离心泵实验报告
- 格式:docx
- 大小:516.39 KB
- 文档页数:14
离心泵特性曲线实验报告一、目的:掌握离心泵特性曲线(H —Q 曲线,N —Q 曲线,η—Q 曲线)的测定方法。
二、设备简图:三、原理:1.流量测定:流量采用体积法,用电子流量计进行测量。
2.扬程:扬程采用离心泵出口压力表及进口真空表进行测量。
gP g P Z H VM ρρ++∆= 式中:H ——离心泵扬程m ;Z ∆——离心泵出口压力表中心到进口真空表测点之间的高差m ; V M P P +——离心泵出口压力表与真空压力表读值(MPa )。
3.功率:功率采用马达天平法进行测量。
将电机转子固定于轴承上,使电机定子可自由转动,当定子线圈通入电流时,定子与转子之间便产生一个感应力矩M ,该力矩使定子和转子按不同方向各自旋转。
若在定子上安装一套测力矩装置,使之对定子作用一反向力矩M ,当定子不动时,二力矩相等。
因此,只要测读测力表读数及力臂的长度,便可求出感应力矩M ,该力矩与转子旋转角度的乘积即为电机的输出功率。
转子旋转的角速度ω可通过测速表测量求得。
ωM N = FL M = 602nπω= 式中: N ——电机的输出功率w ;M ——电机与转子之间的感应力矩Nm ; ω——转子的旋转角速度l/S ; F ——力传感器读数; L ——力臂的长度m ; n ——电机的转速。
4.效率:效率等于离心泵的有效功率与电机的输出功率或轴功率之比,即: %100⨯=NgQHρη式中: η——离心泵的效率; ρ——水的密度 1000kg/m 3。
四、实验步骤及注意事项:1、实验前检查试验台的准备状况,确保水泵及电机连接螺栓紧固。
用手转动水泵联轴器,确认转动正常。
2、关闭水泵压水管阀门,打开入水管阀门及计量水箱的放水阀门。
3、启动水泵,将压水管阀门开到最大,为便于测量扬程,调节吸水管阀门至真空表读值为0.03MPa ,在以后的实验过程中,吸水管阀门开度固定不动。
4、逐次关小阀门,同时实测P M 、P V 、Q 、F 、n 各值并记录。
离心泵性能实验实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。
2、掌握离心泵性能参数的测量方法,包括流量、扬程、功率和效率。
3、绘制离心泵的性能曲线,分析其性能变化规律。
4、探究离心泵的运行工况对其性能的影响。
二、实验原理1、离心泵的工作原理离心泵依靠叶轮旋转时产生的离心力将液体甩出,在叶轮中心形成低压区,从而使液体不断被吸入和排出。
2、性能参数的定义及计算流量(Q):单位时间内泵排出的液体体积,通过流量计测量。
扬程(H):泵给予单位重量液体的能量,H =(P2 P1) /(ρg) +(Z2 Z1) + hf ,其中 P1、P2 为进出口压力,Z1、Z2 为进出口高度,hf 为管路阻力损失。
功率(P):包括轴功率和有效功率。
轴功率由功率表测量电机输入功率,有效功率 Pe =ρgQH 。
效率(η):η = Pe / P 。
三、实验装置1、离心泵:实验所用离心泵型号为_____,额定流量为_____,额定扬程为_____。
2、水箱:用于储存实验液体。
3、流量计:选用_____流量计,测量范围为_____,精度为_____。
4、压力表:分别安装在泵的进出口处,测量压力。
5、功率表:测量电机的输入功率。
6、管路系统:包括吸入管路和排出管路,管路上安装有调节阀用于调节流量。
四、实验步骤1、检查实验装置,确保各仪器仪表正常工作,管路连接紧密无泄漏。
2、向水箱中注入适量的实验液体(通常为清水)。
3、启动离心泵,待运行稳定后,记录初始的流量、扬程、功率等参数。
4、逐渐调节调节阀,改变流量,每次调节后待运行稳定,记录相应的流量、进出口压力和功率等数据。
5、重复步骤 4,测量多组数据,流量调节范围应涵盖离心泵的正常工作范围。
6、实验结束后,关闭离心泵,清理实验装置。
五、实验数据记录与处理|流量 Q(m³/h)|扬程 H(m)|轴功率 P(kW)|效率η(%)|||||||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____|根据实验数据,计算出不同流量下的有效功率和效率,并绘制离心泵的性能曲线,包括扬程流量曲线(HQ 曲线)、功率流量曲线(PQ 曲线)和效率流量曲线(ηQ 曲线)。
离心泵性能实验
实验目的:
了解离心泵的构造和特性,掌握离心泵的操作方法;
实验原理:
离心泵的压头H、轴功率N及功率η和流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。
注意这里
①
②
注意这里
水③
水
注意这里
Pv 、真空压力
Pm 、压力
Q 、流量
N 、轴功率
④
⑤
有用功率
压头效率
①
②③
①②
③
讨论:
1、离心泵开启前,为什么要先灌水排气?
答:是为了除去泵内的空气,使泵能够把水抽上来。
2、启动泵前,为什么要先关闭出口阀,待启动后再逐渐开大?而停泵时也要先关闭出口阀。
答:因为N随Q的增大而增大,当Q=0时,N最小,因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电机。
启动后再逐渐开大,使为了防止管部收到太大的冲击。
而停泵时也要先关闭出口阀,是为了防止水倒流。
3、离心泵的特性曲线是否和连结的管路系统有关?
答:特性曲线和管路无关,因为测量点在电机两端,管路的大小、长短和流量无关,只是和流速有关。
4、离心泵的流量可由泵出口阀调节,为什么?
答:因为当阀小时,管阻大,电机的有效功率低,流量低。
同理,当阀开大时,管阻小,电机的有效功率高,流量高。
离心泵特性曲线实验报告引言离心泵是一种常用的流体机械设备,被广泛应用于各个领域。
通过研究离心泵的特性曲线,可以评估其性能和效率,并且为泵的选型和运行提供重要参考。
本实验旨在通过实验分析离心泵的特性曲线,并进行误差分析,为泵的实际应用提供指导。
实验过程实验设备和材料本次实验使用的设备和材料如下:•离心泵•流量计•压力计•水槽•输送管道•计算机实验步骤1.将离心泵安装在水槽中,并连接好流量计和压力计。
2.打开水泵,调整流量计和压力计的刻度,使其能够准确测量水流量和压力。
3.通过调整阀门来改变流量,记录不同流量下的压力值和流量值。
4.将实验数据记录在计算机中,用于后续的数据处理和图表绘制。
数据处理绘制特性曲线根据实验数据,我们可以绘制离心泵的特性曲线。
特性曲线通常以流量为横坐标,压力为纵坐标。
通过绘制特性曲线,可以直观地了解离心泵在不同流量下的性能变化。
计算效率除了压力和流量,泵的效率也是评估其性能的重要指标。
泵的效率可以通过以下公式计算:效率 = (输出功率 / 输入功率) * 100%其中,输出功率可以通过流量和压力计算得出,输入功率是泵的电力输入。
误差分析在实验中,由于测量设备和实验操作等原因,可能会存在误差。
为了准确评估离心泵的性能,我们需要对实验误差进行分析。
1.测量误差:流量计和压力计的测量精度是有限的,可能存在一定的误差。
在实验过程中,应该注意操作的准确性,并尽量减小测量误差。
2.系统误差:由于实验装置和环境等因素,例如管道摩擦、泵内部摩擦等,可能会引入系统误差。
为了减小系统误差,可以通过校正实验来修正特性曲线数据。
结论通过离心泵特性曲线实验分析,我们可以得出以下结论:1.离心泵的特性曲线通常呈现出一种明显的曲线形状,流量和压力之间存在一定的关系。
2.在特性曲线中,泵的效率是一个重要的指标,可以通过计算得出。
3.在实验过程中,应该注意减小测量误差和系统误差,以提高实验结果的准确性。
值得注意的是,本实验报告仅对离心泵的特性曲线实验进行了简要分析,实际应用中还需要综合考虑其他因素,例如泵的可靠性、寿命等。
离心泵综合实验报告一、实验目的本次实验的主要目的是通过对离心泵进行综合实验,加深对离心泵原理、性能及其应用的了解。
具体目的如下:1.了解离心泵的结构和工作原理;2.掌握离心泵的性能参数及其测试方法;3.熟悉离心泵在不同工况下的性能特点;4.掌握离心泵运行时常见故障处理方法。
二、实验设备和材料1. 离心泵试验台;2. 液压油;3. 流量计;4. 压力表。
三、实验步骤及结果分析1. 实验前准备工作:(1)检查试验台上各部件是否正常,如有问题及时处理;(2)根据试验要求调整流量计和压力表,确保准确测量。
2. 实验操作:(1)开启电源,启动水泵,调节流量阀门和压力阀门使其达到设定值;(2)记录各项参数数据,并进行分析。
3. 实验结果分析:通过本次实验得到了以下数据:流量Q=10L/s,扬程H=30m,功率P=5kW。
根据这些数据可以计算出离心泵的效率η=75%。
同时,通过观察水泵的运转情况和各项参数数据的变化,可以发现当流量增大时,扬程和功率都会增加;当流量减小时,扬程和功率都会减小。
这说明离心泵在不同工况下具有不同的性能特点。
四、实验中遇到的问题及处理方法1. 实验中发现水泵运转声音较大,可能是由于设备老化或者使用时间过长导致。
解决方法是更换设备或进行维修保养。
2. 实验中发现流量计读数不稳定,可能是由于流量计故障或者管路堵塞导致。
解决方法是检查流量计和管路,并进行清洗维修。
五、实验总结通过本次实验,我们深入了解了离心泵的结构、工作原理以及性能特点,并掌握了离心泵的测试方法和常见故障处理方法。
同时,我们也发现了一些问题并采取了相应措施进行处理。
这次实验对我们今后从事相关领域研究具有重要意义。
离心泵性能实验报告(1)(总10页)离心泵是一种常用的流体机械,广泛应用于各种工业领域中。
本次实验旨在对离心泵的性能进行测试与分析,包括流量、扬程、效率等指标。
本文将分为实验目的、实验原理、实验方法、实验结果、实验分析以及实验结论六个部分。
一、实验目的1、了解离心泵的工作原理及分类。
2、测量离心泵的流量、扬程、效率等性能指标。
3、分析离心泵的性能曲线及工作状态。
4、掌握离心泵注意事项及安全知识。
二、实验原理离心泵是一种由转子和静叶轮组成的轴向流泵。
其工作原理是通过叶轮的高速旋转将物质吸入中心,并带动物质在离心力的作用下向外流动。
叶轮是离心泵主要的旋转部件,其结构形式多样,可以分为开式叶轮和闭式叶轮两种。
另外,根据叶轮的进口位置,离心泵还可以分为前置叶片泵和后置叶片泵两种。
离心泵的性能曲线是指在不同流量下,离心泵所能提供的最大扬程和效率的关系曲线。
其中最大扬程是指在某一流量下,泵所能提供的最大扬程高度;效率则是指在某一流量下,泵所能转换成流体能量的比例。
离心泵的性能曲线实际上反映了离心泵在不同工况下的性能和工作状态,是进行离心泵选择和设计的重要依据。
三、实验方法1、实验设备(1)离心泵一台(2)流量计、压力表等实验仪器(3)进出口管道及附件等2、实验步骤(1)检查实验设备的完好性及安全性,确定试验内容并准备所需仪器。
(2)将离心泵安装于实验台上,连接管道及附件,并根据所需实验流量调节泵的出口阀门。
(3)启动泵,并调整进水管道阀门实测所需流量,记录流量计及各压力表的数据。
(4)根据实验数据绘制离心泵的性能曲线,并分析曲线中的各项性能指标。
(5)实验结束后及时关闭水源及电源,并清洁实验设备。
四、实验结果1、原始数据流量(Q)(m³/h)压力(P)1(kPa) 压力(P)2(kPa) 效率(η)10 370 190 45%15 355 185 53%20 345 182 60%25 330 173 65%30 310 160 70%35 290 155 72%40 260 135 75%45 230 118 76%50 205 105 75%2、实验性能曲线由上表中数据得到离心泵的性能曲线如下:3、实验分析根据实验数据及曲线图可知,离心泵的最佳工作流量范围为20-40m³/h,此时泵的效率较高,且扬程逐渐增加。
离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。
二、实验原理1、气缚现象离心泵靠离心力输送液体。
离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。
若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。
所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。
同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。
2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。
图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。
设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。
但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。
由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。
在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。
离心泵特性曲线实验报告一、实验目的。
离心泵是一种常用的流体输送设备,其性能参数对于流体输送系统的设计和运行具有重要的影响。
本次实验旨在通过对离心泵的特性曲线进行测定,了解离心泵的性能特点及其在不同工况下的工作状态,为离心泵的选型和运行提供依据。
二、实验原理。
离心泵是利用离心力将流体加速并输送至出口的一种动能泵,其主要由叶轮、泵壳、轴承和密封等部件组成。
在离心泵运行时,叶轮受到驱动装置的转动,使流体产生离心力,从而加速流体并将其输送至出口。
离心泵的性能曲线通常包括流量、扬程、效率等参数,通过对这些参数的测定,可以全面了解离心泵在不同工况下的工作状态。
三、实验仪器与设备。
本次实验所使用的仪器设备包括离心泵、流量计、压力表、转速表等。
四、实验步骤。
1. 将离心泵与流量计、压力表、转速表等设备连接好,并按照实验要求进行调试和校准。
2. 开始进行实验测量,依次改变离心泵的转速,记录相应的流量、扬程和效率等参数。
3. 根据实验数据绘制出离心泵的特性曲线,并进行分析和讨论。
五、实验结果与分析。
通过实验测量和数据处理,得到了离心泵在不同转速下的特性曲线。
从曲线图中可以清晰地看出,随着转速的增加,离心泵的流量、扬程和效率等参数呈现出不同的变化规律。
具体分析如下:1. 流量与转速的关系,随着转速的增加,离心泵的流量呈现出逐渐增大的趋势。
当转速达到一定数值后,流量增长速度逐渐减缓。
2. 扬程与转速的关系,随着转速的增加,离心泵的扬程也呈现出逐渐增大的趋势。
但与流量不同的是,扬程的增长速度并不会随着转速的增加而减缓。
3. 效率与转速的关系,随着转速的增加,离心泵的效率呈现出先增大后减小的趋势。
在一定转速范围内,效率会达到最大值,超过这一范围后效率会逐渐下降。
六、实验结论。
通过本次实验,我们了解了离心泵特性曲线的测定方法,以及离心泵在不同工况下的性能特点。
实验结果表明,离心泵的流量、扬程和效率等参数与转速之间存在一定的关系,通过合理选择转速可以实现最佳的工作状态。
离心泵综合实验报告篇一:XX化工原理实验报告(离心泵性能实验)化工原理实验报告(离心泵性能实验)班级:姓名:同组人:XX年11月一、报告摘要本次实验通过测量离心泵工作时,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p、电机输入功率Ne以及流量Q这些参数的关系,根据公式NeQHe??=He?H压力表+H真空表+H0N轴=N电?电?转Ne=102N轴、、以及C0?u0/可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数与雷诺数Re??du?的变化规律作出C0-Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p,根据已知公式可以求出不同阀门开度下的He-Q关系式,并作图可以得到管路特性曲线图。
二、目的及任务①、了解离心泵的构造,掌握其操作和调节方法。
②、测定离心泵在恒定转速下的特征曲线,并确定泵的最佳工作范围。
③、熟悉孔板流量计的构造、性能及安装方法。
④、测定孔板流量计的孔流系数。
⑤、测定管路特征曲线。
三、实验原理1、离心泵特征曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图中的曲线。
由于流体流经泵是,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等等,因此,实际压头比理论压头小,且难以通过计算求得,因此常通过实验方法,直接测定其参数间的关系,并将测出的He-Q,N-Q,η-Q三条曲线称为离心泵的特性曲线。
另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。
(1)、泵的扬程He式中He?H压力表+H真空表+H0H压力表H真空表——泵出口处的压力,mH2O——泵入口处的真空度,mH2OH0——压力表和真空表测压口之间的垂直距离,H0=0.85m。
(2)、泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为?=NeN轴Ne=QHe?102式中 Ne——泵的有效功率,kW:3Q——流量,m/s;He——扬程,m;3kg/mρ——流体密度,。
离心泵的实验报告离心泵的实验报告引言:离心泵是一种常见的流体输送设备,广泛应用于工农业生产中。
本次实验旨在研究离心泵的工作原理、性能特点以及影响因素,通过实验数据的分析和对比,探讨离心泵的运行规律和优化方法。
一、实验目的本次实验的主要目的是:1. 了解离心泵的基本结构和工作原理;2. 掌握离心泵的性能参数测量方法;3. 研究离心泵运行时的流量、扬程和效率等性能指标的变化规律;4. 探讨离心泵的运行特点和优化方法。
二、实验装置和方法1. 实验装置:本次实验采用了一台标准离心泵,配备有流量计、压力表等测量仪器,以及水泵、水箱等辅助设备。
2. 实验方法:(1)调试设备:按照操作手册的要求,对实验装置进行调试和检查,确保设备正常运行。
(2)测量基本参数:通过调节进口阀门和出口阀门,使泵的进口压力、出口压力和流量达到稳定状态,记录下相应的数值。
(3)变换工况:按照实验要求,逐步改变进口阀门和出口阀门的开度,记录下不同工况下的参数变化。
(4)数据处理:根据实验数据,计算出离心泵的流量、扬程和效率等性能指标,并进行分析和对比。
三、实验结果与数据分析1. 流量与扬程的关系:通过实验数据的分析,可以得到离心泵的流量与扬程之间存在一定的关系。
在其他条件不变的情况下,随着扬程的增加,流量逐渐减小。
这是因为离心泵在提供一定扬程的同时,需要克服更大的阻力,从而减小了流量。
2. 流量与效率的关系:通过实验数据的对比,可以发现离心泵的流量与效率之间存在一定的关系。
在其他条件不变的情况下,随着流量的增加,效率逐渐降低。
这是因为离心泵在提供更大流量的同时,需要克服更大的摩擦阻力和涡流损失,从而降低了效率。
3. 运行特点与优化方法:通过实验数据的分析和对比,可以得出离心泵的运行特点和优化方法。
在实际应用中,为了提高离心泵的效率和稳定性,可以采取以下措施:(1)合理选择泵的类型和型号,根据实际工况需求进行匹配;(2)控制流量和扬程的匹配,避免过大或过小的工况;(3)定期检查和维护离心泵的运行状态,保持设备的良好工作状态;(4)根据实际情况,调整泵的进口和出口阀门的开度,以达到最佳运行状态。
.北京化工大学化工原理实验报告实验名称:离心泵实验班级:化工****姓名: ***学号: 20110111** 序号: *同组人: *** *** ***设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第1套实验日期: 2013-**-**一、实验摘要本实验使用FFRS Ⅲ型第1套实验设备,通过测量离心泵进出口截面的流量、压强、电机输入功率等量,根据He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f 、Pa =0.9P 电 、η=Pe Pa ⁄得到 He~q v 、Pa~q v 、η~q v 关系曲线,即离心泵特性曲线;同理得管路的特性曲线;通过涡轮流量计测得的管路流量,根据C o =q v A 0√ρ2∆p 和R e =duρμ⁄得到孔板流量计的孔流系数C o 与雷诺数R e ,从而绘制C o 和R e 曲线图。
该实验提供了一种测量泵和管路的特性曲线以及标定孔板流量计孔流系数的的方法,其结果可为泵、管路和孔板流量计的实际应用与工艺设计提供重要参考。
关键词:离心泵,特性曲线,孔板流量计二、实验目的1. 了解离心泵的构造,掌握其操作和调节方法。
2. 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。
3. 了解孔板流量计的构造和原理,测定其孔流系数。
4. 测定管路特性曲线。
5. 测定相同转速下双泵并联特性曲线三、实验原理1. 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。
离心泵性能是指在叶轮结构、尺寸、转速等固定的情况下,泵输送液体具有的特性。
其中He~q v 、Pa~q v 、η~q v 关系曲线称为离心泵特性曲线。
根据此曲线可以求出最佳操作范围,作为选泵的依据。
(1) 泵的扬程He扬程是离心泵对单位牛顿流体作的有效功。
在泵的进出管路取两个截面,忽略流体阻力,列机械能衡算可知扬程为:He =p 2ρg −p1ρg +∆Z +u 22−u 122g+∑h f =H 2−H 1+∆Z +u 22−u 122gm式中,H 2——出口截面静压能,mH 20;H 1——进口截面静压能,mH 20;(2)泵的有效功率和效率轴功率取输入电机功率Pa 的90%,即:Pa =0.9P 电 kW 有效功率:P e =(p 2−p 1)q v 1000⁄=ρgq v H e 1000⁄ kW 泵的效率:η=Pe Pa ⁄ 总效率:η总=Pe P 电⁄通过仪器仪表直接测量电功率、进出口截面静压能、液体流量、温度等。
即可确定该泵性能。
2.管路特性曲线的测定管路特性是指在流体输送管路不变的情况下,管路需要的能量H=流体损失的能量+流体增加的能量。
其中H~q v 关系曲线称为管路特性曲线,与泵无关,只受管路与流体影响。
在管路的起点和终点取两个截面,当管径相同时,且管径流动达到阻力平方区时,根据机械能衡算式可知管路需要的能量为: H =∆Z +∆pρg+∆u 22g+ ∑h f =A +Bq v 2 m在任何一个实际流量点,离心泵传递给液体的有效能量He ,等于管路在该流量q v 下运送流体所需要的能量H ,即H =He ,所以H 的测量原理同He ,即可得到管路特性曲线——H~q v 曲线3. 孔板流量计孔流系数的测定根据伯努利方程,在孔板前后平行流线处取两个截面,然后用孔口截面代替后一个截面并修正,最后得到孔板流量计算式为q v=C0A0√2∆pρm3s⁄由此得孔流系数C o=q vA0√ρ2∆p,式中,A0——孔口的面积,m2。
其中q v可由涡轮流量计测得。
孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径d0与管径d1比和雷诺数R e共同决定,具体数值由实验确定。
当d0d1⁄一定,雷诺数R e超出某个值后,C0就接近于定值。
通常工业上选用孔板流量计时应尽量使C0为常数的R e下使用。
连接管道的雷诺数R e=duρμ⁄4. 离心泵并联特性曲线当单台泵的输液能力达不到目标流量时,有时可以选择双泵并联或串联。
对于低阻输送管路,并联优于串联组合;对于高阻输送管路,则采用串联组合更为适合。
本套设备可通过切换阀门,测定双泵并联的性能。
理想情况下,双泵性能可以由单泵性能合成得到:单泵拟合:H e=A−Bq v2 m并联组合:He并=A−B(2q v)2 m串联组合:He串=A/2−Bq v2 /2 m四、实验流程和设备图离心泵实验带控制点工艺流程1、水箱2、离心泵3、涡轮流量计4、管路切换阀5、孔板流量计6、流量调节阀7、变频仪TI01——水温度/℃;QI02——水流量/m3·h-1;∆PI03——压降/kPaNI04——电功率/kW;PI05——出口表压/ mH20;PI06——入口表压/ mH20实验介质:水(循环使用)。
⁄型单级离心泵;研究对象:粤华WB70055孔板流量计,锐孔直径d0=18.0mm,管道直径d1=27.0mm仪器仪表:涡轮流量计,LWGY-25型,0.6~10m3·h-1,精确度等级0.5;温度计,Pt100,0~200℃,精度等级0.2;压差传感器,WNK3051型,-20~100kPa,精确度等级0.2,测势能差Δp;显示仪表:AI-708等,精度等级0.1;变频仪:西门子MM420型;天平,0.01g;量筒等。
控制系统:控制电柜+电脑+数据采集软件,需380VAC+220VAC五、实验操作1. 关流量调节阀,打开除层流管以外的主管路切换阀,按电柜和变频仪绿色按钮启动水泵(本实验泵处于水槽下方,故无需灌泵);2. 固定转速(50或40Hz),通过调节阀改变水量从0到最大(流量梯度参照老师所给预习材料,以下同),记录数据完成泵性能实验;3. 固定调节阀开度(全开、0.75开度、0.5开度),通过变频仪调节水流量从较大(变频仪50Hz)到0.15m3/h 左右,完成管路实验;4. 调变频仪为50Hz,关闭流量调节阀,关闭孔板管路以外的主管路切换阀,开孔板引压阀和压差传感阀排气,排气完毕在关闭压差传感器排气阀,手工记录零点ΔP0,最后通过调节阀改变水流量从0.6m3/h到最大,记录数据完成孔板实验;5. 切换阀门形成泵并联组合,频率均为50Hz,通过阀门调节水流量从0到最大,两组共同记录相关数据(功率等于两者之和,流量取平均值),完成并联实验(性能与管路无关,可打开层流管外单的主管路切换阀,实际操作打开比较好);6. 实验结束,按变频仪红色按钮停泵,关闭流量调节阀、压差传感器排气阀,做好卫生工作。
注意事项:(1)泵实验通过阀门改变流量,管路实验通过变频仪改变流量;(2)泵并联实验时需借用临组水泵,同时需关闭其流量调节阀;(3)孔板压降波动到平均值时记录六、实验数据表格及计算举例(注:黑色数据为原始数据,蓝色数据为过程量,红色数据为结果值)1.离心泵特性Ⅰ实验数据表(50Hz,2850r/min):ΔZ=0.2mH2O,d1=0.042m,d2=0.027m以第三组数据为例进行计算:q v =0.60m 3h ⁄,p 2=21.5mH 2O ,p 1=0.4mH 2O ,P 电=0.44kW ,T =19.9℃ 当T =19.9℃ 时,查表得,水的密度ρ=996.3kg/m 3进口流速u 1=4×q v πd 12=4×0.603600×π×0.0422=0.12 m/s ,进口流速u 2=4×q v πd 22=4×0.603600×π×0.0272=0.29 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=21.5−0.4+0.2+0.292−0.1222×9.81=21.3m轴功率Pa =0.9P 电 =0.9×0.44=0.40kW有效功率P e =ρgq v H e 1000⁄=996.3×9.81×0.60×21.3/(3600×1000)=0.035kW 泵的效率η=Pe Pa ⁄=0.0350.40=⁄8.8%同理求出其余各组的扬程He 、轴功率Pa 和泵的效率η3. 离心泵特性Ⅱ实验数据表(40Hz,2850r/min ):ΔZ=0.2mH 2O,d 1=0.042m,d 2=0.027m以第三组数据为例进行计算:q v =1.02m 3h ⁄,p 2=13.1mH 2O ,p 1=0.3mH 2O ,P 电=0.29W ,T =20.8℃ 当T =20.8℃ 时,查表得,水的密度ρ=996.1kg/m 3进口流速u 1=4×q v πd 12=4×1.023600×π×0.0422=0.20 m/s ,进口流速u 2=4×q v πd 22=4×1.023600×π×0.0272=0.49 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=13.1−0.3+0.2+0.492−0.2022×9.81=13.0m轴功率Pa =0.9P 电 =0.9×0.29=0.26kW有效功率:P e =ρgq v H e 1000⁄=996.1×9.81×1.02×13.0(3600×1000)⁄=0.036kW 泵的效率:η=Pe Pa ⁄=0.0360.26=13.8%⁄同理求出其余各组的扬程He 、轴功率Pa 和泵的效率η212以第三组数据为例进行计算:频率为42Hz ,q v =2.05m 3h ⁄, p 2=13.9mH 2O , p 1=0.2mH 2O , T =21.6℃进口流速u 1=4×q v πd 12=4×2.053600×π×0.0422=0.41 m/s ,进口流速u 2=4×q v πd 22=4×2.053600×π×0.0272=0.99 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=13.9−0.2+0.2+0.992−0.4122×9.81=13.9m同理求出其余各组需要能量H6.管路特性Ⅰ数据表(流量调节阀固定2/4开度):ΔZ=0.2mH2O,d1=0.042m,d2=0.027m以第三组数据为例进行计算:频率为42Hz,q v=4.08m3h⁄, p2=11.7mH2O, p1=−0.3mH2O, T=21.8℃进口流速u1=4×q vπd12=4×4.083600×π×0.0422=0.82m/s,进口流速u2=4×q vπd22=4×4.083600×π×0.0272=1.98 m/s扬程He=H2−H1+∆Z+u22−u122g =11.7−(−0.3)+0.2+1.982−0.8222×9.81=12.4m同理求出其余各组需要能量H212以第三组数据为例进行计算:频率为42Hz ,q v =6.05m 3h ⁄, p 2=8.7mH 2O , p 1=−1.0mH 2O , T =22.2℃进口流速u 1=4×q v πd 12=4×6.053600×π×0.042=2.94m/s ,进口流速u 2=4×q v πd 22=4×6.053600×π×0.027=1.21 m/s需要能量H =H 2−H 1+∆Z +u 22−u 122g=11.7−(−0.3)+0.2+2.94−1.2122×9.81=10.3m同理求出其余各组需要能量H002−4210−4m 2以第三组数据为例进行计算:q v =1.01m 3h ⁄, ∆P =1.16k Pa, T =23.1℃当T =23.1℃ 时,查表得,水的密度ρ=995.5kg/m 3,粘度μ=951.85μPa/s 水流速u =4×q v πd 02=4×1.013600×π×0.0272=0.49m/s雷诺数R e =du ρμ⁄=0.027×0.49×995.5951.85×10−6=13837孔流系数C o =q v A 0√ρ2∆p = 1.013600×2.54×10−4√995.52×1160=0.72面积比m =A 0A =2.545.73=0.44,由m =0.44和R e =13837查图(见化工原理图1-52)可得:孔流系数经验值为0.71同理求出其余各组的雷诺数R e 、孔流系数C o 与孔流系数经验值9. 双泵并联特性实验数据表(50Hz+50Hz ):ΔZ=0.2mH 2O,d 1=0.042m,d 2=0.027m以第三组数据为例进行计算:q v =2.02m 3h ⁄, p 2=20.8mH 2O , p 1=0.3mH 2O ,P 电=0.91, T =25.2℃查表得,当T =25.2℃ 时,水的密度ρ=995.0kg/m 3 进口流速u 1=4×q v πd 12=4×2.023600×π×0.0422=0.41 m/s ,进口流速u 2=4×q v πd 22=4×2.023600×π×0.0272=0.98 m/s扬程He =H 2−H 1+∆Z +u 22−u 122g=20.8−0.3+0.2+0.982−0.4122×9.81=20.8m轴功率Pa =0.9P 电 =0.9×0.91=0.82kW有效功率P e =ρgq v H e 1000⁄=995.0×9.81×2.02×20.8(3600×1000)⁄=0.11kW 泵的效率η=Pe Pa ⁄=0.110.82=13.9%⁄同理求出其余各组的扬程He 、轴功率Pa 和泵的效率η七、实验结果作图及分析1. 分别在同一坐标系内做出50Hz 和40Hz 时单泵的特性曲线,并拟合关系式。