材料力学十四动载荷
- 格式:pptx
- 大小:398.50 KB
- 文档页数:27
专业 学号 姓名 日期 评分第一章 绪论一、是非判断题1.1 材料力学的研究方法与理论力学的研究方法完全相同。
( 错 ) 1.2 内力只作用在杆件截面的形心处。
( 错 ) 1.3 杆件某截面上的内力是该截面上应力的代数和。
( 错 ) 1.4 确定截面内力的截面法,适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普遍情况。
( 对 ) 1.5 根据各向同性假设,可认为材料的弹性常数在各方向都相同。
( 对 ) 1.6 根据均匀性假设,可认为构件的弹性常数在各点处都相同。
( 对 ) 1.7 同一截面上正应力σ与切应力τ必相互垂直。
( 对 ) 1.8 同一截面上各点的正应力σ必定大小相等,方向相同。
( 错 ) 1.9 同一截面上各点的切应力τ必相互平行。
( 错 ) 1.10 应变分为正应变ε和切应变γ。
( 对 ) 1.11 应变为无量纲量。
( 对 ) 1.12 若物体各部分均无变形,则物体内各点的应变均为零。
( 对 ) 1.13 若物体内各点的应变均为零,则物体无位移。
( 错 ) 1.14 平衡状态弹性体的任意部分的内力都与外力保持平衡。
( 对 ) 1.15 题1.15图所示结构中,AD 杆发生的变形为弯曲与压缩的组合变形。
( 对 ) 1.16 题1.16图所示结构中,AB 杆将发生弯曲与压缩的组合变形。
( 错 )二、填空题1.1 材料力学主要研究 杆件 受力后发生的 变形 ,以及由此产生的 应力,应变 。
1.2 拉伸或压缩的受力特征是 外力的合力作用线通过杆轴线 ,变形特征是 沿杆轴线伸长或缩短 。
B题1.15图题1.16图专业 学号 姓名 日期 评分1.3 剪切的受力特征是受一对等值,反向,作用线距离很近的力的作用 ,变形特征是 沿剪切面发生相对错动 。
1.4 扭转的受力特征是外力偶作用面垂直杆轴线 ,变形特征是 杆轴线的相对转动 。
1.5 弯曲的受力特征是 外力作用线垂直杆轴线 ,变形特征是 梁轴线由直线变为曲线 。
材料力学(金忠谋)第六版答案第14章第十三章 动载荷13-1 铸铁杆AB 长m l 8.1=,以等角速度绕垂直轴O -O 旋转如图示。
已知铸铁的比重3/74m kN =γ,许用拉应力[]MPa 40=σ,材料的弹性模量E =160 Gpa 。
试求此杆的极限转速,并计算此杆在转速m r n /100=时的绝对伸长。
解: (1) 极限转速m rn s s l g l g A A Ndl gA dr r qd r Nd x r gAdr ma r qd x r a jx dl n n 1092260137.114175.130799.010*******.92)2(][2][)2(21][)2(21)()()()()(235222222222====⨯⨯⨯⨯⨯=≤≤≤======⎰πωωγσωσωγσσωγωγω(2) 当n =1000m rcm m Eg l r EA r Nd l s n l 0252.01052.28.91016039.072.104107423)2(2)(2172.1046010002602492233220=⨯=⨯⨯⨯⨯⨯⨯⨯===∆=⨯==-⎰ωππω(2)吊索: MPa A P d d 55.2105276.14max=⨯==-σ13-3 轴上装一钢质圆盘,盘上有一圆孔。
若轴与盘以s140=ω的匀角速度旋转,论求轴内由这一圆孔引起的最大正应力。
解:23max max 22225.1212.021*********.01060041411060064003.03.047800640404.0mMN W M mN L P N Na gA ma P s m r a z d d d d n n d n =⨯⨯==⋅=⨯⋅===⨯⨯⨯⨯=⋅⋅⋅===⨯==πσπδγω13-4 飞轮轮缘的平均直径D =1.2m ,材料比重3/72m kN =γ,弹性模量GPa E 200=,轮缘与轮幅装配时的过盈量mmD2.0=∆,若不计轮相的影响,求飞轮允许的最大转速。
第14章动载荷14.1 动载荷的概念及分类在以前各章中,我们主要研究了杆件在静载荷作用下的强度、刚度和稳定性的计算问题。
所谓静载荷就是指加载过程缓慢,认为载荷从零开始平缓地增加,以致在加载过程中,杆件各点的加速度很小,可以忽略不计,并且载荷加到最终值后不再随时间而改变。
在工程实际中,有些高速旋转的部件或加速提升的构件等,其质点的加速度是明显的。
如涡轮机的长叶片,由于旋转时的惯性力所引起的拉应力可以达到相当大的数值;高速旋转的砂轮,由于离心惯性力的作用而有可能炸裂;又如锻压汽锤的锤杆、紧急制动的转轴等构件,在非常短暂的时间内速度发生急剧的变化等等。
这些部属于动载荷研究的实际工作问题。
实验结果表明,只要应力不超过比例极限,虎克定律仍适用于动载荷下应力、应变的计算,弹性模量也与静载下的数值相同。
动载荷可依其作用方式的不同,分为以下三类:1.构件作加速运动。
这时构件的各个质点将受到与其加速度有关的惯性力作用,故此类问题习惯上又称为惯性力问题。
2.载荷以一定的速度施加于构件上,或者构件的运动突然受阻,这类问题称为冲击问题。
3.构件受到的载荷或由载荷引起的应力的大小或方向,是随着时间而呈周期性变化的,这类问题称为交变应力问题。
实践表明:构件受到前两类动载荷作用时,材料的抗力与静载时的表现并无明显的差异,只是动载荷的作用效果一般都比静载荷大。
因而,只要能够找出这两种作用效果之间的关系,即可将动载荷问题转化为静载荷问问题处理。
而当构件受到第三类动载荷作用时,材料的表现则与静载荷下截然不同,故将在第15章中进行专门研究。
下面,就依次讨论构件受前两类动载荷作用时的强度计算问题。
14.2 构件作加速运动时的应力计算本节只讨论构件内各质点的加速度为常数的情形,即匀加速运动构件的应力计算。
14.2.1 构件作匀加速直线运动设吊车以匀加速度a吊起一根匀质等直杆,如图14-1(a)所示。
杆件长度为l,横截面面积为A,杆件单位体积的重量为 ,现在来分析杆内的应力。
材料力学动载荷范文材料力学是研究物质在受力下变形和断裂的科学,动载荷是指所施加在物体上的变化的力,包括动态载荷、瞬变载荷和疲劳载荷等。
本文将重点讨论材料力学动载荷的相关知识。
材料力学动载荷主要包括冲击载荷、振动载荷和疲劳载荷。
冲击载荷是指物体在一瞬间所受到的非常大的力,其作用时间很短。
振动载荷是指物体在一定时间内重复作用的力,其作用时间相对较长。
疲劳载荷是指物体在重复作用下逐渐累积的力,导致材料疲劳失效。
冲击载荷是材料力学中研究的重要内容之一、冲击载荷是一种非常短暂的载荷作用,其载荷幅值很大,而载荷作用时间相对较短。
受到冲击载荷作用的材料容易发生塑性变形或破坏。
在冲击载荷下,材料的变形和破坏通常与其断裂韧性密切相关。
冲击载荷的作用时间短暂,会导致快速的应变速率,进而引发材料的高速塑性变形和损伤。
材料的断裂韧性则决定了其在冲击载荷下的抗裂性能。
振动载荷是指物体在一定时间内重复作用的载荷。
振动载荷是材料力学中的重要分支之一、振动载荷对材料的影响主要体现在疲劳寿命、共振和谐振等方面。
在振动载荷作用下,材料会发生疲劳损伤,最终导致疲劳失效。
材料的疲劳寿命取决于应力幅值、平均应力水平和载荷频率等因素。
共振是指物体在受到与其固有频率相同的振动载荷作用时,会发生剧烈的振动现象。
共振往往会导致物体产生过大的振幅,并可能引发断裂和破坏。
谐振是指物体在受到周期性载荷作用下,其振动与载荷的周期保持一致。
谐振现象也可能导致材料的破坏。
疲劳载荷是指物体在受到重复作用下逐渐累积的载荷。
疲劳载荷是材料力学中研究的重要内容之一、在疲劳载荷下,材料会逐渐累积损伤,导致材料的疲劳失效。
疲劳失效表现为材料在较小的应力幅值下发生裂纹并扩展,最终导致断裂。
材料的疲劳性能受到应力幅值、平均应力水平、载荷频率和应力比等因素的影响。
总的来说,材料力学动载荷的研究对于材料的设计和使用具有重要的意义。
不同的载荷类型会引发不同的材料行为和破坏机制。