20秋西南大学[0350]《数学教育学》作业辅导资料
- 格式:docx
- 大小:163.25 KB
- 文档页数:15
西南大学网络与继续教育学院课程考试试题卷
类别:网教2020年5月
课程名称:数学教育学(方法论)【0350】
A卷大作业满分:100 分
要答案:wangjiaofudao
一、简述题(共计30分)
1. 简述教学评价对数学教学的功能。
(10分)
2. 简述数学教学原则中的“渗透数学思想方法原则”(20分)
二、实践与综合运用题(共计70分)
(一)选择以下知识点之一(共计30分)
分数的概念(小学)
平方差公式(初中)
函数的单调性(高中)
(1)分析教材,指出该知识点渗透了哪些数学思想方法(10分)
(2)分析学生学习该知识点的思维障碍或者容易出现的典型错误及原因(10分)(提示:该知识点的“思维障碍”与“典型错误”可选择其中之一进行分析), (3)提出相应的教学策略(10分)
(没有固定评分标准,根据回答情况酌情给分)(二)根据所提出的教学策略,设计简要的教学过程(40分)
答题提示:教学过程设计具有整体性,各环节衔接自如,结构紧凑;在渗透数学思想方法、突破学生思维障碍或纠正典型错误上与上述(一)的回答有一定的联系。
(没有固定评分标准,根据回答情况酌情给分)。
期末作业考核《数学教育学》满分100分一、名词解释(每题5分,共20分)1.发现学习答:发现学习是指学习的主要内容未直接呈现给学习者,只呈现了有关线索或例证。
学习者必须经历一个发现的过程,自己得出结论或找到问题的答案。
2.数学问题解决答:“问题解决”是指综合地、创造性运用各种数学知识和方法去解决那种并非单纯练习题式的问题,包括实际问题和源于数学内部的问题。
3.数学技能答:数学技能是在数学学习过程中,通过训练而形成的一种动作或心智的活动方式。
4. 接受学习答:接受学习指学习的全部内容是以定论的形式呈现给学习者。
二、简答题(每题10分,共50分)1.简述高中数学课程目标变化的特点。
答:高中数学课程目标的新变化表现为:①突出体现了以“学生发展为中心”的理念②“双基”仍然是课程的主要目标③更加注重过程性目标④进一步强调了数学的人文价值2.简述影响数学课程内容的因素。
答:影响中学数学课程设置的因素有:社会因素、数学因素、学生因素、教师因素、教育理论因素、课程的历史因素。
3.简述我国这次数学教育改革的特点。
答:国际数学课程的改革特点:(1)注重数学应用(2)重视问题解决(3)注重数学思想方法(4)注重数学交流(5)注重培养能力(6)重视数学美育(7)注重培养自信心(8)重视计算器和计算机的使用4.简述数学认知结构的特点答:学生的数学认知结构有其固有的特点是:第一,数学认知结构是数学知识结构和学生的心理结构相互作用的产物。
第二,数学认知结构是学生头脑中已有数学知识、经验的组织。
第三,数学认知结构可以在各种抽象水平上来表征数学知识。
第四,每一个学生的认知结构各有特点,学生的心理素质存在差异,决定了每个学生的认知方式和认知水平也有明显差异,因而他们的认知结构必然要具有自己的个性特点。
第五,数学认知结构不是一种消极的组织,而是一种积极的组织,它在数学认知活动中,乃至一般的认知活动中发挥着作用。
第六,数学认知结构是在数学认知活动中形成和发展起来的、不断发展和完善的动态组织。
0350 20202单项选择题1、理性思维的含义包括的四个方面是1.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理违背逻辑。
2.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;合情推理需要逻辑推理。
3.博采众长,不独断猜想;尊重群众,不采纳少数意见;思辨分析,不混淆是非;严谨理,不违背逻辑。
4.合作交流,不独自思考;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理违背逻辑。
2、数学史教育应该遵循的四个原则是1. B. 科学性、实用性、趣味性、广泛性2.普及性、实用性、趣味性、广泛性3.科学性、实用性、趣味性、民族性4.科学性、教育性、趣味性、广泛性3、《周易》对中国古代数学发展的影响主要表现在以下三个方面1.第一,易数在各领域的广泛应用和发展;第二,《周易》对中国古代数学家知识结构响;第三,《周易》对中国古代数学思维方式的影响。
2.第一,提出了勾股定理;第二,阐述了“割圆术”;第三,提出了“杨辉三角”3.第一,易数在各领域的广泛应用和发展;第二,阐述了“割圆术”;第三,算命4.第一,提出了勾股定理;第二,《周易》对中国古代数学家知识结构的影响;第三,易》对中国古代数学思维方式的影响。
4、中学数学教学中最重要的三种基本思想方法是1. F. 函数思想、方程思想和数形结合思想2.化归思想、方程思想和概率统计思想3.函数思想、算法思想和概率统计思想4.函数思想、方程思想和概率统计思想5、古希腊文明的数学标志性著作是1.《高观点下的初等数学》2.《几何原本》3.《九章算术》4.《怎样解题》6、波利亚认为中学数学教育的根本任务是1.教会学生解题2.教会学生思考3.教会学生应用4.教会学生猜想7、.在数学教学成为一门科学学科的历史发展过程中,有两门学科对其有过根本性的影响,它们是1. C. 数学和心理学2.数学与物理学3.教育学与数学4.教育学与心理学8、决定数学教学目标的主要依据是1.学生的年龄特征2.学生的情感因素3.教师的教学能力4.教材的难度9、波利亚在“怎样解题表”中,将解题过程分为1. E. 了解问题、拟定计划、实现计划三大步骤2.了解问题、拟定计划、实现计划和回顾四大步骤3.读题、解题、反思三大步骤4.读题、解题过程、作答三大步骤10、中国古代数学的标志性著作是1.《九章算术》2.《几何原本》3.《周髀算经》4.《易经》11、《全日制义务教育数学课程标准(实验稿)》的基本理念给义务教育数学课程的定位是1. A. 基础性、普及性与灵活性2. D. 基础性、普及性与发展性3.选择性、基础性与操作性4.基础性、选择性与发展性12、中国古代数学教育的主要目的是1.选拔人才2.经世致用3.普及算法4.思维训练多项选择题13、数学命题的教学设计的重点是1.结论的发现过程2.推导的思考过程3.熟记命题的方法4.弄清命题的条件与结论14、中国数学双基教学的特征是1.重复练习依赖变式获得提升2.记忆通向理解直至形成直觉3.运算速度赢得思维效率4.重视逻辑演绎保持严谨准确15、“提高课堂效益的初中数学教改实验”的指导思想、原则和方法是1.积极前进,循环上升2.开门见山,适当集中3.淡化形式,注重实质4.先做后说,师生共作16、美籍匈牙利数学教育家波利亚关于解数学解题理论的代表作是1.《数学的发现》2.《中小学生数学能力心理学》3.《数学与猜想》4.《怎样解题》17、构建数学课堂文化最重要的因素是1.创造2.安静3.合作4.民主18、弗赖登塔尔关于现实数学教育中的数学化的两种形式是1.将数学问题转化为实际应用问题2.将数学概念还原成为现实生活实例3.实际问题转化为数学问题的数学化,即发现实际问题中的数学成分,并对这些成分作化处理。
期末作业考核《数学教育学》满分100分一、名词解释(每题5分,共20分)1.数学认知结构答:数学认知结构就是学生头脑里的数学知识按照自己的理解深度、广度,结合着自己的感觉、知觉、记忆、思维、联想等认知特点,组合成的一个具有内部规律的整体结构。
2.中学数学课程答:.中学数学课程是按照一定社会的要求、教学目的和培养目标,根据中学生身心发展规律,从前人已经获得的数学知识中间,有选择地组织起来的、适合社会需要的、适合教师教学的、经过教学法加工的数学学科体系。
3.数学教学模式答:数学教学模式是实施数学教学的一般理论,是数学教学思想与教学规律的反映,它具体规定了教学过程中师生双方的活动、实施教学的程序、应遵循的原则及运用的注意事项,成为师生双方教学活动的指南。
它可以使教师明确教学先做什么后做什么,先怎样做后怎样做等一系列具体问题,把比较抽象的理论化为具体的操作性策略,教师可以根据教学的实际需要而选择运用。
4.数学课程体系答:数学课程体系可分为直线式的和螺旋式的两种。
所谓直线式体系,就是每一内容一讲到底,一下子就达到该内容的最高要求。
前苏联的数学教材基本上是直线式体系,我国过去在教材编排上学习苏联,所以现行教材还留有苏联教材的痕迹,基本上是直线式的,所谓螺旋式体系,就是某一内容经过几个循环,逐渐加深发展。
例如,现在正在全国试验的、国家教委组织的《中学数学实验教材》基本上是螺旋式的,这套教材在内容处理上,不是一通到底,而是分段循环地进行的。
又如,现行的数学统编教材的函数内容处理,就是采用螺旋式的,函数这一内容在中学数学阶段分几步讲授,而每一步都有所发展。
二、简答题(每题10分,共50分)1.举例说明数学具有高度的抽象性。
答:数学具有严谨的逻辑性和高度的抽象性及应用的广泛性。
数学教学侧重于培养学生分析、比较和综合能力;抽象、概括能力;判断、推理能力;学生的迁移类推能力;引导学生揭示知识间的联系,探索规律、总结规律;培养学生思维的灵活性;培养学生学习数学的兴趣,良好的思想品德和学习习惯。
1、克莱因对数学教育改革有哪些建议?答:1)数学教师应具备较高的数学观点,只有观点高了,事物才能显明了而简单;2)教育应该是发生性的,所以空间的直观,数学上的应用,函数的概念是非常必要的;3)应该用综合起来的一般概念和方法来解决问题,而不要去深钻那种特殊的解法;4)应该把算术、代数和几何学方面的内容,用几何的形式以函数为中心观念综合起来。
2、数学家和心理学家对数学教育的影响主要表现在哪些方面?答:数学家对数学教育的影响主要体现在教学内容的选取和安排上;心理学家的影响主要体现在研究方法指导上。
3、国际上数学教育研究热点的演变答:1972年,在第二届国际数学教育大会上,GeoffreyHowson称数学教育还只是处在形成期,就像一个孩子,一个青少年,但是,现在我们可以称数学教育为年轻人了,可以考虑和探讨数学教育的发展、特点和成就了。
4、数学发展史划分为哪四个阶段?答:1)以《几何原本》为代表的古希腊的公理化数学(公元前700-300);2)以牛顿发明微积分为代表的无穷小算法数学(17-18世纪);3)以希尔伯特为代表的现代公理化数学(19-20世纪中叶);4)以现代计算机技术为代表的信息时代数学(20世纪中叶-今天)。
5、20世纪数学观有什么变化?答:20世纪布尔巴基学派的“结构主义”数学,更把形式主义数学推向新的高峰。
6、你如何认识数学的文化本质?答:我们应该从互动中认识数学的文化本质,并且在数学教学中揭示数学的文化意义,使学生受到深刻的文化感染。
1)数学是人类文明的火车头;2)数学打上了人类各个文化发展的烙印;3)数学应从社会文化中汲取营养;4)数学思维方式对人类文化的独特贡献;5)数学成为描述自然和社会的语言7、简述我国数学教学理念的发展答:1)由关心教师的"“教”转向也关注学生的“学”;2)从“双基”与“三大能力”的观点的形成,发展到更宽广的能力关和素质观;3)从听课、阅读、演题,到提倡实验、讨论、探索的学习方式;4)从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用。
[0350]《数学教育学》(方法论)第一次[论述题]1.简述二十世纪来,我国数学教育观的变化。
2.按以下小题顺序要求,自拟课题设计一节渗透分类思想方法的数学教案。
1)课题,教学目标以及重、难点;2)渗透分类思想方法的教学过程;3)设计意图说明。
参考答案:1.参考答案:随着时代的发展和科学技术的进步,人们的学科教育观念也在变化。
二十世纪来我国数学教育观不断更新,主要表现在以下几个方面:(1) 由关心教师的"教”转向也关注学生的"学”;(2) 从"双基”与"三力”观点的形成,发展到更宽广的能力观和素质观;(3)从听课、阅读、演题,到提倡实验、讨论、探索的学习方式;;(4)从看重数学的抽象和严谨,到关注数学文化、数学探究和数学应用。
2.答题提示:没有固定答案,根据回答情况酌情给分。
但应明确:(1)课题,教学目标以及重、难点;(2)教学过程应渗透分类思想方法;(3)说明设计意图。
[判断题]美籍匈牙利数学教育家波利亚关于解数学解题理论的三本代表作为:《发生认识论导论》、《中小学生数学能力心理学》和《合情推理》。
参考答案:错误[判断题]中国古代数学教育的主要目的是为了训练心智.参考答案:错误[判断题]中国古代数学的标志性著作是《九章算术》.参考答案:正确[判断题]杜宾斯基认为,学生学习数学概念是要进行心理建构的,其经历的四个阶段是:操作阶段→过程阶段→对象阶段→概型阶段。
参考答案:正确第二次[论述题]1.述《全日制义务教育数学课程标准(实验稿)》在修改时注意处理了哪四个基本关系?2. 简述布鲁纳的学科结构论的基本思想。
参考答案:1.参考答案:《全日制义务教育数学课程标准(实验稿)》在修改时注意处理了以下的四个关系:第一,关注过程和结果的关系;第二,学生自主学习和教师讲授的关系;第三,合情推理和演绎推理的关系;第四,生活情境和知识系统性的关系。
2.参考答案:布鲁纳曾经提出任何学科的基本结构都可以用某种形式教给任何年龄的任何人,这指出了学科基本结构的重要性。
(0350)《数学教育学》复习思考题答案一、填空题1、《国家基础教育课程改革指导纲要》指出国家课程标准既是国家管理和评价课程的基础,也是教材编写、教学、评估和考试命题的依据。
2、全日制义务教育《数学课程标准》(实验稿)对数学的界定是:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
3、义务教育的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。
4、我国普通高中《数学课程标准》在课程目标中对高中生提出了:提高空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力的要求。
5、高中学生的一般数学能力。
包括以下6类:学习新的数学知识的能力、提出问题和分析解决数学问题的能力、数学探究和数学创新的能力、数学应用和数学实践的能力、运用现代信息技术解决数学问题的能力,以及数学交流的能力。
6、2000年美国数学教师协会发布的《数学课程标准》中提到的六项数学能力是:数的运算能力;问题解决的能力;逻辑推理能力;数学联结能力;数学交流能力;数学表示能力。
7、建构主义的基本观点:知识不是被动接受的,而是由认知主体主动建构的。
8、建构主义教学观的特征:问题与情景;协作与会话;意义与经验;自主与反省。
9、建构主义学习观强调认知主体的不可替代性;个性化学习;合作交流;社会交互作用。
10、美籍匈牙利数学教育家波利亚关于解数学题理论的三本代表作为:《怎样解题》、《数学的发现》和《合情推理》。
11、前苏联克鲁捷斯基的权威著作《中小学生数学能力心理学》,确定数学能力的组成部分:把数学材料形式化;概括数学材料发现共同点;运用数学符号运算;连贯而有节奏的逻辑推理;缩短推理结构,进行简洁推理;逆向思维能力;思维的灵活性;数字记忆;空间概念。
12、《米兰大纲》的要点为:1)教材的选择和安排应适合学生心理的自然发展;2)融合各个数学学科,密切数学与其他学科的联系;3)不过分强调形式化的训练,应重视应用;4)以函数思想和空间观察能力作为数学教学的基础。
第四,后进生完成作业的速度比较慢,好学生10分钟能做完的作业,他们可能20分钟也做不完。
这次作业还没完,新作业又布置下来了,慢慢地,作业堆成了山,他们就会消极怠工了,抄袭别人的作业或是根本就不写。
教师给后进生留的作业可以比其他同学少一些,使他们能与别的同学同时完成,但是一定要保证质量。
随着后进生学习的不断进步,学习能力的不断增强,教师再逐渐让他们与其他同学写同样多的作业。
教师还要少留重复性的作业,如把一个字或一个词写10遍20遍之类的,学生会写了就行了。
教师要保证后进生有充足的休息和娱乐的时间,做到头脑清醒,劳逸结合,提高学习效率。
(二)在生活上关心后进生,在思想上尊重后进生后进生其实更加渴望得到教师的关爱。
教师的爱能拉近与后进生心灵上的距离,是转化后进生的灵丹妙药。
在生活中,教师要关心后进生的冷暖,经常和他们谈心,了解他们的思想动态,使他们感觉到教师亲近他们、喜欢他们。
古语说:“亲其师则信其道”,学生喜欢这个老师了,就爱上这位老师的课,有了兴趣,成绩自然会提高。
在思想上,教师要尊重后进生。
后进生的心理自控能力较弱,在学习和纪律上经常出错和违纪,对此,教师要正确理解、引导,毕竟后进生的转化过程需要时间,不能急于求成,粗暴批评。
(三)及时与家长沟通,使学校教育与家庭教育结合起来教师对后进生的转化应该是全方位的,既有学习上的,也有生活上的、思想上的。
教师要经常与学生家长联系,取得家长的支持,请家长配合,做好后进生的转化工作,把学习教育与家庭教育结合起来,提高转化的效率。
请家长在家中督促学生的学习,指导学生的作业,教育学生尊敬老人、体贴父母、热爱劳动等。
3.数学后进生的转化案例。
(30分)答:我班有个学生叫周哲。
这期我刚接这个班时,他上课无精打采,要么搞小动作,要么影响别人学习,提不起一点学习的兴趣;下课追逐打闹,喜欢动手动脚;作业不做,即使做了,也是胡乱写的,而且书写相当潦草,我第一次测试,数学只打了43分。
0350 20202
单项选择题
1、
理性思维的含义包括的四个方面是
1.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理
违背逻辑。
2.独立思考,不迷信权威;尊重事实,不感情用事;思辨分析,不混淆是非;合情推理
需要逻辑推理。
3.博采众长,不独断猜想;尊重群众,不采纳少数意见;思辨分析,不混淆是非;严谨
理,不违背逻辑。
4.合作交流,不独自思考;尊重事实,不感情用事;思辨分析,不混淆是非;严谨推理
违背逻辑。
2、数学史教育应该遵循的四个原则是
1. B. 科学性、实用性、趣味性、广泛性
2.普及性、实用性、趣味性、广泛性
3.科学性、实用性、趣味性、民族性
4.科学性、教育性、趣味性、广泛性
3、
《周易》对中国古代数学发展的影响主要表现在以下三个方面
1.第一,易数在各领域的广泛应用和发展;第二,《周易》对中国古代数学家知识结构
响;第三,《周易》对中国古代数学思维方式的影响。
2.第一,提出了勾股定理;第二,阐述了“割圆术”;第三,提出了“杨辉三角”
3.第一,易数在各领域的广泛应用和发展;第二,阐述了“割圆术”;第三,算命
4.第一,提出了勾股定理;第二,《周易》对中国古代数学家知识结构的影响;第三,
易》对中国古代数学思维方式的影响。
4、
中学数学教学中最重要的三种基本思想方法是
1. F. 函数思想、方程思想和数形结合思想
2.化归思想、方程思想和概率统计思想
3.函数思想、算法思想和概率统计思想
4.函数思想、方程思想和概率统计思想
5、古希腊文明的数学标志性著作是
1.《高观点下的初等数学》
2.《几何原本》
3.《九章算术》
4.《怎样解题》
6、波利亚认为中学数学教育的根本任务是
1.教会学生解题
2.教会学生思考
3.教会学生应用
4.教会学生猜想
7、.在数学教学成为一门科学学科的历史发展过程中,有两门学科对其有过根本性的影响,它们是
1. C. 数学和心理学
2.数学与物理学。