新编材料力学第八版习题答案
- 格式:ppt
- 大小:8.46 MB
- 文档页数:24
完整版材料⼒学性能课后习题答案整理材料⼒学性能课后习题答案第⼀章单向静拉伸⼒学性能1、解释下列名词。
1弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。
2、滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就就是应变落后于应⼒的现象。
3、循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。
4、包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。
5、解理刻⾯:这种⼤致以晶粒⼤⼩为单位的解理⾯称为解理刻⾯。
6.塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。
脆性:指⾦属材料受⼒时没有发⽣塑性变形⽽直接断裂的能⼒韧性:指⾦属材料断裂前吸收塑性变形功与断裂功的能⼒。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成⼀个⾼度为b的台阶。
8.河流花样:解理台阶沿裂纹前端滑动⽽相互汇合,同号台阶相互汇合长⼤,当汇合台阶⾼度⾜够⼤时,便成为河流花样。
就是解理台阶的⼀种标志。
9.解理⾯:就是⾦属材料在⼀定条件下,当外加正应⼒达到⼀定数值后,以极快速率沿⼀定晶体学平⾯产⽣的穿晶断裂,因与⼤理⽯断裂类似,故称此种晶体学平⾯为解理⾯。
10、穿晶断裂:穿晶断裂的裂纹穿过晶内,可以就是韧性断裂,也可以就是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数就是脆性断裂。
11、韧脆转变:具有⼀定韧性的⾦属材料当低于某⼀温度点时,冲击吸收功明显下降,断裂⽅式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列⼒学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应⼒ 2.0σ屈服强度 gt δ⾦属材料拉伸时最⼤应⼒下的总伸长率 n 应变硬化指数P15 3、⾦属的弹性模量主要取决于什么因素?为什么说它就是⼀个对组织不敏感的⼒学性能指标?答:主要决定于原⼦本性与晶格类型。
第一章 绪 论一、选择题1.根据均匀性假设,可认为构件的( C )在各处相同。
A.应力B. 应变C.材料的弹性系数D. 位移2.构件的强度是指( C ),刚度是指( A ),稳定性是指( B )。
A.在外力作用下构件抵抗变形的能力B.在外力作用下构件保持原有平衡 状态的能力C.在外力作用下构件抵抗强度破坏的能力3.单元体变形后的形状如下图虚线所示,则 A 点剪应变依次为图(a) ( A ),图(b)( C ),图(c) ( B )。
A. 0B. 2rC. rD.1.5 r4.下列结论中( C )是正确的。
A.内力是应力的代数和; B.应力是内力的平均值; C.应力是内力的集度; D.内力必大于应力; 5. 两根截面面积相等但截面形状和材料不同的拉杆受同样大小的轴向拉力,它们的应 力是否相等( B )。
A.不相等; B.相等; C.不能确定; 6.为把变形固体抽象为力学模型,材料力学课程对变形固体作出一些假设,其中均匀性假设是指( C )。
A. 认为组成固体的物质不留空隙地充满了固体的体积; B. 认为沿任何方向固体的力学性能都是相同的; C. 认为在固体内到处都有相同的力学性能; D. 认为固体内到处的应力都是相同的。
二、填空题1.材料力学对变形固体的基本假设是 连续性假设 , 均匀性假设 , 各向同性假设 。
2.材料力学的任务是满足 强度 , 刚度 , 稳定性 的要求下,为设计经济安全的构-1-件提供必要的理论基础和计算方法。
3.外力按其作用的方式可以分为 表面力 和 体积力 ,按载荷随时间的变化情况可以分为 静载荷 和 动载荷 。
4.度量一点处变形程度的两个基本量是 (正)应变ε 和 切应变γ。
三、判断题1.因为构件是变形固体,在研究构件平衡时,应按变形后的尺寸进行计算。
( × )2.外力就是构件所承受的载荷。
(×)3.用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
- 1 -第8章 杆件的拉伸与压缩8-1 填空题:8-1(1) 如图拉杆的左半段是边长为b 的正方形,右半段是直径为b 的圆杆。
两段许用应力均为 ][σ,则杆的许用荷载 =][F ][4π2σb 。
8-1(2) 图示拉杆由同种材料制成,左部分是内径为D 、外径为D 2的空心圆杆,右部分为实心圆杆,要使两部分具有相同的强度,右部分的直径应取 D3 。
8-1(3) 杆件轴向拉伸或压缩时,其斜截面上切应力随截面方位的不同而不同,而切应力的最大值发生在与轴线间的夹角为 45° 的斜截面上。
8-1(4) 图中两斜杆的抗拉刚度为EA ,A 点的竖向位移为EAFa 2 。
8-1(5) 图中结构中两个构件的厚度b 相同,则它们的挤压面积 =A αcos ab。
8-1(6) 图中结构中,若 h d D 32==,则螺栓中挤压应力、拉伸应力和剪切应力三者的比例关系是 9:24:8 。
题 8-1(5) 图题 8-1(1) 图题 8-1(2) 图题 8-1(6)图F题 8-1(4) 图- 2 -分析:222bs 3π4)(π4d F d D F =−=σ, 2tπ4d F =σ, 22π3πd F hd F ==τ,故有 9:24:883:1:31::tbs ==τσσ。
8-2 单选题:8-2(1) 图示的等截面杆左端承受集中力,右端承受均布力,杆件处于平衡状态。
1、3两个截面分别靠近两端,2截面则离端部较远。
关于1、2、3这三个截面上的正应力的下列描述中,正确的是 C 。
A .三个截面上的正应力都是均布的 B .1、2两个截面上的正应力才是均布的 C .2、3两个截面上的正应力才是均布的 D .1、3两个截面上的正应力才是均布的8-2(2) 若图示两杆的材料可以在铸铁和钢中选择,那么,综合强度和经济性两方面的因素, C 更为合理。
A .两杆均选钢 B .两杆均选铸铁C .① 号杆选钢,② 号杆选铸铁D .① 号杆选铸铁,② 号杆选钢8-2(3) 图示承受轴向荷载的悬臂梁中,在加载前的一条斜直线KK 在加载过程中所发生的变化是 D 。
8-1 试求图示各杆的轴力,并指出轴力的最大值。
(2) 取1-1(3) 取2-2(4) 轴力最大值: (b)(1) 求固定端的约束反力; (2) 取1-1(3) 取2-2(4) (c)(1) 用截面法求内力,取1-1、2-2、3-3截面;(2) 取1-1(3) 取2-2 (4) 取3-3截面的右段;(5) 轴力最大值: (d)(1) 用截面法求内力,取1-1、(2) 取1-1(2) 取2-2(5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5与BC 段的直径分别为(c) (d)F RN 2F N 3 F N 1F F Fd 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。
解:(1) 用截面法求出(2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。
解:(1)用截面法求出1-1、2-2截面的轴力;(2) 求1-1、2-2截面的正应力,利用正应力相同;8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位角θ= 450,试计算该截面上的正应力与切应力,并画出应力的方向。
解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。
解:(1) 对节点A(2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[σW ] =10 MPa 。
解:(1) 对节点A (2) 84 mm 。
8-16 题8-14解:(1) 由8-14得到的关系;(2) 取[F ]=97.1 kN 。
8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。
资料力学-学习指导及习题谜底之迟辟智美创作第一章绪论1-1 图示圆截面杆,两端接受一对方向相反、力偶矩矢量沿轴线且年夜小均为M的力偶作用.试问在杆件的任一横截面m-m上存在何种内力分量,并确定其年夜小.解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其年夜小即是M.1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ.解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零.试问杆件横截面上存在何种内力分量,并确定其年夜小.图中之C点为截面形心.解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示.试求棱边AB与AD的平均正应变及A 点处直角BAD的切应变.解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最年夜值.解:(a) F N AB=F,F N BC=0,F N,max=F=F(b) F N AB=F,F N BC=-F,F N,max(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N=3 kN,max(d) F N AB=1 kN,F N BC=-1 kN,F N=1 kN,max2-2 图示阶梯形截面杆AC,接受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm.如欲使BC与AB段的正应力相同,试求BC段的直径.解:因BC与AB段的正应力相同,故2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN.试求图示斜截面m-m上的正应力与切应力,以及杆内的最年夜正应力与最年夜切应力.解:2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A接受载荷F=80kN作用.杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的资料相同,屈服极限σ=320MPa,平安因数n s.试校核桁架的强度.s解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件.2-5(2-14)图示桁架,接受载荷F作用.试计算该载荷的许用值[F].设各杆的横截面面积均为A,许用应力均为[σ].解:由C点的平衡条件由B点的平衡条件1杆轴力为最年夜,由其强度条件2-6(2-17)图示圆截面杆件,接受轴向拉力F作用.设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值.已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa.解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d::12-7(2-18)图示摇臂,接受载荷F1与F2作用.试确定轴销B的直径d.已知载荷F1=50kN,F2,许用切应力[τ]=100MPa,许用挤压应力[σ]=240MPa.bs解:摇臂ABC受F1、F2及B点支座反力F B三力作用,根据三力平衡汇交定理知F B的方向如图(b)所示.由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径第三章轴向拉压变形3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm.在轴向拉F=6kN的作用下,测得试验段伸长Δl,板宽缩短Δb.试计算硬铝的弹性模量E与泊松比μ.解:由胡克定律3-2(3-5) 图示桁架,在节点A处接受载荷F作用.从试验中测得杆1与杆2的纵向正应变分别为ε1×10-4与ε2×10-4.试确定载荷F及其方位角θ之值.已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa.解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得3-3(3-6) 图示变宽度平板,接受轴向载荷F作用.试计算板的轴向变形.已知板的厚度为δ,长为l,左、右真个宽度分别为b1与b2,弹性模量为E.解:3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持.设钢丝绳的轴向刚度(即发生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移.解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移.设各杆各截面的拉压刚度均为EA.解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移即是B点铅垂位移加2杆的伸长量,即(b)点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)3-6(3-14) 图a所示桁架,资料的应力-应变关系可用方程σn=Bε暗示(图b),其中n和B为由实验测定的已知常数.试求节点C的铅垂位移.设各杆的横截面面积均为A.(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与资料均相同.在梁的中点C接受集中载荷F作用.试计算该点的水平与铅垂位移.已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm.解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等3-8(3-17) 图示桁架,在节点B和C作用一对年夜小相等、方向相反的载荷F.设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C.解:根据能量守恒定律,有3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2.复合杆接受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形.解:设杆、管接受的压力分别为F N1、F N2,则F N1+F N2=F (1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σc]=110MPa.试确定各杆的横截面面积.解:设杆1所受压力为F N1,杆2所受拉力为F N2,则由梁BC的平衡条件得变形协调条件为杆1缩短量即是杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa.若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积.解:设杆1、杆2、杆3的轴力分别为F N1(压)、F N2(拉)、F N3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移即是杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件 A1=A2=2A3,取A1=A2=2A3=2448mm2.3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起.铆接后,温度升高40°,试计算铆钉剪切面上的切应力.钢与铜的弹性模量分别为E s=200GPa与E c=100GPa,线膨胀系数分别为αl s×10-6℃-1与αl c=16×10-6℃-1.解:钢杆受拉、铜管受压,其轴力相等,设为F N,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F].为了提高许用载荷之值,现将杆3的设计长度l酿成l+Δ.试问当Δ为何值时许用载荷最年夜,其值[F max]为何.解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2年夜,由杆3的强度条件若将杆3的设计长度l酿成l+Δ,要使许用载荷最年夜,只有三杆的应力都到达[σ],此时变形协调条件为第四章扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m.试计算横截面上的最年夜、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力.解:因为τ与ρ成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接.已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[τ]=80MPa,d1/d2.试确定实心轴的直径d,空心轴的内、外径d1和d2.解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW.(1) 试求轴内的最年夜扭矩;(2) 若将轮1与轮3的位置对换,试分析对轴的受力是否有利.解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最年夜扭矩若将轮1与轮3的位置对换,则最年夜扭矩酿成最年夜扭矩变小,固然对轴的受力有利.4-4(4-21) 图示两端固定的圆截面轴,接受扭力矩作用.试求支反力偶矩.设扭转刚度为已知常数.解:(a) 由对称性可看出,M A=M B,再由平衡可看出M A=M B=M(b)显然M A=M B,变形协调条件为解得(c)(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起.设作用在刚性平板上的扭力矩为M=2kN·m,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa.试求套管与芯轴的扭矩及最年夜扭转切应力.解:设套管与芯轴的扭矩分别为T1、T2,则T1+T2 =M=2kN·m (1)变形协调条件为套管与芯轴的扭转角相等,即联立求解式(1)、(2),得套管与芯轴的最年夜扭转切应力分别为4-6(4-28) 将截面尺寸分别为φ100mm×90mm 与φ90mm×80mm的两钢管相套合,并在内管两端施加扭力矩M0=2kN·m后,将其两端与外管相焊接.试问在去失落扭力矩M0后,内、外管横截面上的最年夜扭转切应力.解:去失落扭力矩M0后,两钢管相互扭,其扭矩相等,设为T,设施加M0后内管扭转角为φ0.去失落M0后,内管带动外管回退扭转角φ1(此即外管扭转角),剩下的扭转角(φ0-φ1)即为内管扭转角,变形协调条件为内、外管横截面上的最年夜扭转切应力分别为4-7(4-29) 图示二轴,用突缘与螺栓相连接,各螺栓的资料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为δ=10mm,轴所接受的扭力矩为M=5.0 kN·m,螺栓的许用切应力[τ]=100MPa,许用挤压应力 [σbs]=300MPa.试确定螺栓的直径d.解:设每个螺栓接受的剪力为F S,则由切应力强度条件由挤压强度条件故螺栓的直径第五章弯曲应力1(5-1)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示.试分析下列平衡微分方程中哪一个是正确的.解:B正确.平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定.截面弯矩和剪力的方向是不随坐标变动的,我们在处置这类问题时都按正方向画出.可是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程式时就有所分歧,参考下图.当Ox坐标取向相反,向右时,相应(b),A是正确的.但无论A、B弯矩的二阶导数在q向上时,均为正,反之,为负.2(5-2)、对接受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种谜底中哪一种是毛病的.解:A是毛病的.梁截面上的弯矩的正负号,与梁的坐标系无关,该梁上的弯矩为正,因此A是毛病的.弯矩曲线和一般曲线的凸凹相同,和y轴的方向有关,弯矩二阶导数为正时,曲线开口向着y轴的正向.q(x)向下时,无论x轴的方向如何,弯矩二阶导数均为负,曲线开口向着y轴的负向,因此B、C、D都是正确的.3(5-3)、应用平衡微分方程画出下列各梁的剪力图和弯矩图,并确定|F Q|max和|M|max.(本题和下题内力图中,内力年夜小只标注相应的系数.)解:4(5-4)、试作下列刚架的弯矩图,并确定|M|max.解:5(5-5)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知A端弯矩M(0)=0,试确定梁上的载荷(包括支座反力)及梁的弯矩图.解:6(5-6)、已知静定梁的剪力图和弯矩图,试确定梁上的载荷(包括支座反力).解:7(5-7)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知E端弯矩为零.请:(1)在Ox坐标中写出弯矩的表达式;(2)试确定梁上的载荷及梁的弯矩图.解:8(5-10) 在图示梁上,作用有集度为m=m(x)的分布力偶.试建立力偶矩集度、剪力及弯矩间的微分关系.解:用坐标分别为x与x+d x的横截面,从梁中切取一微段,如图(b).平衡方程为9(5-11) 对图示杆件,试建立载荷集度(轴向载荷集度q或扭力矩集度m)与相应内力(轴力或扭矩)间的微分关系.解:(a) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(c).平衡方程为(b) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(d).平衡方程为10(5-18) 直径为d的金属丝,环绕在直径为D的轮缘上.试求金属丝内的最年夜正应变与最年夜正应力.已知资料的弹性模量为E.解:11(5-23) 图示直径为d的圆木,现需从中切取一矩形截面梁.试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极年夜值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极年夜值,为此令12(5-24) 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A底边的纵向正应变ε×10-4,试计算梁内的最年夜弯曲正应力.已知钢的弹性模量E=200GPa,a=1m.解:梁的剪力图及弯矩图如图所示,从弯矩图可见:13(5-32) 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa.试校核梁的强度. 解:先求形心坐标,将图示截面看成一年夜矩形减去一小矩形惯性矩弯矩图如图所示,C 截面的左、右截面为危险截面. 在 C 左截面,其最年夜拉、压应力分别为夜拉、压应力分别为在 C 右截面,其最年 故14(5-35) 图示简支梁,由四块尺寸相同的木板胶接而成,试校核其强度. 已 知 载 荷 F=4kN , 梁 跨 度 l=400mm , 截 面 宽 度 b=50mm , 高 度 h=80mm,木板的许用应力[σ]=7MPa,胶缝的许用切应力[τ]=5MPa.解:从内力图可见木板的最年夜正应力由剪应力互等定理知:胶缝的最年夜切应力即是横截面上的最年夜切 应力 可见,该梁满足强度条件.15(5-41) 图示简支梁,接受偏斜的集中载荷 F 作用,试计算梁内的最年 夜弯曲正应力.已知 F=10kN,l=1m,b=90mm,h=180mm.解: 16(5-42) 图示悬臂梁,接受载荷 F1 与 F2 作用,已知 F1=800N,F2,l=1m,许用应力[σ]=160MPa.试分别按下列要求确定截面尺寸: (1) 截面为矩形,h=2b; (2) 截面为圆形.解:(1) 危险截面位于固定端(2)17(5-45) 一铸铁梁,其截面如图所示,已知许用压应力为许用拉应力 的 4 倍,即[σc]=4 [σt].试从强度方面考虑,宽度 b 为何值最佳. 解: 又因 y1+y2=400 mm,故 y1=80 mm,y2=320 mm.将截面对形心轴 z 取静 矩,得18(5-54) 图示直径为 d 的圆截面铸铁杆,接受偏心距为 e 的载荷 F 作用. 试证明:当 e≤d/8 时,横截面上不存在拉应力,即截面核心为 R=d/8 的圆形区域. 解: 19(5-55) 图示杆件,同时接受横向力与偏心压力作用,试确定 F 的许用 值.已知许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa. 解:故 F 的许用值为.第 七 章 应力、应变状态分析7-1(7-1b) 已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;MPa7-2(7-2b)已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;7-3(7-2d)已知应力状态如图所示(应力单位为 ),试用图解法计算 图中指定截面的正应力与切应力.解:如图,得: 指定截面的正应力 切应力7-4(7-7) 已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 ),试用图解法求主应力的年夜小及所在截面的方位.解:由图,根据比例尺,可以获得:,,最年夜切应力.7-5(7态如图 向应力 力、最10c)已知应力状 所示,试画三 圆,并求主应 年夜正应力与解:对图示应力状态, 是主应力状态,其它两个主应力由 、 、 确定.在 平面内,由坐标( , )与( , )分别确定 和 点,以 为直径画 圆与 轴相交于 和 .再以 及 为直径作圆,即得三向应力圆.由上面的作图可知,主应力为,,,7-6(7-12)已知应力状态如图所示(应力单位为 ),试求主应力的年 夜小.解: 与 截面的应力分别为:;;;在 截面上没有切应力,所以是主应力之一.;;;7-7(7-13)已知构件概况某点处的正应变,,切应变,试求该概况处 方位的正应变 与最年夜应变 及其所在方位.解:得:7-8(7-20)图示矩形截面杆,接受轴向载荷 F 作用,试计算线段 AB 的正 应变.设截面尺寸 b 和 h 与资料的弹性常数 E 和μ均为已知.解:,,,AB 的正应酿成7-9(7-21)在构件概况某点 O 处,沿 , 与 方位,粘贴三个应变片,测得该三方位的正应变分别为,与,该概况处于平面应力状态,试求该点处的应力 , 与 .已知资料的弹性模量,泊松比解:显然,,并令,于是得切应变:7-10(7-6)图示受力板件,试证明 A 点处各截面的正应力与切应力均为零.证明:若在尖点 A 处沿自由鸿沟取三角形单位体如图所示,设单位体 、 面上的应力分量为 、 和 、 ,自由鸿沟上的应力分量为 ,则有由于、,因此,必有 、 、.这时,代表 A 点应力状态的应力圆缩为 坐标的原点,所以 A 点为零应力状态.7-11(7-15)构件概况某点 处,沿 , , 与 方位粘贴四个应变片,并测得相应正应变依次为,,与,试判断上述测试结果是否可靠.解:很明显,,得:又得:根据实验数据计算获得的两个 结果纷歧致,所以,上述丈量结果不 成靠.第 八 章应力状态与强度理论 1、 (8-4)试比力图示正方形棱柱体在下列两中情况下的相当应力 , 弹性常数 E 和μ均为已知. (a) 棱柱体轴向受压; (b) 棱柱体在刚性方模中轴向受压.解:对图(a)中的情况,应力状态如图(c) 对图(b)中的情况,应力状态如图(d)所以,,2、 (8-6)图示钢质拐轴,接受集中载荷 F 作用.试根据第三强度理论确 定轴 AB 的直径.已知载荷 F=1kN,许用应力[σ]=160Mpa. 解:扭矩弯矩 由 得:所以,3、 (8-10)图示齿轮传动轴,用钢制成.在齿轮Ⅰ上,作用有径向力、切向力;在齿轮Ⅱ上,作用有切向力、径向力.若许用应力[σ]=100Mpa,试根据第四强度理论确定轴径.解:计算简图如图所示,作 、 、 图.从图中可以看出,危险截面为 B 截面.其内力分量为: 由第四强度理论 得:4、8-4 圆截面轴的危险面上受有弯矩My、扭矩Mx 和轴力FNx 作 用,关于危险点的应力状态有下列四种.试判断哪一种是正确的. 请选择正确谜底. (图中微元上平行于纸平面的面对应着轴的横截面) 答:B5、 (8-13)图示圆截面钢杆,接受载荷 , 与扭力矩 作用.试根据第三强度理论校核杆的强度.已知载荷N,,扭力矩,许用应力[σ]=160Mpa.解:弯矩满足强度条件.6、 (8-25)图示铸铁构件,中段为一内径 D=200mm、壁厚δ=10mm 的圆筒,圆筒内的压力p=1Mpa,两真个轴向压力F=300kN,资料的泊松比μ,许用拉应力[σt]=30Mpa.试校核圆筒部份的强度.解:,,由第二强度理论:满足强度条件.7、(8-27)图薄壁圆筒,同时接受内压p与扭力矩M作用,由实验测得筒壁沿轴向及与轴线成方位的正应变分别为和.试求内压p与扭力矩M之值.筒的内径为D、壁厚δ、资料的弹性模量E与泊松比μ均为已知.解:,,,很显然,8、(8-22)图示油管,内径D=11mm,壁厚δ,内压p,许用应力[σ]=100Mpa.试校核油管的强度.解:,,由第三强度理论,满足强度条件.9、(8-11)图示圆截面杆,直径为d,接受轴向力F与扭矩M作用,杆用塑性资料制成,许用应力为[σ].试画出危险点处微体的应力状态图,并根据第四强度理论建立杆的强度条件.解:危险点的应力状态如图所示.,由第四强度理论,,可以获得杆的强度条件:10、(8-17)图示圆截面圆环,缺口处接受一对相距极近的载荷作用.已知圆环轴线的半径为,截面的直径为,资料的许用应力为,试根据第三强度理论确定的许用值.解:危险截面在A或B截面A:,,截面B:,由第三强度理论可见,危险截面为A截面.,得:即的许用值为:11、(8-16)图示等截面刚架,接受载荷与作用,且.试根据第三强度理论确定的许用值.已知许用应力为,截面为正方形,边长为,且.解:危险截面在A截面或C、D截面,C截面与D截面的应力状态一样. C截面:由第三强度理论,得:A截面:由第三强度理论,得:比力两个结果,可得:的许用值:12、(8-25)球形薄壁容器,其内径为,壁厚为,接受压强为p之内压.试证明壁内任一点处的主应力为,.证明:取球坐标,对球闭各点,以球心为原点.,,由于结构和受力均对称于球心,故球壁各点的应力状态相同.且由于球壁很薄.,对球壁上的任一点,取通过该点的直径平面(如图),由平衡条件对球壁内的任一点,因此,球壁内的任一点的应力状态为:,证毕.。
材料力学课后习题答案材料力学课后习题答案欢迎大家来到聘才网小编搜集整理了材料力学课后习题答案供大家查阅希望大家喜欢1、解释下列名词1弹性比功:金属材料吸收弹性变形功的能力一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示2.滞弹性:金属材料在弹性范围内快速加载或卸载后随时间延长产生附加弹性应变的现象称为滞弹性也就是应变落后于应力的现象3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性4.包申格效应:金属材料经过预先加载产生少量塑性变形卸载后再同向加载规定残余伸长应力增加;反向加载规定残余伸长应力降低的现象5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力7.解理台阶:当解理裂纹与螺型位错相遇时便形成1个高度为b 的台阶8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样是解理台阶的1种标志9.解理面:是金属材料在一定条件下当外加正应力达到一定数值后以极快速率沿一定晶体学平面产生的穿晶断裂因与大理石断裂类似故称此种晶体学平面为解理面10.穿晶断裂:穿晶断裂的裂纹穿过晶内可以是韧性断裂也可以是脆性断裂沿晶断裂:裂纹沿晶界扩展多数是脆性断裂11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时冲击吸收功明显下降断裂方式由原来的韧性断裂变为脆性断裂这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的多数工程材料弹性变形时可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有些?答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相外在因素:温度、应变速率和应力状态2、试述韧性断裂与脆性断裂的区别为什么脆性断裂最危险?答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂这种断裂有1个缓慢的撕裂过程在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂断裂前基本上不发生塑性变形没有明显征兆因而危害性很大3、剪切断裂与解理断裂都是穿晶断裂为什么断裂性质完全不同?答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离一般是韧性断裂而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂解理断裂通常是脆性断裂4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有些?答:宏观断口呈杯锥形由纤维区、放射区和剪切唇3个区域组成即所谓的断口特征三要素上述断口三区域的形态、大小和相对位置因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化5、论述格雷菲斯裂纹理论分析问题的思路推导格雷菲斯方程并指出该理论的局限性答:只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况第二章金属在其他静载荷下的力学性能一、解释下列名词:(1)应力状态软性系数材料或工件所承受的最大切应力τmax和最大正12应力σmax比值即:max(2)缺口效应绝大多数机件的横截面都不是均匀而无变化的光滑体往往存在截面的急剧变化如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等这种截面变化的部分可视为“缺口”由于缺口的存在在载荷作用下缺口截面上的应力状态将发生变化产生所谓的缺口效应(3)缺口敏感度缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb的比值称为缺口敏感度即:(4)布氏硬度用钢球或硬质合金球作为压头采用单位面积所承受的试验力计算而得的硬度(5)洛氏硬度采用金刚石圆锥体或小淬火钢球作压头以测量压痕深度所表示的硬度(6)维氏硬度以两相对面夹角为136的金刚石四棱锥作压头采用单位面积所承受的试验力计算而得的硬度(7)努氏硬度采用2个对面角不等的四棱锥金刚石压头由试验力除以压痕投影面积得到的硬度(8)肖氏硬度采动载荷试验法根据重锤回跳高度表证的金属硬度(9)里氏硬度采动载荷试验法根据重锤回跳速度表证的金属硬度二、说明下列力学性能指标的意义(1)σbc材料的抗压强度(2)σbb材料的抗弯强度(3)τs材料的扭转屈服点(4)τb材料的抗扭强度(5)σbn材料的抗拉强度(6)NSR材料的缺口敏感度(7)HBW压头为硬质合金球的材料的布氏硬度(8)HRA材料的洛氏硬度(9)HRB材料的洛氏硬度(10)HRC材料的洛氏硬度(11)HV材料的维氏硬度在弹性状态下的应力分布:薄板:在缺口根部处于单向拉应力状态在板中心部位处于两向拉伸平面应力状态厚板:在缺口根部处于两向拉应力状态缺口内侧处三向拉伸平面应变状态无论脆性材料或塑性材料都因机件上的缺口造成两向或三向应力状态和应力集中而产生脆性倾向降低了机件的使用安全性为了评定不同金属材料的缺口变脆倾向必须采用缺口试样进行静载力学性能试验八.今有如下零件和材料需要测定硬度试说明选择何种硬度实验方法为宜(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金(1)渗碳层的硬度分布HK或显微HV(2)淬火钢HRC(3)灰铸铁HB(4)鉴别钢中的隐晶马氏体和残余奥氏体显微HV或者HK(5)仪表小黄铜齿轮HV(6)龙门刨床导轨HS(肖氏硬度)或HL(里氏硬度)(7)渗氮层HV(8)高速钢刀具HRC(9)退火态低碳钢HB(10)硬质合金HRA第三章金属在冲击载荷下的力学性能冲击韧性:材料在冲击载荷作用下吸收塑性变形功和断裂功的能力【P57】冲击韧度::U形缺口冲击吸收功AKU除以冲击试样缺口底部截面积所得之商称为冲击韧度αku=Aku/S(J/cm2),反应了材料抵抗冲击载荷的能力,用aKU表示P57注释/P67冲击吸收功:缺口试样冲击弯曲试验中摆锤冲断试样失去的位能为mgH1mgH2此即为试样变形和断裂所消耗的功称为冲击吸收功以AK表示单位为JP57/P67低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及其合金特别是工程上常用的中、低强度结构钢(铁素体珠光体钢)在试验温度低于某一温度tk时会由韧性状态变为脆性状态冲击吸收功明显下降断裂机理由微孔聚集型变为穿晶解理型断口特征由纤维状变为结晶状这就是低温脆性韧性温度储备:材料使用温度和韧脆转变温度的差值保证材料的低温服役行为二、(1)AK:冲击吸收功含义见上面冲击吸收功不能真正代表材料的韧脆程度但由于它们对材料内部组织变化十分敏感而且冲击弯曲试验方法简便易行被广泛采用AKV(CVN):V型缺口试样冲击吸收功.AKU:U型缺口冲击吸收功.(2)FATT50:通常取结晶区面积占整个断口面积50%时的温度为tk 并记为50%FATT或FATT50%t50(或:结晶区占整个断口面积50%是的温度定义的韧脆转变温度.(3)NDT:以低阶能开始上升的温度定义的韧脆转变温度,称为无塑性或零塑性转变温度(4)FTE:以低阶能和高阶能平均值对应的温度定义tk记为FTE(5)FTP:以高阶能对应的温度为tk记为FTP四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料它们的屈服强度会随温度的降低急剧增加而断裂强度随温度的降低而变化不大当温度降低到某一温度时屈服强度增大到高于断裂强度时在这个温度以下材料的屈服强度比断裂强度大因此材料在受力时还未发生屈服便断裂了材料显示脆性从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关当温度降低时位错运动阻力增大原子热激活能力下降因此材料屈服强度增加影响材料低温脆性的因素有(P63P73):1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高材料脆性断裂趋势明显塑性差2.化学成分:能够使材料硬度强度提高的杂质或者合金元素都会引起材料塑性和韧性变差材料脆性提高3.显微组织:①晶粒大小细化晶粒可以同时提高材料的强度和塑韧性因为晶界是裂纹扩展的阻力晶粒细小晶界总面积增加晶界处塞积的位错数减少有利于降低应力集中;同时晶界上杂质浓度减少避免产生沿晶脆性断裂②金相组织:较低强度水平时强度相等而组织不同的钢冲击吸收功和韧脆转变温度以马氏体高温回火最佳贝氏体回火组织次之片状珠光体组织最差钢中夹杂物、碳化物等第二相质点对钢的脆性有重要影响当其尺寸增大时均使材料韧性下降韧脆转变温度升高五.试述焊接船舶比铆接船舶容易发生脆性破坏的原因焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷增加裂纹敏感度增加材料的脆性容易发生脆性断裂七.试从宏观上和微观上解释为什么有些材料有明显的韧脆转变温度而另外一些材料则没有?宏观上体心立方中、低强度结构钢随温度的降低冲击功急剧下降具有明显的韧脆转变温度而高强度结构钢在很宽的温度范围内冲击功都很低没有明显的韧脆转变温度面心立方金属及其合金一般没有韧脆转变现象微观上体心立方金属中位错运动的阻力对温度变化非常敏感位错运动阻力随温度下降而增加在低温下该材料处于脆性状态而面心立方金属因位错宽度比较大对温度不敏感故一般不显示低温脆性体心立方金属的低温脆性还可能与迟屈服现象有关对低碳钢施加一高速到高于屈服强度时材料并不立即产生屈服而需要经过一段孕育期(称为迟屈时间)才开始塑性变形这种现象称为迟屈服现象由于材料在孕育期中只产生弹性变形没有塑性变形消耗能量所以有利于裂纹扩展往往表现为脆性破坏第四章金属的断裂韧度2.名词解释低应力脆断:高强度、超高强度钢的机件中低强度钢的大型、重型机件在屈服应力以下发生的断裂张开型(?型)裂纹:拉应力垂直作用于裂纹扩展面裂纹沿作用力方向张开沿裂纹面扩展的裂纹应力场强度因子K?:在裂纹尖端区域各点的应力分量除了决定于位置外尚与强度因子K?有关对于某一确定的点其应力分量由K?确定K?越大则应力场各点应力分量也越大这样K?即可表示应力场的强弱程度称K?为应力场强度因子“I”表示I型裂纹小范围屈服:塑性区的尺寸较裂纹尺寸及净截面尺寸为小时(小1个数量级以上)这就称为小范围屈服有效屈服应力:裂纹在发生屈服时的应力有效裂纹长度:因裂纹尖端应力的分布特性裂尖前沿产生有塑性屈服区屈服区内松弛的应力将叠加至屈服区之外从而使屈服区之外的应力增加其效果相当于因裂纹长度增加ry后对裂纹尖端应力场的影响经修正后的裂纹长度即为有效裂纹长度:a+ry裂纹扩展K判据:裂纹在受力时只要满足KI?KIC就会发生脆性断裂.反之即使存在裂纹若KI?KIC也不会断裂新P71:旧832、说明下列断裂韧度指标的意义及其相互关系K?C和KC答:临界或失稳状态的K?记作K?C或KCK?C为平面应变下的断裂韧度表示在平面应变条件下材料抵抗裂纹失稳扩展的能力KC为平面应力断裂韧度表示在平面应力条件下材料抵抗裂纹失稳扩展的能力它们都是?型裂纹的材料裂纹韧性指标但KC值与试样厚度有关当试样厚度增加使裂纹39材料力学性能课后习题答案材料力学课后习题答案尖端达到平面应变状态时断裂韧度趋于一稳定的最低值即为K?C 它与试样厚度无关而是真正的材料常数3、试述低应力脆断的原因及防止方法答:低应力脆断的原因:在材料的生产、机件的加工和使用过程中产生不可避免的宏观裂纹从而使机件在低于屈服应力的情况发生断裂预防措施:将断裂判据用于机件的设计上在给定裂纹尺寸的情况下确定机件允许的最大工作应力或者当机件的工作应力确定后根据断裂判据确定机件不发生脆性断裂时所允许的最大裂纹尺寸4、为什么研究裂纹扩展的力学条件时不用应力判据而用其它判据?答:由41可知裂纹前端的应力是1个变化复杂的多向应力如用它直接建立裂纹扩展的应力判据显得十分复杂和困难;而且当r→0时不论外加平均应力如何小裂纹尖端各应力分量均趋于无限大构件就失去了承载能力也就是说只要构件一有裂纹就会破坏这显然与实际情况不符这说明经典的强度理论单纯用应力大小来判断受载的裂纹体是否破坏是不正确的因此无法用应力判据处理这一问题因此只能用其它判据来解决这一问题5、试述应力场强度因子的意义及典型裂纹K?的表达式答:几种裂纹的K?表达式无限大板穿透裂纹:Ka;有限宽板穿透裂纹:aaK??1.2?a;有限宽板单边直裂纹:Kaf();Kaf()当b?a时bb 受弯单边裂纹梁:K??6Maf();无限大物体内部有椭圆片裂纹远处受3/2(b?a)b2均匀拉伸:Kaa2(sin??2cos2?)1/4;无限大物体表面有半椭圆裂纹远c1.1?a?处均受拉伸:A点的K??7、试述裂纹尖端塑性区产生的原因及其影响因素答:机件上由于存在裂纹在裂纹尖端处产生应力集中当σy趋于材料的屈服应力时在裂纹尖端处便开始屈服产生塑性变形从而形成塑性区影响塑性区大小的因素有:裂纹在厚板中所处的位置板中心处于平面应变状态塑性区较小;板表面处于平面应力状态塑性区较大但是无论平面应力或平面应变塑性区宽度总是与(KIC/σs)2成正比13、断裂韧度KIC与强度、塑性之间的关系:总的来说断裂韧度随强度的升高而降低15、影响KIC的冶金因素:内因:1、学成分的影响;2、集体相结构和晶粒大小的影响;3、杂质及第二相的影响;4、显微组织的影响外因:1、温度;2、应变速率16.有1大型板件材料的σ0.2=1200MPaKIc=115MPa*m1/2探伤发现有20mm长的横向穿透裂纹若在平均轴向拉应力900MPa下工作试计算KI及塑性区宽度R0并判断该件是否安全?解:由题意知穿透裂纹受到的应力为σ=900MPa根据σ/σ0.2的值确定裂纹断裂韧度KIC是否休要修正因为σ/σ0.2=900/1200=0.75>0.7所以裂纹断裂韧度KIC需要修正对于无限板的中心穿透裂纹修正后的KI为:a9000.01?KI168.1322)?0?0.177(0.75)(.177(?/?s)1?KI?塑性区宽度为:??R0比较K1与KIc:22s?因为K1=168.13(MPa*m1/2)KIc=115(MPa*m1/2)所以:K1>KIc裂纹会失稳扩展,所以该件不安全17.有一轴件平行轴向工作应力150MPa使用中发现横向疲劳脆性正断断口分析表明有25mm深度的表面半椭圆疲劳区根据裂纹a/c可以确定υ=1测试材料的σ0.2=720MPa试估算材料的断裂韧度KIC为多少?解:因为σ/σ0.2=150/720=0.208<0.7所以裂纹断裂韧度KIC不需要修正对于无限板的中心穿透裂纹修正后的KI为:KIC=Yσcac1/2对于表面半椭圆裂纹Y=1.1/υ=1.13?150?25?10所以KIC=Yσcac1/2=1.1=46.229(MPa*m1/2) 第五章金属的疲劳1.名词解释;应力幅σa:σa=1/2(σmaxσmin)p95/p108平均应力σm:σm=1/2(σmax+σmin)p95/p107应力比r:r=σmin/σmaxp95/p108疲劳源:是疲劳裂纹萌生的策源地一般在机件表面常和缺口裂纹刀痕蚀坑相连P96疲劳贝纹线:是疲劳区的最大特征一般认为它是由载荷变动引起的是裂纹前沿线留下的弧状台阶痕迹P97/p110疲劳条带:疲劳裂纹扩展的第二阶段的断口特征是具有略程弯曲并相互平行的沟槽花样称为疲劳条带(疲劳辉纹疲劳条纹)p113/p132 驻留滑移带:用电解抛光的方法很难将已产生的表面循环滑移带去除当对式样重新循环加载时则循环滑移带又会在原处再现这种永留或再现的循环滑移带称为驻留滑移带P111ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关而且与当时的裂纹尺寸有关ΔK是由应力范围Δσ和a复合为应力强度因子范围ΔK=KmaxKmin=Yσmax√aYσmin√a=YΔσ√a.p105/p120 da/dN:疲劳裂纹扩展速率即每循环一次裂纹扩展的距离P105 疲劳寿命:试样在交变循环应力或应变作用下直至发生破坏前所经受应力或应变的循环次数p102/p117过载损伤:金属在高于疲劳极限的应力水平下运转一定周次后其疲劳极限或疲劳寿命减小就造成了过载损伤P102/p1172.揭示下列疲劳性能指标的意义疲劳强度σ1σp,τ1,σ1N,P99,100,103/p114σ1:对称应力循环作用下的弯曲疲劳极限;σp:对称拉压疲劳极限;τ1:对称扭转疲劳极限;σ1N:缺口试样在对称应力循环作用下的疲劳极限疲劳缺口敏感度qfP103/p118金属材料在交变载荷作用下的缺口敏感性常用疲劳缺口敏感度来评定Qf=(Kf1)/(kt1).其中Kt为理论应力集中系数且大于一Kf为疲劳缺口系数Kf=(σ1)/(σ1N)过载损伤界P102,103/p117由实验测定测出不同过载应力水平和相应的开始降低疲劳寿命的应力循环周次得到不同试验点连接各点便得到过载损伤界疲劳门槛值ΔKthP105/p120在疲劳裂纹扩展速率曲线的Ⅰ区当ΔK≤ΔKth时da/aN=0,表示裂纹不扩展;只有当ΔK>ΔKth时da/dN>0,疲劳裂纹才开始扩展因此ΔKth是疲劳裂纹不扩展的ΔK临界值称为疲劳裂纹扩展门槛值4.试述疲劳宏观断口的特征及其形成过程(新书P96~98及PPT旧书P109~111)答:典型疲劳断口具有3个形貌不同的区域疲劳源、疲劳区及瞬断区(1)疲劳源是疲劳裂纹萌生的策源地疲劳源区的光亮度最大因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤压故显示光亮平滑另疲劳源的贝纹线细小(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域是判断疲劳断裂的重要特征证据特征是:断口比较光滑并分布有贝纹线断口光滑是疲劳源区域的延续但其程度随裂纹向前扩展逐渐减弱贝纹线是由载荷变动引起的如机器运转时的开动与停歇偶然过载引起的载荷变动使裂纹前沿线留下了弧状台阶痕迹(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域其断口比疲劳区粗糙脆性材料为结晶状断口韧性材料为纤维状断口6.试述疲劳图的意义、建立及用途(新书P101~102旧书P115~117)答:定义:疲劳图是各种循环疲劳极限的集合图也是疲劳曲线的另1种表达形式意义:很多机件或构件是在不对称循环载荷下工作的因此还需要知道材料的不对称循环疲劳极限以适应这类机件的设计和选材的需要通常是用工程作图法由疲劳图求得各种不对称循环的疲劳极限1、?a?m疲劳图建立:这种图的纵坐标以?a表示横坐标以?m表示然后以不同应力比r条件下将?max表示的疲劳极限?r分解为?a和?m并在该坐标系中作ABC曲线即1?a(?max??min)1?r为?a??m疲劳图其几何关系为:tanm(?max??min)1?r2(用途):我们知道应力比r将其代入试中就可以求得tan?和?而后从坐标原点O引直线令其与横坐标的夹角等于?值该直线与曲线ABC 相交的交点B便是所求的点其纵、横坐标之和即为相应r的疲劳极限?rB?rB??aB??mB2、?max(?min)??m疲劳图建立:这种图的纵坐标以?max或?min表示横坐标以?m表示然后将不同应力比r下的疲劳极限分别以?max(?min)和?m表示于上述坐标系中就形成这种疲劳图几何关系为:tanmax2?max2m?max??min1?r (用途):我们只要知道应力比r,就可代入上试求得tan?和?而后从坐标原点O引一直线OH令其与横坐标的夹角等于?该直线与曲线AHC 相交的交点H的纵坐标即为疲劳极限8.试述影响疲劳裂纹扩展速率的主要因素(新书P107~109旧书P123~125)dac(?K)n答:1、应力比r(或平均应力?m)的影响:Forman提出:dN(1?r)Kc??K残余压应力因会减小r,使因会增大r使da降低和?Kth升高对疲劳寿命有利;而残余拉应力dNda升高和?Kth降低对疲劳寿命不利dN2、过载峰的影响:偶然过载进入过载损伤区内使材料受到损伤并降低疲劳寿命但若过载适当有时反而是有益的da3、材料组织的影响:①晶粒大小:晶粒越粗大其?Kth值越高越低对dN疲劳寿命越有利②组织:钢的含碳量越低铁素体含量越多时其?Kth值就越高当钢的淬火组织中存在一定量的残余奥氏体和贝氏体等韧性组织时可以提da高钢的?Kth降低③喷丸处理:喷丸强化也能提高?KthdN9.试述疲劳微观断口的主要特征答:断口特征是具有略呈弯曲并相互平行的沟槽花样称疲劳条带(疲劳条纹、疲劳辉纹)疲劳条带是疲劳断口最典型的微观特征滑移系多的面心立方金属其疲劳条带明显;滑移系少或组织复杂的金属其疲劳条带短窄而紊乱疲劳裂纹扩展的塑性钝化模型(Laird模型):图中(a),在交变应力为零时裂纹闭合图(b)受拉应力时裂纹张开在裂纹尖端沿最大切应力方向产生滑移图(c),裂纹张开至最大塑性变形区扩大裂纹尖端张开呈半圆形裂纹停止扩展由于塑性变形裂纹尖端的应力集中减小裂纹停止扩展的过程称为“塑性钝化”图(d)当应力变为压缩应力时滑移方向也改变了裂纹尖端被压弯成“耳状”切口图(e)到压缩应力为最大值时裂纹完全闭合裂纹尖端又由钝变锐形成一对尖角12.试述金属表面强化对疲劳强度的影响答:表面强化处理可在机件表面产生有利的残余压应力同时还能提高机件表面的强度和硬度这两方面的作用都能提高疲劳强度表面强化方法通常有表面喷丸、滚压、表面淬火及表面化学热处理等(1)表面喷丸及滚压喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束又在塑变层内产生残余压应力表面滚压和喷丸的作用相似只是其压应力层深度较大很适于大工件;而且表面粗糙度低强化效果更好(2)表面热处理及化学热处理他们除能使机件获得表硬心韧的综合力学性能外还可以利用表面。
第一章绪论一、是非判断题1.1资料力学的研究方法与理论力学的研究方法完整相同。
(×) 1.2内力只作用在杆件截面的形心处。
(×) 1.3杆件某截面上的内力是该截面上应力的代数和。
(×) 1.4确立截面内力的截面法,合用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或随意截面的广泛状况。
(∨) 1.5依据各向同性假定,可以为资料的弹性常数在各方向都相同。
(∨) 1.6依据均匀性假定,可以为构件的弹性常数在各点处都相同。
(∨) 1.7同一截面上正应力σ与切应力τ必互相垂直。
(∨) 1.8同一截面上各点的正应力σ必然大小相等,方向相同。
(×) 1.9同一截面上各点的切应力τ必互相平行。
(×)1.10应变分为正应变ε和切应变γ。
(∨)1.11应变为无量纲量。
(∨) 1.12若物体各部分均无变形,则物体内各点的应变均为零。
(∨) 1.13若物体内各点的应变均为零,则物体无位移。
(×) 1.14均衡状态弹性体的随意部分的内力都与外力保持均衡。
(∨) 1.15题 1.15 图所示构造中, AD 杆发生的变形为曲折与压缩的组合变形。
(∨) 1.16题 1.16 图所示构造中, AB 杆将发生曲折与压缩的组合变形。
(×)FFA A CBBCD D题 1.15 图题 1.16 图二、填空题1.1资料力学主要研究杆件受力后发生的变形,以及由此产生的应力,应变。
1.2拉伸或压缩的受力特色是外力的协力作用线经过杆轴线,变形特色是。
1沿杆轴线伸长或缩短1.3剪切的受力特色是受一平等值,反向,作用线距离很近的力的作用,变形特色是沿剪切面发生相对错动。
1.4扭转的受力特征是外力偶作用面垂直杆轴线,变形特色是随意二横截面发生绕杆轴线的相对转动。
1.5曲折的受力特色是外力作用线垂直杆轴线,外力偶作用面经过杆轴线,变形特征是梁轴线由直线变为曲线。
1.6组合受力与变形是指包含两种或两种以上基本变形的组合。
材料力学练习题与答案-全1.当T三Tp时,剪切虎克定律及剪应力互等定理。
A、虎克定律成立,互等定理不成立B、虎克定律不成立,互等定理成立(正确答案)C、均不成立D、二者均成立2.木榫接头,当受F力作用时,接头的剪切面积和挤压面积分别是A、ab,lcB、cb,lbC、lb,cb(正确答案)D、lc,ab3.在下列四种材料中,()不可以应用各向同性假设。
A、铸钢B、玻璃C、松木(正确答案)D、铸铁4.一细长压杆当轴向压力P达到临界压力Pcr时受到微小干扰后发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形。
A、有所缓和B、完全消失(正确答案)C、保持不变D、继续增大;5.矩形截面偏心受压杆件发生变形。
A、轴向压缩、平面弯曲B、轴向压缩、平面弯曲、扭转C、轴向压缩、斜弯曲(正确答案)D、轴向压缩、斜弯曲、扭转6.当杆件处于弯扭组合变形时,对于横截面的中性轴有这样的结论,正确的是:A、一定存在(正确答案)B、不一定存在C、一定不存在7.梁在某一段内作用有向下的分布载荷时,在该段内它的弯矩图为。
A、上凸曲线;(正确答案)B、下凸曲线;C、带有拐点的曲线;D、斜直线8.图示结构中,AB为钢材,BC为铝,在P力作用下()A、AB段轴力大B、BC段轴力大C、轴力一样大(正确答案)D、无法判断9.圆截面的悬臂梁在自由端受集中力的作用,若梁的长度增大一倍,其他条件不变,最大挠度是原来的倍。
图片2.pngA、2B、16C、8(正确答案)D、410.托架由横梁与杆组成。
若将杆由位于梁的下方改为位于梁的上方,其他条件不变,则此托架的承载力。
A、提高(正确答案)B、降低C、不变D、不确定11.单位长度的扭转角e与()无关A、杆的长度(正确答案)B、扭矩C、材料性质D、截面几何性质12.矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。
正确的是:。
A、过形心B、过形心且与ZC轴有一夹角;C、不过形心,与ZC轴平行;(正确答案)D、不过形心,与ZC轴有一夹角。
绪论一、是非题1.1 材料力学主要研究杆件受力后变形与破坏的规律。
()1.2 内力只能是力。
()1.3 若物体各点均无位移,则该物体必定无变形。
()1.4 截面法是分析应力的基本方法。
()二、选择题1.5 构件的强度是指(),刚度是指(),稳定性是指()。
A. A. 在外力作用下构件抵抗变形的能力在外力作用下构件抵抗变形的能力B. B. 在外力作用下构件保持其原有的平衡状态的能力在外力作用下构件保持其原有的平衡状态的能力C. C. 在外力作用下构件抵抗破坏的能力在外力作用下构件抵抗破坏的能力1.6 根据均匀性假设,可认为构件的()在各点处相同。
A. A. 应力应力B. B. 应变应变C. C. 材料的弹性常数材料的弹性常数D. D. 位移位移1.7 下列结论中正确的是()A. A. 内力是应力的代数和内力是应力的代数和B. B. 应力是内力的平均值应力是内力的平均值C. C. 应力是内力的集度应力是内力的集度D. 内力必大于应力参考答案:1.1 √ 1.2 × 1.3 √ 1.4 × 1.5 C,A,B 1.6 C 1.7 C轴向拉压一、选择题1. 等截面直杆CD 位于两块夹板之间,如图示。
杆件与夹板间的摩擦力与杆件自重保持平衡。
设杆CD 两侧的摩擦力沿轴线方向均匀分布,且两侧摩擦力的集度均为q ,杆CD 的横截面面积为A ,质量密度为r ,试问下列结论中哪一个是正确的?(A) q gA r =;(B) 杆内最大轴力Nmax F ql =;(C) 杆内各横截面上的轴力N 2gAlF r =;(D) 杆内各横截面上的轴力N 0F =。
2. 低碳钢试样拉伸时,横截面上的应力公式N F A s =适用于以下哪一种情况? (A) 只适用于s ≤p s ;(B) 只适用于s ≤e s ;(C) 只适用于s ≤s s ;(D) 在试样拉断前都适用。
3. 在A 和B 两点连接绳索ACB ,绳索上悬挂物重P ,如图示。
习题2-1图 习题2-2图习题2-3图 习题2-4图习题2-5图 习题2-6图材料力学习题大全及答案第1章 引 论1-1 图示矩形截面直杆,右端固定,左端在杆的对称平面内作用有集中力偶,数值为M 。
关于固定端处横截面A -A 上的内力分布,有四种答案,根据弹性体的特点,试分析哪一种答案比较合理。
正确答案是 C 。
1-2 图示带缺口的直杆在两端承受拉力F P 作用。
关于A -A 截面上的内力分布,有四种答案,根据弹性体的特点,试判断哪一种答案是合理的。
正确答案是 D 。
1-3 图示直杆ACB 在两端A 、B 处固定。
关于其两端的约束力有四种答案。
试分析哪一种答案最合理。
正确答案是 D 。
1-4 等截面直杆在两端承受沿杆轴线的拉力F P 。
关于杆中点处截面A -A 在杆变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试判断哪一种答案是正确的。
正确答案是 D 。
1-5 图示等截面直杆在两端作用有力偶,数值为M ,力偶作用面与杆的对称面一致。
关于杆中点处截面A -A 在杆变形后的位置(对于左端,由A A '→;对于右端,由A A ''→),有四种答案,试判断哪一种答案是正确的。
正确答案是 C 。
习题2-1图习题2-2图习题2-3图习题2-4图1-6 等截面直杆,其支承和受力如图所示。
关于其轴线在变形后的位置(图中虚线所示),有四种答案,根据弹性体的特点,试分析哪一种是合理的。
正确答案是 C 。
第2章 杆件的内力分析2-1 平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox 坐标取向如图所示。
试分析下列平衡微分方程中哪一个是正确的。
(A )d d Q x F d M(B )d d Q x F (C )d d Q x F (D )d d Q xF 2-2 对于图示承受均布载荷q 的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种答案中哪几种是正确的。
一.是非题:(正确的在括号中打“√”、错误的打“×”) (60小题)1.材料力学研究的主要问题是微小弹性变形问题,因此在研究构件的平衡与运动时,可不计构件的变形。
( √ )2.构件的强度、刚度、稳定性与其所用材料的力学性质有关,而材料的力学性质又是通过试验测定的。
( √ )3.在载荷作用下,构件截面上某点处分布内力的集度,称为该点的应力。
(√ ) 4.在载荷作用下,构件所发生的形状和尺寸改变,均称为变形。
( √ )5.截面上某点处的总应力p 可分解为垂直于该截面的正应力σ和与该截面相切的剪应力τ,它们的单位相同。
( √ )6.线应变ε和剪应变γ都是度量构件内一点处变形程度的两个基本量,它们都是无量纲的量。
( √ ) 7.材料力学性质是指材料在外力作用下在强度方面表现出来的性能。
( )8.在强度计算中,塑性材料的极限应力是指比例极限p σ,而脆性材料的极限应力是指强度极限b σ。
( ) 9.低碳钢在常温静载下拉伸,若应力不超过屈服极限s σ,则正应力σ与线应变ε成正比,称这一关系为拉伸(或压缩)的虎克定律。
( )10.当应力不超过比例极限时,直杆的轴向变形与其轴力、杆的原长成正比,而与横截面面积成反比。
( √ )11.铸铁试件压缩时破坏断面与轴线大致成450,这是由压应力引起的缘故。
( )12.低碳钢拉伸时,当进入屈服阶段时,试件表面上出现与轴线成45o的滑移线,这是由最大剪应力max τ引起的,但拉断时截面仍为横截面,这是由最大拉应力max σ引起的。
( √ )13.杆件在拉伸或压缩时,任意截面上的剪应力均为零。
( ) 14.EA 称为材料的截面抗拉(或抗压)刚度。
( √ )15.解决超静定问题的关键是建立补充方程,而要建立的补充方程就必须研究构件的变形几何关系,称这种关系为变形协调关系。
( √ )16.因截面的骤然改变而使最小横截面上的应力有局部陡增的现象,称为应力集中。
(√ )17.对于剪切变形,在工程计算中通常只计算剪应力,并假设剪应力在剪切面内是均匀分布的。
材料力学性能课后习题答案第一章单向静拉伸力学性能1、解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。
8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gtδ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。