整体法和隔离法讲义
- 格式:docx
- 大小:315.32 KB
- 文档页数:10
第三章 相互作用第四讲:整体隔离法,动态平衡问题一、整体法与隔离法在平衡问题中的应用1.整体法:研究外力对物体系统的作用时,一般选用整体法。
因为不用考虑系统内力,所以这种方法更简便,总之,能用整体法解决的问题不用隔离法。
2.隔离法:分析系统内各物体(各部分)间的相互作用时,需要选用隔离法,一般情况下隔离受力较少的物体。
练习题1、如图,在光滑的水平面上叠放三个完全相同的木块,水平细绳绕过 定滑轮,两端分别系在第1、第3木块上,用水平力F 拉第3块木块 但未拉动。
设第1块和第2块、第2块和第3块之间的摩擦力大小 分别为f 12和f 23,且滑轮的摩擦不计,则应有( )A .f 12<f 23B .f 12>f 23C .f 12=f 23D .f 12=F/22、(08海南高考)如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为( ) A .(M +m )g B .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ3、如图所示,质量分别为、的两个物体通过轻弹簧连接,在力的作用下一起沿水平方向做匀速直线运动(在地面,在空中),力与水平方向成角。
则所受支持力N 和摩擦力正确的是( )A .B .C .D .4、如图所示,一个半球形的碗放在桌面上,碗口水平,O 是球心,碗的内表面光滑.轻质杆的两端固定有两个小球,质量分别是m 1、m 2.当它们静止时,m 1、m 2与球心的连线跟水平面分别成60°、30°角,则碗对两小球的弹力F 1、F 2大小之比( )A . B.3C . 3 D.35、(2014·浙江五校联考)如图7所示,在足够长水平传送带上有三个质量分别为m 1、m 2、m 3的小木块(长度不计)1、2、3,中间分别用一原长为L ,劲度系数为k 的轻弹簧连接起来,木块与传送带间的动摩擦因数为μ,现用水平细绳将木块1固定在左边的墙上,传送带按图1m 2m F 1m 2m F θ1m f 12sin N m g m g F θ=+-12cos N m g m g F θ=+-cos f F θ=sin f F θ=示方向匀速运动,当三个木块达到平衡后,1、3两木块之间的距离是( )A .2L +μ(m 2+m 3)g /kB .2L +μ(2m 2+m 3)g /kC .2L +μ(m 2+2m 3)g /kD .2L +μ(m 1+m 2+m 3)g /k6、如图2-22所示,50个大小相同,质量均为m 的小物块,在平行于斜面向上的恒力F 作用下一起沿斜面向上匀速运动.已知斜面足够长,倾角为30°,各物块与斜面的动摩擦因数相同,重力加速度为g ,则第3个小物块对第2个小物块的作用力大小为( ).A.125F B.2425F C .24mg +F 2D .因为动摩擦因数未知,所以不能确定二、解决动态平衡问题的三种方法通过控制某些物理量,使物体的状态发生缓慢地变化,物体在这一变化过程中始终处于一系列的平衡状态中,这种平衡称为动态平衡。
二、整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
运用整体法解题的基本步骤:①明确研究的系统或运动的全过程.②画出系统的受力图和运动全过程的示意图.③寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
运用隔离法解题的基本步骤:①明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列方程数尽可能少.②将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来.③对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图.④寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解.3.整体和局部是相对统一的,相辅相成的。
隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4.应用例析【例4】如图所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力F N。
解析:这里有a 、F N 两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
受力分析、物体的平衡1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。
当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a =0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。
3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。
考点二:共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件 在共点力作用下物体的平衡条件是合力为零,即0F =合。
3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。
(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。
(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。
(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。
受力分析—隔离法与整体法一、物体受力分析方法把指定的研究对象在特定的物理情景中所受到的所有外力找出来,并画出受力图,就是受力分析。
对物体进行正确地受力分析,是解决好力学问题的关键。
1、受力分析的顺序:先找重力,再找接触力(弹力、摩擦力),最后分析其它力(场力、浮力等)2、受力分析的几个步骤.①灵活选择研究对象②对研究对象周围环境进行分析③审查研究对象的运动状态:根据它所处的状态有时可以确定某些力是否存在或对某些力的方向作出判断.④根据上述分析,画出研究对象的受力分析示意图;把各力的方向、作用点(线)准确地表示出来.3、受力分析的三个判断依据:①从力的概念判断,寻找施力物体;②从力的性质判断,寻找产生原因;③从力的效果判断,寻找是否产生形变或改变运动状态。
二、隔离法与整体法1、整体法:以几个物体构成的整个系统为研究对象进行求解的方法。
在许多问题中可以用整体法比较方便,但整体法不能求解系统的内力。
(区分内力和外力,对几个物体的整体进行受力分析时,这几个物体间的作用力为内力,不能在受力图中出现,当把某一物体单独隔离分析时,原来的内力变成了外力,要画在受力图上。
)2、隔离法:把系统分成若干部分并隔离开来,分别以每一部分为研究对象进行受力分根据地,分别列出方程,再联立求解的方法。
3、通常在分析外力对系统作用时,用整体法;在分析系统内各物体之间的相互作用时,用隔离法。
有时在解答一个问题时要多次选取研究对象,需要整体法与隔离法交叉使用注意:实际问题中整体法与隔离法要结合起来灵活运用........。
........................,通常先整体后隔离三、例题例1.在粗糙的水平面上有一个三角形木块,在它的两个粗,糙的斜面上分别放置两个质量为m1和m2的木块,m m12如图1所示,已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块()A. 有摩擦力作用,方向水平向右;B. 有摩擦力作用,方向水平向左;C. 有摩擦力作用,但方向不确定;图1D. 以上结论都不对。
专题3 整体法与隔离法1. 整体法和隔离法:连接体、叠加问题首先想到整体隔离法,尤其是求底层物体与地面、墙壁等接触的摩擦力与弹力问题时,优先选择整体法,对于力少的物体采用隔离法分析;①初级整体法:系统各个物体都处于平衡状态,例如一个物体匀速,一个静止,分析整体合力为0;②中级整体法:系统各个物体有共同的加速度,一般先隔离系统一部分求到加速度,再对整体用牛二;(牛顿定律中会详细分析)③一些物体是平衡的,一些物体有加速度;∑ F 外⋅⋅⋅+++= 332211a m a m a m或者∑ F 外x ⋅⋅⋅+++=3x 32x 21x 1a m a m a m , ∑F 外y ⋅⋅⋅+++= 3y 32y 21y 1a m a m a m 。
2.整体法的口诀整体法的三个层次:初级-中级-高级外力整体内隔离,优先分析简单体;初级整体都平衡,中级整体共加速;高级整体随意用,矢量性与系统性。
注意:内力与外力、天生的外力初级整体例1.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为()A.3∶4B.4∶3C.1∶2D.2∶1例2.质量均为m的a、b两木块叠放在水平面上,如图3所示,a受到斜向上与水平面成θ角的力F 作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力例3.a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止,以下图示哪个是正确的()例4.(多选)如图所示,质量为m、顶角为α的直角劈和质量为M的正方体放在两竖直墙和一水平面间,处于静止状态。
若不计一切摩擦,则()A.水平面对正方体的弹力大小为(M+m)gB.墙面对正方体的弹力大小为mgtan αC.正方体对直角劈的弹力大小为mg cos αD.直角劈对墙面的弹力大小为mg sin α例5.如图所示,两个光滑金属球a、b置于一个桶形容器中,两球的质量m a>m b,对于图中的两种放置方式,下列说法正确的是()A.两种情况对于容器左壁的弹力大小相同B.两种情况对于容器右壁的弹力大小相同C.两种情况对于容器底部的弹力大小相同D.两种情况两球之间的弹力大小相同例6.如图所示,水平地面粗糙,竖直墙面光滑,A是一个光滑圆球,B是与A半径相等的半圆球,A、B均保持静止。
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力。
当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统或运动的全过程;(2)画出系统或整体的受力图或运动全过程的示意图;(3)选用适当的物理规律列方程求解。
二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力。
为了弄清系统(连接体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是;(1)明确研究对象或过程、状态;(2)将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
三、应用整体法和隔离法解题的方法1、合理选择研究对象。
这是解答平衡问题成败的关键。
研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看。
但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用。
为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用(不涉及物体间相互作用的内力)时。
但是,在分析系统内各物体(各部分)间相互作用力时(即系统内力),必须用隔离法。
2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握。
3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了。
所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义。
高中物理模型系列之整体法与隔离法(平衡态)预备知识:何时将研究对象选为整体?答:何时将研究对象隔离出来单独研究?答:1.整体法:就是把几个物体视为一个,受力分析时,只分析这一之的物体对整体的作用力,不考虑整体的相互作用力。
2.隔离法:就是把要分析的物体从相关的物体系中假想地隔离出来,只分析物体以外的物体的作用力,不考虑其他物体所受的作用力。
当所涉及的物理问题是整体与外界作用时,应用分析法,这时不必考虑内力的作用;当所涉及的物理问题是物体间的作用时,应用分析法。
一、平衡态下的整体与隔离1、如图11所示,在两块竖直的木板之间,有质量均为m的4块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则第2块对第3块的摩擦力大小为A、0B、mgC、mg/2D、2mg2、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放着质量为m1和m2的两个木块b和c,如图2所示,已知m1>m2,三木块均处于静止状态,则粗糙地面对三角形木块A、有摩擦力作用,摩擦力的方向水平向右B、有摩擦力作用,摩擦力的方向水平向左C、有摩擦力作用,但摩擦力的方向不能确定D、没有摩擦力作用3、如图所示,人重600N,平板重400N,若整个系统处于平衡状态,则人必须用多大的力拉住绳子?(滑轮和绳的质量及摩擦不计)4、用轻质细线把两个质量未知的小球悬挂起来,如图12所示.今对小球a持续施加一个向左偏下300角的恒力,并对小球b持续施加一个向右偏上300角的大小相等的恒力,最后达到平衡状态.表示平衡状态的图可能是右图中的5、如图9所示,质量均为m 的Ⅰ、Ⅱ两木块叠放在水平面上, Ⅰ受到斜向上与水平面成θ角的力F 作用, Ⅱ受到斜向下与水平面成θ角的力F 作用,两力在同一竖直平面内,此时两木块保持静止,则A 、Ⅰ、Ⅱ之间一定存在静摩擦力B 、Ⅱ与水平面之间可能存在静摩擦力C 、Ⅱ对Ⅰ的支持力一定等于mgD 、水平面对Ⅱ的支持力可能大于2mg6、(09·海南物理·3)两刚性球a 和b 的质量分别为a m 和b m 、直径分别为a d 个b d (a d >b d )。
整体法与隔离法选择研究对象是解决物理问题的首要环节.若一个系统中涉及两个或者两个以上物体的平衡问题,在选取研究对象时,要灵活运用整体法和隔离法.对于多物体问题,如果不求物体间的相互作用力,我们优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;很多情况下,通常采用整体法和隔离法相结合的方法.1.隔离法:(1)定义:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法.(2)原则:把相连接的各物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来.当然,对隔离出来的物体而言,它受到的各个力就应视为外力了.2.整体法:(1)把相互连接的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法.(2)原则:①当整体中各物体具有相同的加速度或都处于平衡状态(即a=0)时考虑运用整体法.②试题要分析的是外力,而不是分析整体中各物体间的相互作用(内力)时考虑运用整体法.整体法和隔离法不是完全独立的,很多情况下需要整体法和隔离法交替使用来解决问题,比如连接体问题,一般既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交替运用方法,当然个别情况也可按先隔离(由已知内力解决未知内力)再整体的顺序运用.3.整体法和隔离法的使用要点整体和部分是相对的,二者在一定条件下可以相互转化.一定层次上的整体是更大系统中的一个部分,具有部分的功能;一定层次上的部分也是由更小层次上的部分所组成的系统,具有整体的功能.由于整体和部分是辩证的统一,所以解决问题时不能把整体法和隔离法对立起来,而应该灵活地把两种方法结合起来使用;既可以先从整体考虑,也可以先对某一部分进行隔离,从整体到部分,由部分再回到整体,应据具体问题灵活选取研究对象,多方位、多角度地展开思路.【例1】在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态.现对B加一竖直向下的力F,F的作用线通过球心,设墙对B的作用力为F1,B对A的作用力为F2,地面对A的支持力为F3.若F缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中( )A.F1保持不变,F3缓慢增大B.F1缓慢增大,F3保持不变C.F2缓慢增大,F3缓慢增大D.F2缓慢增大,F3保持不变【解析】本题考查物体的平衡和隔离法、整体法分析受力等知识点.把AB看做整体,在竖直方向由平衡条件得F+m A g+m B g=F,,据此可知当,缓慢增大时,F3缓慢增大.隔离物体B分析受力,物体B 受到竖直向下的重力m B g、力F、水平向右的墙对B的作用力F1,斜向左上方的A对B的作用力F2′,设F2′的方向与竖直方向夹角为α,由平衡条件得F2′cosα=F+m B g,F2′sinα=F1,由这二式可知当F缓慢增大时,F2′缓慢增大,由牛顿第三定律可知,B对A的作用力F2也缓慢增大,F1也缓慢增大.所以正确选项是C.【练习1】半圆柱体P放在粗糙的水平面上,其右端有竖直挡板MN,在P和MN之间放一个光滑均匀的小圆柱体Q,整个装置处于静止状态.如图是这个装置的纵截面图,若用外力使MN保持竖直且缓慢地向右移动,在Q落到地面前,P始终保持静止.此过程中,下列说法正确的是(A.挡板MN对Q的弹力逐渐减小B.地面对P的摩擦力逐渐增大C. P、Q间的弹力先减小后增大D.Q所受的合力逐渐增大【解析】小圆柱体Q受重力、挡板MN对Q的弹力、P对Q的弹力作用处于平衡状态,即Q所受合力为零,由于重力大小方向不变,挡板MN对Q的弹力方向不变,对Q的动态变化过程分析可判断出挡板MN对Q的弹力逐渐增大,P对Q的弹力逐渐增大.运用整体法分析可知地面对P的摩擦力大小应等于挡板MN对Q的弹力,所以地面对P的摩擦力逐渐增大.答案:B【例2】两刚性球a和b的质量分别为m a和m b直径分别为d a和d b(d a>d b).将a、b球依次放入一竖直放置、内径为d(d a<d<d a+d b)的平底圆筒内,如图所示.设a、b两球静止时对圆筒侧面的压力大小分别为f1和f2,筒底所受的压力大小为F.已知重力加速度大小为g.若所有接触都是光滑的,则A.F=(m a+m b)g,f1=f2B.F=(m a+m b)g,f1≠f2C.m a g<F<(m a+m b)g,f1=f2D. m a g<F<(m a+m b)g,f1≠f2【解析】本题考查物体的受力分析和整体法的应用,意在考查考生用受力分析和整体法综合分析物体受力情况的能力;以a、b整体为研究对象,其重力方向竖直向下,而侧壁产生的压力水平,故不能增大对底部的挤压,所以F=(m a+m b)g;水平方向,由于两球处于平衡状态,所以受力也是平衡的,因此力的大小是相等的,即f1=f2,故正确答案为A.【练习2】有一个直角支架AOB,AO杆水平放置,表面粗糙,OB杆竖直向下,表面光滑.AO杆上套有小环P,OB杆上套有小环Q,两环质量均为m,两环由一根质量可忽略、不可伸长的细绳相连,并在某一位置平衡,如图所示.现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力F N和摩擦力f的变化情况是( )A.F N不变,f变大B.F N不变,f变小C.F N变大,f变大D.F N变大,f变小【解析】以两环和细绳整体为研究对象,可知竖直方向上始终受力平衡,F N=2mg不变;以Q环为研究对象,在重力、细绳拉力F和OB杆弹力N作用下平衡,如右图所示,设细绳和竖直方向的夹角为α,则P环向左移的过程中α将减小,N=mgtanα将减小.再以整体为研究对象,水平方向只有OB 杆对Q的压力N和OA杆对P环的摩擦力,作用,因此,f=N,则f也减小.故选项B正确.答案:B【例3】如右图所示,放置在水平地面上的质量为M的直角劈上有一个质量为m的物体,若物体在其上匀速下滑,直角劈仍保持静止,那么下列说法正确的是( )A.直角劈对地面的压力等于(M+m)gB.直角劈对地面的压力大于(M+m)gC.地面对直角劈没有摩擦力D.地面对直角劈有向左的摩擦力【解析】方法1:隔离法先隔离物体,物体受重力mg、斜面对它的支持力N、沿斜面向上的摩擦力f,因物体沿斜面匀速下滑,所以支持力N和沿斜面向上的摩擦力f可根据平衡条件求出.再隔离直角劈,直角劈受竖直向下的重力Mg、地面对它竖直向上的支持力N′,由牛顿第三定律得,物体对直角劈有垂直斜面向下的压力N′和沿斜面向下的摩擦力f′,直角劈相对地面有没有运动趋势,关键看f′和N′在水平方向的分量是否相等,若二者相等,则直角劈相对地面无运动趋势,若二者不相等,则直角劈相对地面有运动趋势,而摩擦力方向应根据具体的相对运动趋势的方向确定.对物体:建立坐标系如图甲所示,因物体沿斜面匀速下滑,由平衡条件得:支持力N =mgcos θ,摩擦力f =mgsin θ.对直角劈:建立坐标系如图乙所示,由牛顿第三定律得,N =N′,f =f′,在水平方向上,压力N′的水平分量N ′sin θ=mgcos θsin θ,摩擦力f′的水平分量f′cosθ=mgsinθcos θ,可见f′cosθ=N ′s inθ,所以直角劈相对地面没有运动趋势,所以地面对直角劈没有摩擦力.在竖直方向上,整体受力平衡,由平衡条件得:N 地=F′sinθ+N ′cos θ+Mg =mg +Mg.所以正确答案为:AC.方法2:整体法 直角劈对地面的压力和地面对直角劈的支持力是一对作用力和反作用力,大小相等,方向相反。
整体法、隔离法的应用【考点归纳】一、整体法与隔离法在进行受力分析时,第一步就是选取研究对象。
选取的研究对象可以是一个物体(质点),也可以是由几个物体组成的整体(质点组)。
1.隔离法:将某物体从周围物体中隔离出来,单独分析该物体所受到的各个力,称为隔离法。
隔离法的原则:把相连结的各个物体看成一个整体,如果要分析的是整体内物体间的相互作用力(即内力),就要把跟该力有关的某物体隔离出来。
当然,对隔离出来的物体而言,它受到的各个力就应视为外力了。
2.整体法:把相互连结的几个物体视为一个整体(系统),从而分析整体外的物体对整体中各个物体的作用力(外力),称为整体法。
整体法的基本原则:(1)当整体中各物体具有相同的加速度(加速度不相同的问题,中学阶段不建议采用整体法)或都处于平衡状态(即a=0)时,命题要研究的是外力,而非内力时,选整体为研究对象。
(2)整体法要分析的是外力,而不是分析整体中各物体间的相互作用力(内力)。
(3)整体法的运用原则是先避开次要矛盾(未知的内力)突出主要矛盾(要研究的外力)这样一种辨证的思想。
3.整体法、隔离法的交替运用对于连结体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可先隔离(由已知内力解决未知外力)再整体的相反运用顺序。
二、解答平衡问题常用的物理方法1.隔离法与整体法隔离法:为了弄清系统(接连体)内某个物体的受力和运动情况,一般可采用隔离法。
运用隔离法解题的基本步骤是:(1)明确研究对象或过程、状态;(2)将某个研究对象、某段运动过程或某个状态从全过程中隔离出来;(3)画出某状态下的受力图或运动过程示意图;(4)选用适当的物理规律列方程求解。
2.整体法:当只涉及研究系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
运用整体法解题的基本步骤是:(1)明确研究的系统和运动的全过程;(2)画出系统整体的受力图和运动全过程的示意图;(3)选用适当的物理规律列方程求解。
课 题小专题--整体法隔离法教学目标掌握整体法与隔离法的使用 重点、难点两方法同时运用解决问题教学内容系统运动状态相同整体法问题不涉及物体间的内力使用原则系统各物体运动状态不同隔离法问题涉及物体间的内力**** 学会对连接体的受力分析,分清内力和外力两个(或两个以上)物体组成的连接体,它们之间连接的纽带是 ,高中阶段只求 相同的问题(对于加速度不同的选择题:用对质点组...的牛顿第二.定律)。
一. 求内力:先整体后隔离在连接体内,各物体具有相同的加速度,所以,可以把连接体当成一个整体,分析它所受的外力,利用牛顿第二定律求出加速度。
再把某物体隔离,对该物体单独进行受力分析,再一次利用牛顿第二定律进行列式求解。
【例1】如图所示,光滑水平面上,AB 两物体在水平恒力1F 、2F 作用下运动。
已知21F F ,则A 施于B 的作用力的大小是多少?【例1引申】若水平面粗糙,A 、B 是同种材料制成的,在推力F 1、F 2的作用下运动,物体A 对物体B 的作用力又为多大?思路点拨 此题设置的物理情景及所运用的物理规律都很简单,第一种情景与第二种情景的区别是:第一种情景无摩擦,A 和B 一起肯定匀加速运动,而第二种情景则有摩擦,A 和B 一起可能匀速运动,也可能匀加速运动.可用整体法求出A 、B 共同运动的加速度,用隔离法求出它们之间的相互作用力——内力.正确解答 (1)地面光滑时,以A 、B 系统为研究对象,由牛顿第二定律,有F 1-F 2=(m 1+m 2)a 1 ①以B 为研究对象,B 受到A 水平向右推力F N 1,由牛顿第二定律,有F N 1-F 2=m 2a 1 ②①、②联立求解得2112211m m F m F m F N ++= (2)当地面粗糙时,若A 、B 一起匀速运动,对A 、B 组成的系统,有F 1-F 2-μ(m 1+m 2) g=0 ③以B 为研究对象,设A 对B 水平向右的推力为F N2,有 ④F N2-F 2-μm 2g=0③、④联立求解得2112212m m F m F m F N ++= 若A 、B 一起加速运动,由牛顿第二定律,有F 1-F 2-μ(m 1+m 2) g =(m 1+m 2)a 2 ⑤以A 为研究对象,设B 对A 水平向左的推力为F N 3,由牛顿第二定律有F 1-F N 3-μm 1 g= m 1a 2 ⑥⑤、⑥联立求解得2112212m m F m F m F N ++= 误点警示 因为A 、B 是同种材料制成的,它们与水平面的动摩擦因数相同,才有上述结论,若A 、B 与水平面间的动摩擦因数不同,则A 、B 间的相互作用力还与动摩擦因数有关.(请同学们自己证明) 小结点评 (1)经计算可知,不论地面是否光滑,只要A 、B 与水平面间的动摩擦因数相同且A 、B 一起运动,A 、B 间的相互作用力是一样的.(2)若把A 、B 一起放在光滑的斜面上,用F 1、F 2沿斜面方向推,结果一样.(3)若用一个力推,令F 1=0或F 2=0代入上式即可.【例2】有5个质量均为m 的相同木块,并列地放在水平地面上,如下图所示。
微元法本专题主要讲解利用微元法解决动力学问题、变力做功问题、电场和电磁感应等问题,主要分为时间微元和位移微元两大类。
微元法在近几年高考中考查频率较高,出现了分值高、难度较大的计算题。
微元法是一种非常有效的解题方法,将研究对象或研究过程分解为众多细小的“微元”,分析这些“微元”,进行必要的数学推理或物理思想处理,能够有效的简化复杂的物理问题。
考查学生的分析推理能力,应用数学方法解决物理问题能力。
时间微元微元思想是中学物理中的重要思想。
所谓微元思想,是将研究对象或者物理过程分割成无限多个无限小的部分,先取出其中任意部分进行研究,再从局部到整体综合起来加以考虑的科学思维方法。
如图所示,两根平行的金属导轨MN和PQ放在水平面上,左端连接阻值为R的电阻。
导轨间距为L,电阻不计。
导轨处在竖直向上的匀强磁场中,匀强磁场的磁感应强度为B。
一根质量为m、阻值为r的金属棒放置在水平导轨上。
现给金属棒一个瞬时冲量,使其获得一个水平向右的初速度v0后沿导轨运动。
设金属棒运动过程中始终与导轨垂直且接触良好,导轨足够长,不计一切摩擦。
求:(1)金属棒的速度为v时受到的安培力是多大?(2)金属棒向右运动的最大距离是多少?物理学研究问题一般从最简单的理想情况入手,由简入繁,逐渐贴近实际。
在研究真实的向上抛出的物体运动时,我们可以先从不受阻力入手,再从受恒定阻力研究,最后研究接近真实的、阻力变化的运动情形。
现将一个质量为m的小球以速度v0竖直向上抛出,重力加速度为g。
(1)若忽略空气阻力对小球运动的影响,求物体经过多长时间回到抛出点;(2)若空气阻力大小与小球速度大小成正比,已知小球经t时间上升到最高点,再经一段时间匀速经过抛出点时,速度大小为v1,求小球抛出后瞬间的加速度和上升的最大高度。
涉及时间微元问题的一般解题步骤:(1)本方法一般用来处理变加速直线运动的情况且物体所受的变力与速度成正比。
(2)找微元:对于这类变速运动,通常选取极短的一段时间∆t,在这段极短的时间内可认为物体的受力、速度等物理量不变。
整体法和隔离法一、整体法整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力,不考虑整体内部物体之间的相互作用力;当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法;运用整体法解题的基本步骤是:1明确研究的系统或运动的全过程;2画出系统或整体的受力图或运动全过程的示意图;3选用适当的物理规律列方程求解;二、隔离法隔离法就是把要分析的物体从相关的物体系中假想地隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其它物体的作用力;为了弄清系统连接体内某个物体的受力和运动情况,一般可采用隔离法;运用隔离法解题的基本步骤是;1明确研究对象或过程、状态;2将某个研究对象或某段运动过程、或某个状态从全过程中隔离出来;3画出某状态下的受力图或运动过程示意图;4选用适当的物理规律列方程求解;三、应用整体法和隔离法解题的方法1、合理选择研究对象;这是解答平衡问题成败的关键;研究对象的选取关系到能否得到解答或能否顺利得到解答,当选取所求力的物体,不能做出解答时,应选取与它相互作用的物体为对象,即转移对象,或把它与周围的物体当做一整体来考虑,即部分的看一看,整体的看一看;但整体法和隔离法是相对的,二者在一定条件下可相互转化,在解决问题时决不能把这两种方法对立起来,而应该灵活把两种方法结合起来使用;为使解答简便,选取对象时,一般先整体考虑,尤其在分析外力对系统的作用不涉及物体间相互作用的内力时;但是,在分析系统内各物体各部分间相互作用力时即系统内力,必须用隔离法;2、如需隔离,原则上选择受力情况少,且又能求解未知量的物体分析,这一思想在以后牛顿定律中会大量体现,要注意熟练掌握;3、有时解答一题目时需多次选取研究对象,整体法和隔离法交叉运用,从而优化解题思路和解题过程,使解题简捷明了;所以,注意灵活、交替地使用整体法和隔离法,不仅可以使分析和解答问题的思路与步骤变得极为简捷,而且对于培养宏观的统摄力和微观的洞察力也具有重要意义;例1如图1-7-7所示,F1=F2=1N,分别作用于A、B两个重叠物体上,且A、B均保持静止,则A与B之间、B与地面之间的摩擦力分别为A.1N,零 B.2N,零C.1N,1N D.2N,1N例2用轻质细线把两个质量未知小球悬挂起来,如图1-7-3所示,今对小球a持续施加一个向左偏下30o的恒力,并对小球b持续施加一个向右偏上30o的同样大的恒力,最后达到平衡,则表示平衡状态的图可能是例3四个相同的、质量均为m的木块用两块同样的木板A、B夹住,使系统静止如图1-7-4所示,木块间接触面均在竖直平面内,求它们之间的摩擦力;补:若木块的数目为奇数呢例4如图1-7-1所示,将质量为m1和m2的物体分别置于质量为M的物体两侧,三物体均处于静止状态;已知m1>m2,α<,下述说法正确的是A.m1对M的正压力大于m2对M的正压力B.m1对M的摩擦力大于m2对M的摩擦力C.水平地面对M的支持力一定等于M+m1+m2gD.水平地面对M的摩擦力一定等于零补充:若m1、m2在M上匀速下滑,其余条件不变;例5如图1-7-2,不计摩擦,滑轮重可忽略,人重600N,平板重400N,图1-7-7DA CB图1-7-3图1-7-4A图1-7-2mα图1-7-1mM如果人要拉住木板,他必须用力N;补:人对平板的压力为N,若要维持系统平衡,人的重力不得小于N;6.有一个直角支架AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡如图18,现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是:A.N不变,T变大 B.N不变,T变小C.N变大,T变大 D.N变大,T变小例7、如图7-1所示,两个完全相同重为G的球,两球与水平面间的动摩擦因数都是μ,一根轻绳两端固结在两个球上,在绳的中点施一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ;问当F 至少多大时,两球将发生滑动提示:结合整体法和隔离法列平衡方程可很快求解例8、如图7-3所示,光滑的金属球B放在纵截面为等腰三角形的物体A与竖直墙壁之间,恰好匀速下滑,已知物体A的重力是B的重力的6倍,不计球跟斜面和墙壁之间摩擦,问:物体A与水平面之间的动摩擦因数μ是多少提示:结合整体法AB和隔离法B列平衡方程求解;9、如图⒁所示,一根长绳的两端系在A、D两点,绳上B、C两点各悬挂G=10N的重物,AB、CD绳和铅垂线夹角α、β分别为30°、60°,则三段中张力大小T AB=_____,T BC=_______,T CD=_______;BC 段绳与铅垂线的夹角θ=__________;10、如图1所示,光滑的两个球,直径均为d,置于直径为D的圆桶内,且d<D<2d;在桶与球接触的三点A、B、C,受到的作用力大小分别为F1、F2、F3,如果将桶的直径加大,但仍小于2d,则F1、F2、F3的变化情况是A、F1增大,F2不变,F3增大B、F1减小,F2不变,F3减小C、F1减小,F2减小,F3增大D、F1增大,F2减小,F3减小;11、如图2所示,在光滑的水平面上,质量分别为M、m的两木块接触面与水平面的夹角为θ,用大小均为F的水平力第一次向右推A,第二次向左推B,两次推动均使A、B一起在水平面上滑动,设先后两次推动中,A、B间的作用力大小为N1与N2;则有A、N1∶N2=m∶MB、N1∶N2=mcosθ∶MsinθC、N1∶N2= M∶mD、N1∶N2=M cosθ∶m sinθ牛顿运动定律应用专题:整体法和隔离法解决连接体问题要点一整体法1.光滑水平面上,放一倾角为θ的光滑斜木块,质量为m的光滑物体放在斜面上,如图所示,现对斜面施加力F.1若使M静止不动,F应为多大2若使M与m保持相对静止,F应为多大要点二隔离法2.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的1/2,即a=g/2,则小球在下滑的过程中,木箱对地面的压力图 18为多少题型1 隔离法的应用例1如图所示,薄平板A长L=5 m,质量M=5 kg,放在水平桌面上,板右端与桌边缘相齐.在A上距其右端s=3 m处放一个质量m=2kg的小物体B,已知A与B之间的动摩擦因数μ1=,A、B两物体与桌面间的动摩擦因数μ2=,最初系统静止.现在对板A向右施加一水平恒力F,将A从B下抽出设B不会翻转,且恰使B停在桌面边缘,试求F的大小取g=10 m/s2.题型2 整体法与隔离法交替应用例2如图所示,质量m=1 kg的物块放在倾斜角θ=37°的斜面上,斜面体的质量M=2 kg,斜面与物体间的动摩擦因数μ=,地面光滑.现对斜面体施加一水平推力F,要使物体m相对斜面静止,F应为多大设物体与斜面的最大静摩擦力等于滑动摩擦力,g取10 m/s2题型3 临界问题例3如图所示,有一块木板静止在光滑足够长的水平面上,木板的质量为M=4 kg,长度为L=1 m;木板的右端停放着一个小滑块,小滑块的质量为m=1 kg,其尺寸远远小于木板长度,它与木板间的动摩擦因数为μ=,已知最大静摩擦力等于滑动摩擦力.求:1为使木板能从滑块下抽出来,作用在木板右端的水平恒力F的大小应满足的条件.2若其他条件不变,在F=28 N的水平恒力持续作用下,需多长时间能将木板从滑块下抽出. 1.如图所示,滑轮的质量不计,已知三个物体的质量关系是m1=m2+m3,这时弹簧秤的读数为T.若把物体m2从右边移到左边的物体m1上,弹簧秤的读数T将A.增大B.减小C.不变D.无法确定2.如图所示,斜面体ABC置于粗糙的水平地面上,小木块m在斜面上静止或滑动时,斜面体均保持静止不动.下列哪种情况,斜面体受到地面向右的静摩擦力A.小木块m静止在BC斜面上B.小木块m沿BC斜面加速下滑C.小木块m沿BA斜面减速下滑D.小木块m沿AB斜面减速上滑3.如图所示,在平静的水面上,有一长l=12 m的木船,木船右端固定一直立桅杆,木船和桅杆的总质量为m1=200 kg,质量为m2=50 kg的人立于木船左端,开始时木船与人均静止.若人匀加速向右奔跑至船的右端并立即抱住桅杆,经历的时间是2 s,船运动中受到水的阻力是船包括人总重的倍,g取10 m/s2.求此过程中船的位移大小.4.如图所示,在长为L的均匀杆的顶部A处,紧密套有一小环,它们一起从某高处做自由落体运动,杆的B端着地后,杆立即停止运动并保持竖直状态,最终小环恰能滑到杆的中间位置.若环在杆上滑动时与杆间的摩擦力大小为环重力的倍,求从杆开始下落到环滑至杆的中间位置的全过程所用的时间.练习一、选择题1.如图所示,一足够长的木板静止在光滑水平面上,一物块静皮肤止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零2.如图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k的轻质弹簧相连的物块A、B,质量均为m,开始时两物块均处于静止状态.现下压A再静止释放使A开始运动,当物块B 刚要离开挡板时,A的加速度的大小和方向为A.0B.2g sinθ,方向沿斜面向下C.2g sinθ,方向沿斜面向上D.g sinθ,方向沿斜面向下3.如图所示是一种升降电梯的示意图,A为载人箱,B为平衡重物,它们的质量均为M,上下均由跨过滑轮的钢索系住,在电动机的牵引下使电梯上下运动.如果电梯中人的总质量为m,匀速上升的速度为v,电梯即将到顶层前关闭电动机,依靠惯性上升h高度后停止,在不计空气和摩擦阻力的情况下,h为4.如图所示,小物块A质量为M=10kg,B质量为m=、B用一轻绳连接跨过无阻力的定滑轮且处于静止状态.A与平台间动摩擦因数μ=与最大静摩擦因数相等.现用竖直向上的力F拉A,且F由零线性增大至100N的过程中,B的下降高度恰为h=2m,A未与滑轮相碰则上述过程中的最大速度为g=10m/s2.A.1m/s B.2m/s C.3m/s D.05.如图所示,某斜面体由两种材料拼接而成,BC界面平行于底面DE,两侧面与水平面夹角分别为30°和60°.已知一物体从A点静止下滑,加速至B点,匀速至D点.若该物块静止从A点沿另一侧面下滑,则有A.一直加速运动到E,但AC段的加速度比CE段小B.AB段的运动时间大于AC段的运动时间C.将加速至C点,匀速至E点D.通过C点的速率等于通过B点的速率6.一条不可伸长的轻绳跨过质量可忽略不计的定滑轮,绳的一端系一质量m=15kg的重物.重物静止于地面上,有一质量m1=10kg的猴子,从绳的另一端沿绳向上爬,如图所示,不计滑轮摩擦,在重物不离开地面的条件下,猴子向上爬的最大加速度为g取10m/s2A.25m/s2B.5m/s2C.10m/s2D.15m/s27.如图a所示,水平面上质量相等的两木块A、B用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图b所示.研究从力F刚作用在木块A的瞬间到木块B刚离开地面的瞬间这个过程,并且选定这个过程中木块A的起始位置为坐标原点,则下图所示的图象中可以表示力F和木块A的位移x之间关系的是8.如图所示的弹簧秤质量为m,挂钩下面悬挂一个质量为m0的重物,现用一方向竖直向上的外力F拉着弹簧秤,使其向上做匀加速直线运动,则弹簧秤的示数与拉力F之比为A.m0:mB.m:m0C.m0:m+m0D.m:m-m09.如图所示,一根轻质弹簧上端固定,下端挂一质量为m0的秤盘,盘中有物体质量为m,当盘静止时,弹簧伸长为l,现向下拉盘使弹簧再伸长Δl后停止,然后松开手,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于A.1+错误!m+m0gB.1+错误!mgmgm+m0g10.如图所示,光滑水平面上放置质量分别为m 和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为D.3μmg二、论述、计算题11.如图所示,把长方体分割成A、B两斜面体,质量分别为m A和m B,切面与水平桌面成θ角.两斜面体切面光滑,桌面也光滑.求水平推力在什么范围内,A不会相对B滑动12.如图所示,在光滑的桌面上叠放着一质量为m A=的薄木板A和质量为m B=3kg的金属块的长度L=上有轻线绕过定滑轮与质量为m C=的物块C 相连.B与A之间的动摩擦因数μ=,最大静摩擦力可视为等于滑动摩擦力.忽略滑轮质量及与轴间的摩擦.起始时令各物体都处于静止状态,绳被拉直,B位于A的左端如图,然后放手,求经过多长时间B从A的右端脱离设A的右端距离滑轮足够远,取g =10m/s2.13.一个质量为的小球用细线吊在倾角θ=53°的斜面顶端,如图所示,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.g取10m/s2。
隔离法与整体法(系统牛二)整体法和隔离法的区别在于选取的研究对象不同。
在研究任何物理问题时,我首先必须明确研究对象,而选择研究对象时就有整体法和隔离法之分。
如能正确、灵活运用整体法和隔离法,解题就会轻松自如。
什么是整体法?什么情况下可用整体法?1整体法就是对物理问题的整个系统或整个过程进行研究的方法。
2如果由几个物体组成的系统具有相同的加速度,一般可用整体法求加速度。
(但整体法不能求出系统内力)3如果求解的物理问题仅涉及某过程的始末两状态,一般可以把整个过程作为研究对象用整体法求解。
(但整体法不能求出此过程中间的状态量)什么是隔离法?什么情况下可用隔离法?1如果求解对象是系统的内力,一般要用隔离法把某一物体从系统中分离出来。
2如果求解对象是某一过程中间的状态量,一般要把此状态从这一过程中分离出来下面我们通过一些实例来分析讨论;例1;如图1-2所示,小球A和B的质量分别为m1和m2,带电量分别为+q和-q,用两根绝缘轻质细线悬挂于O点并静止。
现突然出现一个水平向左的匀强电场,场强是E。
问:两球再次静止时上端的细线对A 球的拉力是多少?拓展1;下面的选择题大家一定很熟悉:甲图所示的两小球静止,对两球分别作用与水平面成30°的 等大反向的外力,再次静止时乙图中哪张正确?30.31.32.33.练习2(2002年全国理综)有三根长度皆为l =1.00 m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板上的 O 点,另一端分别挂有质量皆为m =1.00×10-2 kg 的带电小球A 和B ,它们的电量分别为一q 和+q ,q=1.00×10-7C 。
A 、B 之间用第三根线连接起来。
空间中存在大小为E =1.00×106N/C 的匀强电场,场强方向沿水平向右,平衡时 A 、B 球的位置如图所示。
现将O 、B 之间的线烧断,由于有空气阻力,A 、B 球最后会达到新的平衡位置。
一、什么是整体法与隔离法(一).整体法与隔离法的基本定义整体法——在研究物理问题时,当所研究的对象不是一个物体,而是有两个或两个以上物体构成的系统时,若不需要求出物体之间的相互作用力,可以将整个系统作为一个整体来研究;或者,一个物体的运动是由多个运动过程所组成,可以适当的组合某些运动过程或整个过程,以整体的运动情况来进行求解。
这两种情况所采取的方法均叫整体法。
隔离法——将系统中所研究的某个物体与其他物体隔离开,研究这个物体受其他物体对它的作用力;或者当物体运动是由多个运动过程组合而成时,逐个研究其运动过程,这两种情况所采取的方法叫做隔离法。
(二).整体法与隔离法在物理学发展中的作用高考越来越注重考能力,从一定意义上说方法是能力的基础。
但高考不会纯粹考方法。
方法的考查一般会采取隐性的形式,渗透在具体的物理问题中。
大纲明确指出:“要重视概念和规律的应用,使学生学会运用物理知识解释现象,分析和解决实际问题”,这就是说,不仅要运用物理知识解决实际问题,而且要有意识的领悟物理解题的思维方法。
物理学是一门研究物质世界及其运动规律的自然科学。
物理学的最小研究对象是数量级约为10-15m的微观粒子,最大研究对象是数量级约为(1026—1027)m 的宇宙。
共跨越了42—43个数量级,可以说物理学的研究范围涉及到了我们所认识到的整个世界。
那么我们又如何从如此繁杂、庞大的体系中灵活恰当的选取我们研究的对象,就成了我们方便、简捷解决问题的前提。
整体法和隔离法的掌握正是培养我们具备这种素质的良好训练。
例如,使用整体法时,不必考虑所选系统物体间的相互作用,或不用考虑各个运动阶段的详细情况,运用整体法时,由于体系中的内力都是成对出现,因此其合力必为零,这样就减少了物理量的个数,从而简化了方程;忽略无关因素,抓住主要矛盾,这样可以使复杂问题简单化。
二、整体法和隔离法的特征(一).整体法与隔离法现象表现运用整体法解决问题的思维特点,在于把物理客体作为一个整体,以整体或全过程为研究对象,从整体上把握物理现象的本质和规律,这种思维叫做整体思维,又叫做系统思维。
物理总复习:正交分解法、整体法和隔离法编稿:李传安 审稿:张金虎【考纲要求】1、理解牛顿第二定律,并会解决应用问题;2、掌握应用整体法与隔离法解决牛顿第二定律问题的基本方法;3、掌握应用正交分解法解决牛顿第二定律问题的基本方法;4、掌握应用合成法解决牛顿第二定律问题的基本方法。
【考点梳理】要点一、整体法与隔离法1、连接体:由两个或两个以上的物体组成的物体系统称为连接体。
2、隔离体:把某个物体从系统中单独“隔离”出来,作为研究对象进行分析的方法叫做隔离法(称为“隔离审查对象”)。
3、整体法:把相互作用的多个物体视为一个系统、整体进行分析研究的方法称为整体法。
要点诠释: 处理连接体问题通常是整体法与隔离法配合使用。
作为连接体的整体,一般都是运动整体的加速度相同,可以由整体求解出加速度,然后应用于隔离后的每一部分;或者由隔离后的部分求解出加速度然后应用于整体。
处理连接体问题的关键是整体法与隔离法的配合使用。
隔离法和整体法是互相依存、互相补充的,两种方法互相配合交替使用,常能更有效地解决有关连接体问题。
要点二、正交分解法当物体受到两个以上的力作用而产生加速度时,常用正交分解法解题,多数情况下是把力正交分解在加速度方向和垂直加速度方向上,有:x F ma =(沿加速度方向) 0y F = (垂直于加速度方向)特殊情况下分解加速度比分解力更简单。
要点诠释:正确画出受力图;建立直角坐标系,特别要注意把力或加速度分解在x 轴和y 轴上;分别沿x 轴方向和y 轴方向应用牛顿第二定律列出方程。
一般沿x 轴方向(加速度方向)列出合外力等于ma 的方程,沿y 轴方向求出支持力,再列出f N μ=的方程,联立解这三个方程求出加速度。
要点三、合成法若物体只受两个力作用而产生加速度时,这是二力不平衡问题,通常应用合成法求解。
要点诠释:根据牛顿第二定律,利用平行四边形法则求出的两个力的合外力方向就是加速度方向。
特别是两个力相互垂直或相等时,应用力的合成法比较简单。
【典型例题】类型一、整体法和隔离法在牛顿第二定律中的应用【高清课堂:牛顿第二定律及其应用1例4】例1、如图所示,质量为2m 的物块A ,质量为m 的物块B ,A 、B 两物体与地面的摩擦不计,在已知水平力F 的作用下,A 、B 一起做加速运动,A 对B 的作用力为________。
【答案】 3F 【解析】取A 、B 整体为研究对象,与地面的摩擦不计,根据牛顿第二定律由于A 、B 间的作用力是内力,所以必须用隔离法将其中的一个隔离出来,内力就变成外力了,就能应用牛顿第二定律了。
设A 对B 的作用力为N ,隔离B, B 只受这个力作用33F F N ma m m ==⋅=。
【总结升华】当几个物体在外力作用下具有相同的加速度时,就选择整体法,要求它们之间的相互作用力,就必须将其隔离出来,再应用牛顿第二定律求解。
此类问题一般隔离受力少的物体,计算简便一些。
可以隔离另外一个物体进行验证。
举一反三【变式1】如图所示,两个质量相同的物体A 和B 紧靠在一起放在光滑水平桌面上,如果它们分别受到水平推力1F 和2F ,且12F F >,则A 施于B 的作用力的大小为( )A . 1FB .2FC .121()2F F +D . 121()2F F - 【答案】 C【解析】设两物体的质量均为m ,这两物体在1F 和2F 的作用下,具有相同的加速度为122F F a m-=,方向与1F 相同。
物体A 和B 之间存在着一对作用力和反作用力,设A 施于B 的作用力为N (方向与1F 方向相同)。
用隔离法分析物体B 在水平方向受力N 和2F ,根据牛顿第二定律有2N F ma -= 2121()2N ma F F F ∴=+=+ 故选项C 正确。
【变式2】如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小【答案】 A【解析】考查牛顿运动定律处理连接体问题的基本方法。
对于多个物体组成的物体系统,若系统内各个物体具有相同的运动状态,应优先选取整体法分析,再采用隔离法求解。
取A 、B 系统整体分析有 ()()A B A B A f m m g m m a μ=+=+地, a g μ=B 与A 具有共同的运动状态,取B 为研究对象,由牛顿第二定律有:AB B B f m g m a μ===常数物体B 做速度方向向右的匀减速运动,故而加速度方向向左。
例2、质量为M 的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t 内前进的距离为s 。
耙地时,拖拉机受到的牵引力恒为F ,受到地面的阻力为自重的k 倍,所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变。
求:(1)拖拉机的加速度大小。
(2)拖拉机对连接杆的拉力大小。
(3)时间t 内拖拉机对耙做的功。
【答案】(1)22s t (2)212[()]cos s F M kg t θ-+ (3)22[()]s F M kg s t -+ 【解析】(1)拖拉机在时间t 内匀加速前进s ,根据位移公式212s at = ① 变形得 22s a t= ② (2)要求拖拉机对连接杆的拉力,必须隔离拖拉机,对拖拉机进行受力分析,拖拉机受到牵引力、支持力、重力、地面阻力和连杆拉力T ,根据牛顿第二定律cos F kMg T Ma θ--= ③联立②③变形得 212[()]cos s T F M kg tθ=-+ ④ 根据牛顿第三定律连杆对耙的反作用力为212[()]cos s T T F M kg tθ'==-+ ⑤ 拖拉机对耙做的功:cos W T s θ'= ⑥ 联立④⑤解得22[()]s W F M kg s t =-+⑦ 【总结升华】本题不需要用整体法求解,但在求拖拉机对连接杆的拉力时,必须将拖拉机与耙隔离开来,先求出耙对连杆的拉力,再根据牛顿第三定律说明拖拉机对连接杆的拉力。
类型二、正交分解在牛顿二定律中应用物体在受到三个或三个以上不同方向的力的作用时,一般都要用正交分解法,在建立直角坐标系时,不管选哪个方向为x 轴的正方向,所得的结果都是一样的,但在选坐标系时,为使解题方便,应使尽量多的力在坐标轴上,以减少矢量个数的分解。
例3、如图所示,质量为0. 5 kg 的物体在与水平面成30o角的拉力F 作用下,沿水平桌面向右做直线运动.经过,速度由0. 6 m/s 变为0. 4 m/s ,已知物体与桌面间的动摩擦因数μ=,求作用力F 的大小。
【答案】0.43F N B【解析】由运动学公式2202v v ax -= 得 22200.2/2v v a m s x -==- 其中,负号表示物体加速度与速度方向相反,即方向向左。
对物体进行受力分析,如图所示,建立直角坐标系,把拉力F 沿x 轴、y 轴方向分解得cos30x F F =o sin30y F F =o在x 方向上,=cos30N F F F ma μ-=o 合 ①在y 方向上,=0F 合,即 sin 30N F F mg +=o ②联立①②式,消去N F 得 cos30(sin 30)F mg F ma μ--=o o所以 ()0.43cos30+sin 30m a g F N μμ+=o o B 【总结升华】对不在坐标轴方向的力要正确分解,牛顿第二定律要求的是合外力等于ma ,一定要把合外力写对。
不要认为正压力就等于重力,当斜向上拉物体时,正压力小于重力;当斜向下推物体时,正压力大于重力。
举一反三【变式1】 如图所示,一个人用与水平方向成30θ=o 角的斜向下的推力F 推一个质量为20 kg 的箱子匀速前进,如图(a )所示,箱子与水平地面间的动摩擦因数为μ=.求:(1)推力F 的大小;(2)若该人不改变力F 的大小,只把力的方向变为与水平方向成30o 角斜向上去拉这个静止的箱子,如图(b )所示,拉力作用 s 后撤去,箱子最多还能运动多长距离(210/g m s =)。
(2)2.88m 【答案】 (1) F=120 N【解析】 (1)在图(a )情况下,对箱子有1sin F mg N θ+= cos F f θ=1f N μ= 由以上三式得F=120 N(2)在图(b )情况下,物体先以加速度1a 做匀加速运动,然后以加速度2a 做匀减速运动直到停止。
对匀加速阶段有 21cos F N ma θμ-= 2sin N mg F θ=- 111v a t =撤去拉力后匀减速阶段有32N ma μ= 3N mg = 2122v as = 解得 2 2.88s m =【变式2】质量为m 的物体放在倾角为α的斜面上,物体和斜面的动摩擦因数为μ,如沿水平方向加一个力F ,使物体沿斜面向上以加速度a 做匀加速直线运动(如图所示),则F 为多少【答案】(sin cos )cos sin m a g g F αμααμα++=- 【解析】本题将力沿平行于斜面和垂直于斜面两个方向分解,分别利用两个方向的合力与加速度的关系列方程。
(1)受力分析:物体受四个力作用:推力F 、重力mg 、支持力N F ,摩擦力f F 。
(2)建立坐标:以加速度方向即沿斜向上为x 轴正向,分解F 和mg (如图所示):(3)建立方程并求解x 方向: cos sin f F mg F ma αα--=y 方向: cos sin 0N F mg F αα--= 三式联立求解得 (sin cos )cos sin m a g g F αμααμα++=- 【变式3】如图(a)质量m =1kg 的物体沿倾角=37的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速度a 与风速v 的关系如图(b)所示。
求:(1)物体与斜面间的动摩擦因数;(2)比例系数k 。
(210/g m s =sin 530.8=o ,cos530.6=o ) 【答案】(1)0.25μ= (2)0.84/k kg s =【解析】 (1)对初始时刻:0sin cos mg mg ma θμθ-= ○1 由图读出204/a m s = 代入○1式, 解得:0sin 0.25cos g ma g θμθ-==; (2)对末时刻加速度为零: sin cos 0mg N kv θμθ--= ○2 又 cos sin N mg kv θθ=+ 由图得出此时5/v m s =代入○2式解得: k =mg (sin -cos )v (sin +cos=s 。
分解加速度:分解加速度而不分解力,此种方法一般是在以某种力或合力的方向为x 轴正向时,其它力都落在两坐标轴上而不需再分解。