) -3(5)若点(a,b )在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a1,b ) (B )(10a,1-b ) (C ) (a10,b+1)(D )(a 2,2b )(6)设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为(A )1,-1 (B )2,-2 (C )1,-2 (D )2,-1(7)若数列}{n a 的通项公式是=+++-=1021),23()1(a a a n a nn 则(A )15 (B )12(C )-12 (D )-15(8)一个空间几何体的三视图如图所示,则该几何体的表面积为 (A ) 48 (B )(C )48+8(D )80(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于(A )110(B )18(C ) 16(D ) 15(10)函数2)1()(x ax x f n-=在区间〔0,1〕 上的图像如图所示,则n 可能是(A )1 (B )2(C )3 (D )4第II 卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.................. 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)设()f x 是定义在R 上的奇函数,当x≤0时,()f x =22x x -,则(1)f = . (12)如图所示,程序框图(算法流程图)的输出结果是 . (13)函数y =的定义域是 .(14)已知向量a ,b 满足(a+2b )·(a-b )=-6,且a =1,b =2,则a 与b 的夹角为 .(15)设()f x =sin 2cos 2a x b x +,其中a ,b ∈R ,ab ≠0,若()()6f x f π≤对一切则x ∈R 恒成立,则①11()012f π=②7()10f π<()5f π③()f x 既不是奇函数也不是偶函数④()f x 的单调递增区间是2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦⑤存在经过点(a ,b )的直线与函数()f x 的图像不相交 以上结论正确的是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内. (16)(本小题满分13分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,,,12cos()0B C ++=,求边BC 上的高.(17)(本小题满分13分)设直线.02,,1:,1:21212211=+-=+=k k k k x k y l x k y l 满足其中实数 (I )证明1l 与2l 相交;(II )证明1l 与2l 的交点在椭圆222x +y =1上.(18)(本小题满分13分)设21)(axex f x+=,其中a 为正实数.(Ⅰ)当34=a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围.(19)(本小题满分13分)如图,A B E D F C 为多面体,平面A B E D 与平面A C F D 垂直,点O 在线段A D 上,1O A =,O D =,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形。
2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分l50分,考试时间l20分钟。
参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(13i -)=(A)3i - (B)3i + (C)3i -- (D)3i -+ 答案:B解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)2a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是 (A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A) 15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12解析:运算时X 顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 . 答案:5.7% 解析:50500099099000,707001001000,易知57005.7%100000.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a ,b 恒成立的是 . (写出所有正确命题的编号).①ab ≤1; ②a +b ≤2; ③a 2+b 2≥2; ④a 3+b 3≥3; 211≥+b a ⑤答案:①,③,⑤解析:①,⑤化简后相同,令a=b=1排除②、易知④ ,再22a+b22a b +≥易知③正确三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156.(1)AB AC ⋅=bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2. ∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0. 直线AF 2的方程为x=2. 由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.空气污染指数18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识. 解:(Ⅰ) 频率分布表:(Ⅱ)频率分布直方图:(Ⅲ)答对下述两条中的一条即可:(i )该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 . 有26分 组 频 数 频 率 [41,51) 2 230 [51,61) 1 130 [61,71) 4 430 [71,81) 6 630 [81,91) 10 1030 [91,101) 5 530 [101,111)2230103004151 61 71 81 91 101 111频率 组距天处于良好的水平,占当月天数的1315 . 处于优或良的天数共有28天,占当月天数的1415 . 说明该市空气质量基本良好.(ii )轻微污染有2天,占当月天数的115 . 污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%. 说明该市空气质量有待进一步改善.(19) (本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,E F ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点, (Ⅰ)求证:F H ∥平面EDB;(Ⅱ)求证:A C ⊥平面EDB;(Ⅲ)求四面体B —DEF 的体积;(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.(Ⅰ) 证:设AC 与BD 交于点G ,则G 为AC 的中点. 连EG ,GH ,由于H 为BC 的中点,故GH ∥AB 且 GH =12AB 又EF ∥AB 且 EF =12AB ∴EF ∥GH. 且 EF =GH ∴四边形EFHG 为平行四边形. ∴EG ∥FH ,而EG 平面EDB ,∴FH ∥平面EDB. (Ⅱ)证:由四边形ABCD 为正方形,有A B ⊥BC.又EF ∥AB ,∴ EF ⊥BC. 而EF ⊥FB ,∴ EF ⊥平面BFC ,∴ EF ⊥FH. ∴ AB ⊥FH.又BF=FC H 为BC 的中点,FH ⊥BC.∴ FH ⊥平面ABCD. ∴ FH ⊥AC. 又FH ∥EG ,∴ AC ⊥EG. 又AC ⊥BD ,EG ∩BD=G , ∴ AC ⊥平面EDB.(Ⅲ)解:∵ EF ⊥FB ,∠BFC=90°,∴ BF ⊥平面CDEF.∴ BF 为四面体B-DEF 的高. 又BC=AB=2, ∴ BF=FC=111.323B DEF V -==(20)(本小题满分12分)设函数f (x )=sinx-cosx+x+1, 0﹤x ﹤2 π,求函数f(x)的单调区间与极值. (本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力. 解:由f(x)=sinx-cosx+x+1,0﹤x ﹤2π, 知'()f x =cosx+sinx+1, 于是'()f x =1+2sin(x+4π). 令'()f x =0,从而sin(x+ 4π)=-22,得x= π,或x=32 π.当x 变化时,'()f x ,f(x)变化情况如下表:因此,由上表知f(x)的单调递增区间是(0, π)与(32 π,2 π),单调递减区间是(π,32 π),极小值为f (32 π)=32 π,极大值为f (π)= π+2.(21)(本小题满分13分)设1c ,2c ...,n c ,…是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线y=3x 相切,对每一个正整数n,圆n c 都与圆1n c +相互外切,以n r 表示n c 的半径,已知{}nr 为递增数列.(Ⅰ)证明:{}nr 为等比数列;(Ⅱ)设1r =1,求数列n n r ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力. 解:(Ⅰ)将直线y=33x 的倾斜角记为θ , 则有tan θ3sin θ =12 .设C n 的圆心为(n λ,0),则由题意知nnγλ= sin θ =12 ,得n λ = 2n γ ;同理112n n ++λ=γ,题意知1112n n n n n +++λ=λ+γ+γ=γ将n λ = 2n γ代入,解得 r n+1=3r n .故{ r n }为公比q=3的等比数列. (Ⅱ)由于r 1=1,q=3,故r n =3n-1,从而nnr=n ·13n -,记S n =1212nn++⋯γγγ, 则有 S n =1+2·3-1+3·3-2+………+n ·13n -. ① 3Sn=1·3-1+2·3-2+………+(n-1) ·13n -+n ·3n -. ② ①-②,得 3Sn 2=1+3-1 +3-2+………+13n --n ·3n - =1323n--- n ·3n -=32 –(n+32)·3n -S n =94 –12 (n+32)·13n-.。