四种命题及其相互关系
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
§1.7四种命题一、四种命题:交换原命题的条件和结论,所得的命题是逆命题。
同时否定原命题的条件和结论,所得的命题是否命题。
交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题。
把下列命题改写成“若a则b”的形式,并写出它的逆命题,否命题,逆否命题:①负数的平方是正数;原命题:若一个数是负数,则它的平方是正数。
真命题逆命题:若一个数的平方是正数,则它是负数。
假命题否命题:若一个数不是负数,则它的平方不是正数。
假命题逆否命题:若一个数的平方不是正数,则它不是负数。
真命题②在实数范围内,如果a b >,那么ac bc 22>。
原 命 题:若a b >,则ac bc 22>。
假命题逆 命 题:若ac bc 22>,则a b >。
真命题否 命 题:若a b ≤,则ac bc 22≤。
真命题逆否命题:若ac bc 22≤,则a b ≤。
假命题规律:原命题与逆否命题的真值相同.............;逆命题与否命题.......的真值相同.....。
二、四种命题间的关系:1、命题“若a b >,则a c b c ++>”的逆否命题是(A )若a b <,则a c b c ++<(B )若a b ≤,则a c b c ++≤(C )若a c b c ++<,则a b <(D )若a c b c ++≤,则a b ≤2、给出下列四个命题:①若x y + 6,则x ¹2或y ¹4;②“若xy =1,则x ,y 互为倒数”的逆命题;③“四边相等的四边形是正方形”的否命题;④“梯形不是平行四边形”的逆否命题.其中的真命题是_____________(填写所有符合要求的序号).3、若p的逆命题是r,r的否命题是s,则s是p的否命题的_____________________.注意:①互为逆否关系的两个命题真假性相同,即原命...题与逆否命题同真假..........,所以,这四.........;否命题与逆命题同真假种命题中真命题的个数只可能是0或2或4.②对于否定形式的命题不方便判定其真假性,可以利用其逆否命题代替.路边苦李王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子,小伙伴们纷纷去摘取果子,只有王戎站在原地不动,有人问王戎为什么?王戎回答说:“树在道边而多子,此必苦李。
原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互四种命题的形式1、命题什么叫命题?其中,判断为真的语句,叫真命题,判断为假的语句,叫假命题。
命题的结构?(条件+结论)如果…,那么…。
问题1:我是你的老师。
真X >15 不是命题 全等三角形的面积相等。
真 3是10的约数吗? 不是命题 两直线平行,同位角相等。
真 上课请不要讲话 不是命题 注:(1)疑问句,祈使句,感叹句不是命题。
(2)要判断一个语句是不是命题,关键是能不能判断真假。
(3)判断命题真假的方法有:逻辑推理法、要证明命题是假命题,只需要举出满足条件,不满足结论的例子即可;要证明命题为真,就需要证明满足命题的条件,就一定能推出命题的结论。
2、推出关系如果α成立可以推出β成立,那么就说由α可以推出β,记作:α=>β,换言之,α=>β表示以α为条件、β为结论的命题是真命题。
如果α成立不能推出β成立,记作:α≠>β,换言之,α≠>β表示以α为条件、β为结论的命题是假命题。
3、四种命题形式问题2:判断下列命题的真假,你能发现各命题之间有什么关系?①如果两个三角形全等,那么它们的面积相等; (如果α,那么β) ②如果两个三角形的面积相等,那么它们全等; (如果β,那么α) ③如果两个三角形不全等,那么它们的面积不相等; (如果α,那么β) ④如果两个三角形的面积不相等,那么它们不全等; (如果β,那么α) 注:1 两个命题为互逆命题或互否命题,它们的真假性没有关系2两个命题为互为逆否命题,它们的真假性相同3若原命题为真,它的逆命题和否命题可以为真也可以为假;4在同一个命题的四种命题中,真命题的个数要么是0个,要么是2个,要么是4个。
例1.写出命题“若a=0,则ab=0”的逆命题、否命题、逆否命题,并判断各命题的真假。
例2.写出命题“两直线平行,同位角相等”的逆命题、否命题、逆否命题,并判断各命题的真假。
四种命题的相互关系
四种命题指原命题、逆命题、否命题和逆否命题,接下来给大家分享四种命题的相互关系,供参考。
四种命题的相互关系
四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性。
②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
命题的形式
1、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
2、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3、对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
四种命题及其相互关系
龙诗春湖南省衡南县第五中学
教学重点:四种命题及其相互关系
教学难点:命题间关系及否命题
教学目标:理解四种命题的意义及其相互关系,会写一个命题的逆命题、否命题、逆否命题,能够利用命题间关系解决有关问题。
教学过程
1.创设情境
下列四个命题中,命题⑴与命题⑵⑶⑷的条件和结论之间分别有什么关系?
⑴若f(x)是正弦函数,则f(x)是周期函数;
⑵若f(x)是周期函数,则f(x)是正弦函数;
⑶若f(x)不是正弦函数,则f(x)不是周期函数;
⑷若f(x)不是周期函数,则f(x)不是正弦函数。
任意两个命题之间的相互关系是什么?
2.形成概念
互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这样的两个命题。
其中一个称为原命题,另一个称为原命题的逆命题。
互否命题:一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题。
其中一个称为原命题,另一个称为原命题的否命题。
互为逆否命题:一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题。
一个称为原命题,另一个称为原命题的逆否命题。
原命题(若p,则q)逆命题(若q,则p)
否命题(若⌝p,则⌝q)逆否命题(若⌝q,则⌝p)
以“若x2-3x+2=0,则x=2”为原命题,写出它的逆命题、否命题与逆否命题,并判断这些命题的真假。
两个命题互为逆否命题,它们有相同的真假性.
两个命题为互逆命题或互否命题,它们的真假性没有关系.
3.应用举例
例1 写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。
⑴末位数是0的整数能被5整除
⑵x,y都小于0,则xy<0
例2 判断命题“若x+y≤4或xy ≤4,则x≤2或y≤2”的真假。
例3 证明:若x2+y2=0,则x=y=0。
4.小结
四种命题的形式。
四种命题间的关系。
四种命题间的真假性关系及其运用。
如果直接判断一个命题的真假性有困难,可以通过判断它的逆否命题的真假达到判断的目的。
5.作业
P8 A2,4,B1。