实变函数论第三版课件
- 格式:ppt
- 大小:1.15 MB
- 文档页数:94
目的:掌握势的定义,熟悉势的性质, 了解势的比较。
重点与难点:势的定义及比较。
现实生活中,当我们谈到一组对象时,很自然的会涉及到这一组对象的个数。
集合论也是这样.假如我们不考虑某个集合中元素的具体特性时,该集合含多少个元素则是一个最基本的概念,比如10个人组成的集合与十块砖头组成的集合,虽然特征不同,但作为集合,它们含相同个数的元素,十块砖头与九块砖头虽然有相同的属性,但其元素个数不同,而是两个不同的集合。
由此可见,集合所含元素的个数也是集合的一个重要的特征。
一.势的定义问题1:回忆有限集是如何计数的?问题2:有限集的计数方法如何移植到无限 集情形?心里默数着1,拿起第二粒石子时,心里默数着2,拿起最后一粒石子时,我们心里默数的最后一个数字就是石子的个数。
在这个过程中,我们不知不觉间将每粒石子都编了号,第一粒石子就是一号,不妨记作 ,第二粒石子就是二号,不妨记作 ,如果有n个石子,则最后一粒石子就是第n号,记作 ,于是这堆石子 ,...2e 1e ne设想有一堆石子,我们要知道它有多少个,当我们拿起第一粒石子时,可记作 。
这个过程实际上建立了石子与自然数1到n之间的一个一一对应关系。
如果我们想知道两堆石子是否有相同个数,我们其实不必将这两堆石子的个数一一数出来,而只需每次各从两堆石子中拿一粒,只要最后各剩下一粒石子,则它们的个数就是一样的,否则就不同。
这说明,我们想知道两个集合是否有相同}...,,{21n e e e个数,我们其实不必将这两堆石子的个数一一数出来,而只需每次各从两堆石子中拿一粒,只要最后各剩下一粒石子,则它们的个数就是一样的,否则就不同。
这说明,我们想知道两个集合是否有相同数量的元素,只需看能否在这两个集合之间建立一种一一对应关系,只要能建立这种关系,我们就有理由认为,它们有相同的数量,这种方法对无穷集也适用。
8映射1 , . , , ,: ,fA B A f A x B y f A B f A B A B →−−→定义设是两个集合,非空集若依照规则对于中的每个元,在中都有唯一确定的元与之对应就称是到的映射记作或9{}{} , ()., ()| .()| , ().x y x f f x A f f x x A f f x x E E f f E ∈∈而与对应的元称为(在映射下)的象记作集合称为映射的定义域集合称为映射的值域集合称为在映射下)的象集记作102 : () , .i.e.,,,().()(), .i.e.,,,()(f f A B f A B f y B x A f x y A B y f A x A f x y f x y A f x f →∀∈∈=−−→∈∈=∀∈=定义若映射的值域恰等于就说是满射的存在使得若映射使每个仅有唯一的满足就说是单射的若1111),. : , , (),: .f y x y f A B f A B f A B A B --=→−−→−−→则若映射既是满射的又是单射的就称是到的一一映射“一一映射”有时还说成“一一对应”记作或111 , (), () ( () , , , .f A B y B x A f x yg y x f x y g B A g f f -∈∈===设是到的一一映射则对每个有唯一使定义当时)则是到的一一映射我们称是的逆映射记作注:称与A 对等的集合为与A 有相同的势(基数), 记作势是对有限集元素个数概念的推广.ABA ~ΦΦ~131 ~ ~, ~ ~, ~, ~. i A A ii A B B A iii A B B C A C 命题对等关系有如下性质:(); (反身性)()若则 ; (对称性)()若则 (传递性)1412121212n 1n 1n 1n 12 ,,,, ,,,,, . ~(1,2,), ; ~ (1,2,).;~ ,n n n n mmn n n n A A A B B B A B n A A B B A B m A B ==∞∞==== 命题设是两两无交的一列集是两两无交的一列集若则~, :. : , ()(),1,2,.n n n n n n n A B f A B f x A f x f x n →∈== 证明故存在一一映射 作映射对每个令 例1 作对应关系则 是 与 之间的一一对应。
书籍目录:第一篇实变函数第一章集合1 集合的表示2 集合的运算3 对等与基数4 可数集合5 不可数集合第一章习题第二章点集1 度量空间,n维欧氏空间2 聚点,内点,界点3 开集,闭集,完备集4 直线上的开集、闭集及完备集的构造5 康托尔三分集第二章习题第三章测度论1 外测度2 可测集3 可测集类4 不可测集.第三章习题第四章可测函数1 可测函数及其性质2 叶果洛夫(EropoB)定理3 可测函数的构造4 依测度收敛第四章习题第五章积分论1 黎曼积分的局限性,勒贝格积分简介2 非负简单函数的勒贝格积分3 非负可测函数的勒贝格积分4 一般可测函数的勒贝格积分5 黎曼积分和勒贝格积分6 勒贝格积分的几何意义·富比尼(Fubini)定理第五章习题第六章微分与不定积分1 维它利(Vitali)定理2 单调函数的可微性3 有界变差函数4 不定积分5 勒贝格积分的分部积分和变量替换6 斯蒂尔切斯(Stieltjes)积分7 L-S测度与积分第六章习题第二篇泛函分析第七章度量空间和赋范线性空间1 度量空间的进一步例子2 度量空间中的极限,稠密集,可分空间3 连续映射”4 柯西(CaHcLy)点列和完备度量空间5 度量空间的完备化6 压缩映射原理及其应用7 线性空间8 赋范线性空间和巴拿赫(Banach)空间第七章习题第八章有界线性算子和连续线性泛函1 有界线性算子和连续线性泛函2 有界线性算子空间和共轭空间3 广义函数第八章习题第九章内积空间和希尔伯特(Hilbert)空间1 内积空间的基本概念2 投影定理3 希尔伯特空间中的规范正交系4 希尔伯特空间上的连续线性泛函5 自伴算子、酉算子和正常算子第九章习题第十章巴拿赫空间中的基本定理l 泛函延拓定理2 C[a,b)的共轭空间3 共轭算子4 纲定理和一致有界性定理5 强收敛、弱收敛和一致收敛6 逆算子定理7 闭图像定理第十章习题第十一章线性算子的谱1 谱的概念2 有界线性算子谱的基本性质3 紧集和全连续算子4 自伴全连续算子的谱论5 具对称核的积分方程第十一章习题附录一内测度,L测度的另一定义附录二半序集和佐恩引理附录三实变函数增补例题。
实变函数与泛函分析基础(第三版)-----第三章_复习指导主要内容本章介绍了勒贝格可测集和勒贝格测度的性质.外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别.我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求.本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论.本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和型集逼近.正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用.本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集.复习题一、判断题1、对任意nE R ?,*m E 都存在。
(√ )2、对任意nE R ?,mE 都存在。
(× )3、设nE R ?,则*m E 可能小于零。
(× )4、设A B ?,则**m A m B ≤。
(√ ) 5、设A B ?,则**m A m B <。
(× ) 6、**11()n n n n m S m S ∞∞===∑。