二阶动态电路响应的研究
- 格式:ppt
- 大小:1.64 MB
- 文档页数:13
实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。
2.研究二阶系统分别工作在等几种状态下的阶跃响应。
3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。
二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。
2.双踪低频慢扫示波器。
四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。
其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。
改变元件参数Rx大小,可研究不同参数特征下的时域响应。
当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。
五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。
此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。
(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。
(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。
(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。
(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。
自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。
二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。
特征根的实部决定了系统的稳定性,实部小于零时系统稳定。
2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。
三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。
2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。
四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。
根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。
2.连接模拟输入信号。
在搭建的二阶系统的输入端接入一个阶跃信号发生器。
3.连接模拟输出信号。
在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。
4.调整增益和特征根。
通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。
记录实际调整参数的数值。
5.使用MATLAB进行仿真绘制。
根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。
6.对比分析实际曲线与仿真曲线。
通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。
五、实验结果与分析1.实际曲线的绘制结果。
根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。
2.仿真曲线的绘制结果。
利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。
3.实际曲线与仿真曲线的对比分析。
通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。
六、实验讨论与结论1.实验过程中遇到的问题。
实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。
2. 进一步学习实验系统的使用。
3. 学会根据系统的阶跃响应曲线确定传递函数。
4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1)欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。
(1)性能指标:: 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间tS最小时间。
超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。
单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。
峰值时间tP :结构参数ξ:直接影响单位阶跃响应性能。
(2)平稳性:阻尼比ξ越小,平稳性越差长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间tS调节时间t也长,快速性差。
ξ=0.7调节时间最短,快速性最好。
ξ=0.7时超调量σ%<5%, S平稳性也好,故称ξ=0.7为最佳阻尼比。
2)临界阻尼二阶系统(即ξ=1)系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。
3)无阻尼二阶系统(ξ=0时) 此时系统有两个纯虚根。
4)过阻尼二阶系统(ξ>1)时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。
三、 实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:其中,ζ 和ωn 对系统的动态品质有决定的影响。
搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:式中, T=RC ,K=R2/R1。
实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。
2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。
4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。
二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。
2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。
图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。
图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。
试分别写出系统的误差响应表达式,并估算其性能指标。
图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。
将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。
通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。
图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。
比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。
其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。
二阶系统的时间响应及动态性能介绍二阶系统是指具有两个自由度的动力系统,例如二阶电路、二阶机械系统等。
在控制系统和信号处理的领域中,二阶系统有着广泛的应用。
二阶系统的时间响应和动态性能是评价系统性能的重要指标之一在阶跃信号输入时,二阶系统的时间响应可以分为三个阶段:超调阶段、振荡阶段和稳定阶段。
超调阶段是指系统在初期反应过程中,输出信号的幅值超过了稳态值。
振荡阶段是指系统在超调过程之后,输出信号会出现一定的振荡现象。
稳定阶段是指系统输出信号逐渐趋于稳定的阶段。
超调量是指系统在初期反应过程中,输出信号的峰值与稳态值之间的差值,通常用百分比表示。
超调量越小,系统的动态性能越好。
调节时间是指系统从初始状态到达稳态的时间。
当输出信号接近稳态值时,调节时间结束。
调节时间越短,系统的动态性能越好。
上升时间是指系统从初始状态到达信号波形上升至稳定值的时间。
上升时间越短,系统的动态性能越好。
峰值时间是指系统输出信号达到超调量峰值的时间。
峰值时间越短,系统的动态性能越好。
除了上述指标外,二阶系统的频率响应和阶数也是评价系统性能的重要指标之一、频率响应是指系统对不同频率的输入信号的响应特性。
系统的阶数表示系统的自由度,同时也反映了系统的复杂性。
综上所述,二阶系统的时间响应和动态性能是评价系统性能的重要指标。
不同的二阶系统在时间响应和动态性能上有不同的特点和表现。
对于
不同应用场景的二阶系统,我们可以根据需要选择合适的指标和方法进行评估和优化,以提高系统的性能和效果。
实验十二 二阶动态电路响应的研究一、实验目的1. 测试二阶动态电路的零状态响应和零输入响应, 了解电路元件参数对响应的影响。
2. 观察、分析二阶电路响应的三种状态轨迹及其特点, 以加深对二阶电路响应的认识与理解。
二、原理说明一个二阶电路在方波正、负阶跃信号的激励下,可获得零状态与零输入响应,其响应的变化轨迹决定于电路的固有频率。
当调节电路的元件参数值,使电路的固有频率分别为负实数、共轭复数及虚数时,可获得单调地衰减、衰减振荡和等幅振荡的响应。
在实验中可获得过阻尼,欠阻尼和临界阻尼这三种响应图形。
简单而典型的二阶电路是一个RLC 串联电路和GCL 并联电路,这二者之间存在着对偶关系。
本实验仅对GCL 并联电路进行研究。
三、实验设备四、实验内容动态电路实验板与实验十一相同,如图11-3所示。
利用动态电路板中的元件与开关的配合作用,组成如图12-1所示的GCL 并联电路。
令R 1=10K Ω,L =4.7mH , C =1000PF ,R 2为10K Ω可调电 阻。
令脉冲信号发生器的输出为 U m =1.5V ,f =1KHz 的方波脉冲, 通过同轴电缆接至图中的激励端, 同时用同轴电缆将激励端和响应 输出接至双踪示波器的Y A 和Y B两个输入口。
图 12-11. 调节可变电阻器R 2之值, 观察二阶电路的零输入响应和零状态响应由过阻尼过渡到临界阻尼,最后过渡到欠阻尼的变化过渡过程,分别定性地描绘、记录响应的典型变化波形。
2. 调节R 2使示波器荧光屏上呈现稳定的欠阻尼响应波形, 定量测定此时电路的衰减常数α和振荡频率ωd 。
3. 改变一组电路参数,如增、减L 或C 之值,重复步骤2的测量,并作记录。
随后仔五、实验注意事项1. 调节R2时,要细心、缓慢,临界阻尼要找准。
2. 观察双踪时,显示要稳定,如不同步,则可采用外同步法触发(看示波器说明)。
六、预习思考题1. 根据二阶电路实验电路元件的参数,计算出处于临界阻尼状态的R2之值。
一、实验目的1. 掌握使用Multisim软件进行动态电路仿真的基本方法。
2. 理解并验证一阶、二阶动态电路的基本特性。
3. 分析电路参数对动态电路响应的影响。
4. 通过仿真实验,加深对动态电路理论知识的理解。
二、实验原理动态电路是指电路中元件的参数(如电阻、电容、电感等)随时间变化的电路。
动态电路的特性主要取决于电路的结构和元件参数。
本实验主要研究一阶和二阶动态电路的响应特性。
三、实验仪器1. PC机一台2. Multisim软件四、实验内容1. 一阶动态电路仿真(1)搭建RC电路使用Multisim软件搭建一个RC电路,电路参数如下:R=1kΩ,C=1μF。
将电路连接到函数信号发生器上,输出一个5V的方波信号。
(2)仿真分析① 零输入响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
② 零状态响应:将电容C的初始电压设为0V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
③ 完全响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。
2. 二阶动态电路仿真(1)搭建RLC电路使用Multisim软件搭建一个RLC电路,电路参数如下:R=1kΩ,L=1mH,C=1μF。
将电路连接到函数信号发生器上,输出一个5V的方波信号。
(2)仿真分析① 零输入响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
② 零状态响应:将电感L的初始电流设为0A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
③ 完全响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。
五、实验结果与分析1. 一阶动态电路(1)零输入响应:电容电压uc随时间呈指数衰减,时间常数τ=1s。
(2)零状态响应:电容电压uc随时间呈指数增长,时间常数τ=1s。
(3)完全响应:电容电压uc随时间呈指数衰减和增长,时间常数τ=1s。
实验二、二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。
定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。
2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。
二、实验设备1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。
再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。
若改变系统的参数,还可进一步分析研究参数对系统性能的影响。
2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。
2) 检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。
3)连接被测量典型环节的模拟电路。
电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。
检查无误后接通电源。
4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。
5)鼠标单击按钮,弹出实验课题参数设置对话框。
在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。
《工程控制基础》课程基础实验指导书电子科技大学目录实验一典型环节动态特性分析 (3)实验二二阶系统阶跃响应分析 (7)实验三系统频率特性分析 (10)实验四控制系统校正 (14)实验一 典型环节动态特性分析一、实验目的本实验的目的是运用电子模拟线路构成比例、惯性、积分等典型环节,并研究这些环节及电路的动态特性。
即:1、掌握运用运算放大器构成各种典型环节的方法,观察比例、惯性、积分环节的阶跃响应,并分析其动态性能。
2、了解参数变化对典型环节动态特性的影响。
二、实验原理1、比例环节比例环节也称为放大环节,其方框图如图1-1(a)所示。
传递函数为:G(S) =)()(S Ur S Uc = K 比例环节模拟线路如图1-1(b)所示。
这种线路也称作比例或P 调节器。
其中:K =1R R = 2() (b )图1-1 比例环节的模拟图U rt t (a)输入波形 (b)输出波形图1-2 比例环节波形图改变R 1的值(U r 一定),观察其阶跃响应曲线。
若按图 (b)接线,设U r 为-5V ,则图(b)的输入U r 和输出U c 实验波形如图1-2所示。
2、一阶惯性环节一阶惯性环节的方框图如图1-3(a)所示。
传递函数为:G(S) =)()(S Ur S U c = 1TS K一阶惯性环节含有弹性或容性储能元件和阻性耗能元件,其输出落后于输入,与比例环节相比,此环节具有“惯性”,在阶跃输入时,输出不能立即(需经历一段时间)接近所要求的阶跃输出值,因此其输出不可能显现线形,而是一指数函数图象。
惯性大小由时间常数T 衡量。
一阶惯性环节模拟线路图如图1-3(b )所示。
这种线路也称作惯性或T 调节器。
其中:K = 01R R T = R 1C分别改变R 1、C 的值(U r 一定),观察其阶跃响应曲线。
一阶惯性环节的模拟图(a)输入波形 (b)输出波形图1-4 一阶惯性环节波形图若按图 (b)接线,设U r 为-5V ,则图(b)的输入U r 和输出U c 实验波形如图1-4所示。