命题及其关系充分条件与必要条件练习题
- 格式:doc
- 大小:65.50 KB
- 文档页数:6
命题及其关系、充分条件与必要条件1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)当q是p的必要条件时,p是q的充分条件.( )(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )2. 设a,b∈R且ab≠0,则ab>1是a>1b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3. 命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠14. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.5. 已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.6. 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.考点一命题及其关系【例1】 (1)下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0成立D.“若sin α≠12,则α≠π6”是真命题(2) 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.【训练1】 (1) 下列说法中正确的是( )A.若函数f(x)为奇函数,则f(0)=0B.若数列{a n}为常数列,则{a n}既是等差数列也是等比数列C.在△ABC中,A>B是sin A>sin B的充要条件D.命题“若an+a n+12<a n,n∈N*,则{a n}为递减数列”的逆命题为假命题(2) 命题“在空间中,若四点不共面,则这四点中任何三点都不共线”的逆否命题是________.考点二充分条件与必要条件的判定【例2】 (1) 若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【训练2】 (1) 设x∈R,则“0<x<5”是“|x-1|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)“a=0”是“函数f(x)=sin x-1x+a为奇函数”的________条件.考点三充分、必要条件的应用【例3】已知P={x|x2-8x-20≤0},非空集合S={x|1-m≤x≤1+m}.若x∈P 是x∈S的必要条件,求实数m的取值范围.【迁移1】本例条件不变,问是否存在实数m,使x∈P是x∈S的充要条件?并说明理由.【迁移2】设p:P={x|x2-8x-20≤0},q:非空集合S={x|1-m≤x≤1+m},且綈p是綈q的必要不充分条件,求实数m的取值范围.【训练3】若关于x的不等式|x-1|<a成立的充分条件是0<x<4,则实数a的取值范围是( )A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)一、选择题1.命题“若a,b,c成等比数列,则b2=ac”的逆否命题是( )A.“若a,b,c成等比数列,则b2≠ac”B.“若a,b,c不成等比数列,则b2≠ac”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定3. 设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设a>b,a,b,c∈R,则下列命题为真命题的是( )A.ac2>bc2B.ab>1 C.a-c>b-c D.a2>b25.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]7. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”二、填空题9. 设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的________条件.10.有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题. 其中真命题的序号是________.11.若不等式m-1<x<m+1成立的充分不必要条件是13<x<12,则实数m的取值范围是________.12.“a=1”是“函数f(x)=e xa-ae x是奇函数”的__________条件.13.已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件14. 已知a,b∈R,那么“2a>2b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件15.已知p:实数m满足3a<m<4a(a>0),q:方程x2m-1+y22-m=1表示焦点在y轴上的椭圆,若p是q的充分条件,则a的取值范围是________________.16. 设p:ln(2x-1)≤0,q:(x-a)[x-(a+1)]≤0,若q是p的必要而不充分条件,则实数a的取值范围是________.17. 能说明“若a>b,则1a<1b”为假命题的一组a,b的值依次为________.答案命题及其关系、充分条件与必要条件1.判断下列结论正误(在括号内打“√”或“×”)(1)“x2+2x-3<0”是命题.( )(2)当q是p的必要条件时,p是q的充分条件.( )(3)“若p不成立,则q不成立”等价于“若q成立,则p成立”.( )(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.( )解析(1)错误.该语句不能判断真假,故该说法是错误的.答案(1)×(2)√(3)√(4)√2.(新教材必修第一册P34复习参考题T5改编)设a,b∈R且ab≠0,则ab>1是a>1b的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若“ab>1”,当a=-2,b=-1时,不能得到“a>1b ”,若“a>1b”,例如当a=1,b=-1时,不能得到“ab>1”,故“ab>1”是“a>1b”的既不充分也不必要条件.答案 D3. 命题“若α=π4,则tan α=1”的逆否命题是( )A.若α≠π4,则tan α≠1 B.若α=π4,则tan α≠1C.若tan α≠1,则α≠π4D.若tan α≠1,则α=π4解析命题“若p,则q”的逆否命题是“若綈q,则綈p”,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.答案 C4. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.解析a>b>c,取a=-2,b=-4,c=-5,则a+b=-6<c.答案-2,-4,-5(答案不唯一)5. 已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是________.解析由已知,可得{x|2<x<3}{x|x>a},∴a≤2.答案 (-∞,2]6. 直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点的充要条件是________.解析直线x-y-k=0与圆(x-1)2+y2=2有两个不同交点等价于|1-0-k|2<2,解得-1<k<3.答案-1<k<3考点一命题及其关系【例1】 (1)下列说法正确的是( )A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”B.“若am2<bm2,则a<b”的逆命题为真命题C.存在x0∈(0,+∞),使3x0>4x0成立D.“若sin α≠12,则α≠π6”是真命题(2) 能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是________.解析 (1)对于选项A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,A错;对于B 项,若“am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时am 2=bm 2,所以其逆命题为假命题,B 错;对于C 项,由指数函数的图象知,∀x ∈(0,+∞),都有4x >3x ,C 错; 对于D 项,原命题的逆否命题为“若α=π6,则sin α=12”是真命题,故原命题是真命题.(2)根据函数单调性的概念,只要找到一个定义域为[0,2]的不单调函数,满足在定义域内有唯一的最小值点,且f (x )min =f (0).答案 (1)D (2)f (x )=sin x ,x ∈[0,2](答案不唯一 ,再如f (x )=⎩⎨⎧0,x =0,1x,0<x ≤2) 规律方法 1.写一个命题的其他三种命题时,需注意: (1)对于不是“若p ,则q ”形式的命题,需先改写; (2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易时,可间接判断. 【训练1】 (1) 下列说法中正确的是( ) A.若函数f (x )为奇函数,则f (0)=0B.若数列{a n }为常数列,则{a n }既是等差数列也是等比数列C.在△ABC 中,A >B 是sin A >sin B 的充要条件D.命题“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”的逆命题为假命题(2) 命题“在空间中,若四点不共面,则这四点中任何三点都不共线”的逆否命题是________.解析 (1)A 错,f (x )=1x为奇函数,但f (0)无意义;B 错,a n =0为常数列,但{a n }不是等比数列;C正确,由于A>B⇔a>b⇔sin A>sin B.D错,若{a n}递减,则a n+1<a n⇒an+a n+12<a n,n∈N*,所以逆命题为真命题,D不正确.(2)逆否命题的条件和结论分别是原命题结论的否定和条件的否定.故逆否命题在空间中,若四点中存在三点共线,则这四点共面.答案(1)C (2)在空间中,若四点中存在三点共线,则这四点共面考点二充分条件与必要条件的判定【例2】 (1) 若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)已知条件p:x>1或x<-3,条件q:5x-6>x2,则綈p是綈q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析(1)当a>0,b>0时,得4≥a+b≥2ab,即ab≤4,充分性成立;当a=4,b=1时,满足ab≤4,但a+b=5>4,不满足a+b≤4,必要性不成立,故“a +b≤4”是“ab≤4”的充分不必要条件.(2)由5x-6>x2,得2<x<3,即q:2<x<3.所以q⇒p,p q,所以綈p⇒綈q,綈q綈p,所以綈p是綈q的充分不必要条件,故选A.答案(1)A (2)A规律方法充要条件的三种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.【训练2】 (1) 设x∈R,则“0<x<5”是“|x-1|<1”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件(2)“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的________条件.解析 (1)由|x -1|<1可得0<x <2,由“0<x <5”不能推出“0<x <2”,但由“0<x <2”可以推出“0<x <5”,故“0<x <5”是“|x -1|<1”的必要而不充分条件.(2)显然a =0时,f (x )=sin x -1x为奇函数;当f (x )为奇函数时,f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x+a =0. 因此2a =0,故a =0.所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的充要条件.答案 (1)B (2)充要考点三 充分、必要条件的应用【例3】 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,求实数m 的取值范围. 解 由x 2-8x -20≤0,得-2≤x ≤10, ∴P ={x |-2≤x ≤10}.∵x ∈P 是x ∈S 的必要条件,则S ⊆P . ∴⎩⎨⎧1-m ≥-2,1+m ≤10,解得m ≤3. 又∵S 为非空集合,∴1-m ≤1+m ,解得m ≥0. 综上,m 的取值范围是[0,3].【迁移1】 本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.解 由例题知P ={x |-2≤x ≤10}. 若x ∈P 是x ∈S 的充要条件,则P =S , ∴⎩⎨⎧1-m =-2,1+m =10,∴⎩⎨⎧m =3,m =9, 这样的m 不存在.【迁移2】 设p :P ={x |x 2-8x -20≤0},q :非空集合S ={x |1-m ≤x ≤1+m },且綈p 是綈q 的必要不充分条件,求实数m 的取值范围. 解 由例题知P ={x |-2≤x ≤10}. ∵綈p 是綈q 的必要不充分条件,p 是q 的充分不必要条件. ∴p ⇒q 且qp ,即P S .∴⎩⎨⎧1-m ≤-2,1+m >10或⎩⎨⎧1-m <-2,1+m ≥10, ∴m ≥9,又因为S 为非空集合, 所以1-m ≤1+m ,解得m ≥0, 综上,实数m 的取值范围是[9,+∞).规律方法 充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【训练3】 若关于x 的不等式|x -1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( )A.(-∞,1]B.(-∞,1)C.(3,+∞)D.[3,+∞)解析 |x -1|<a ⇒1-a <x <1+a ,因为不等式|x -1|<a 成立的充分条件是0<x <4,所以(0,4)⊆(1-a ,1+a ),所以⎩⎨⎧1-a ≤0,1+a ≥4,解得a ≥3.答案 D一、选择题1.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( ) A.“若a ,b ,c 成等比数列,则b 2≠ac ” B.“若a ,b ,c 不成等比数列,则b 2≠ac ”C.“若b2=ac,则a,b,c成等比数列”D.“若b2≠ac,则a,b,c不成等比数列”解析命题“若a,b,c成等比数列,则b2=ac”的逆否命题是“若b2≠ac,则a,b,c不成等比数列”.答案 D2.已知命题p:“正数a的平方不等于0”,命题q:“若a不是正数,则它的平方等于0”,则q是p的( )A.逆命题B.否命题C.逆否命题D.否定解析命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.答案 B3. 设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析∵f(x)=cos x+b sin x为偶函数,∴对任意的x∈R,都有f(-x)=f(x),即cos(-x)+b sin(-x)=cos x+b sin x,∴2b sin x=0.由x的任意性,得b=0.故f(x)为偶函数⇒b=0.必要性成立.反过来,若b=0,则f(x)=cos x是偶函数.充分性成立.∴“b=0”是“f(x)为偶函数”的充分必要条件.故选C.答案 C4.设a>b,a,b,c∈R,则下列命题为真命题的是( )A.ac2>bc2B.ab>1 C.a-c>b-c D.a2>b2解析对于选项A,a>b,若c=0,则ac2=bc2,故A错;对于选项B,a>b,若a>0,b<0,则ab<1,故B错;对于选项C,a>b,则a-c>b-c,故C正确;对于选项D,a>b,若a,b均小于0,则a2<b2,故D错.答案 C5.原命题:设a,b,c∈R,若“a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有( )A.0个B.1个C.2个D.4个解析原命题:若c=0,则不成立,由等价命题同真同假知其逆否命题也为假;逆命题为:设a,b,c∈R,若“ac2>bc2,则a>b”.由ac2>bc2知c2>0,∴由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴真命题共有2个.答案 C6.已知命题p:x2+2x-3>0;命题q:x>a,且綈q的一个充分不必要条件是綈p,则a的取值范围是( )A.[1,+∞)B.(-∞,1]C.[-1,+∞)D.(-∞,-3]解析由x2+2x-3>0,得x<-3或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≥1.答案 A7. 已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析若m⊄α,n⊂α,m∥n,由线面平行的判定定理知m∥α.若m∥α,m⊄α,n⊂α,不一定推出m∥n,直线m与n可能异面,故“m∥n”是“m∥α”的充分不必要条件.答案 A8.下列结论错误的是( )A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分条件C.命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D.命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题.答案 C 二、填空题9. 设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的________条件.解析 存在负数λ,使得m =λn ,则m ·n =λn ·n =λ|n |2<0;反之m ·n =|m ||n |cos 〈m ,n 〉<0⇒cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π,当〈m ,n 〉∈⎝ ⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.答案 充分不必要 10.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题. 其中真命题的序号是________.解析 ①原命题的否命题为“若a ≤b ,则a 2≤b 2”,错误;②原命题的逆命题为“若x ,y 互为相反数,则x +y =0”,正确;③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,正确. 答案 ②③11.若不等式m -1<x <m +1成立的充分不必要条件是13<x <12,则实数m 的取值范围是________.解析 由题意可知⎝ ⎛⎭⎪⎫13,12(m -1,m +1),借助数轴得⎩⎪⎨⎪⎧13≥m -1,12≤m +1,解得-12≤m ≤43,故实数m 的取值范围是⎣⎢⎡⎦⎥⎤-12,43.答案 ⎣⎢⎡⎦⎥⎤-12,4312.“a =1”是“函数f (x )=e xa -aex 是奇函数”的__________条件.解析 当a =1时,f (-x )=-f (x )(x ∈R),则f (x )是奇函数,充分性成立. 若f (x )为奇函数,恒有f (-x )=-f (x ),得(1-a 2)(e 2x +1)=0,则a =±1,必要性不成立.故“a =1”是“函数f (x )=e xa -ae x 是奇函数”的充分不必要条件.答案 充分不必要13.已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 解析 由S 4+S 6-2S 5=S 6-S 5-(S 5-S 4)=a 6-a 5=d ,所以S 4+S 6>2S 5⇔d >0,所以“d >0”是“S 4+S 6>2S 5”的充要条件. 答案 C14. 已知a ,b ∈R,那么“2a >2b ”是“a 2>b 2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件解析 2a >2b ⇔a >ba 2>b 2; a 2>b 2a >b ,即a 2>b 22a >2b ,∴“2a>2b”是“a 2>b 2”的既不充分也不必要条件. 答案 D15.已知p :实数m 满足3a <m <4a (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,若p 是q 的充分条件,则a 的取值范围是________________. 解析 由2-m >m -1>0,得1<m <32,即q :1<m <32.因为p 是q 的充分条件,所以⎩⎨⎧3a ≥1,4a ≤32,解得13≤a ≤38. 答案 ⎣⎢⎡⎦⎥⎤13,3816. 设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是________. 解析 p 对应的集合A ={x |y =ln(2x -1)≤0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |12<x ≤1,q 对应的集合B ={x |(x -a )[x -(a +1)]≤0}={x |a ≤x ≤a +1}.由q 是p 的必要而不充分条件,知A B .所以a ≤12且a +1≥1,因此0≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤0,12 17. 能说明“若a >b ,则1a <1b”为假命题的一组a ,b 的值依次为________.解析 若a >b ,则1a <1b 为真命题,则1a -1b =b -aab<0,∵a >b ,∴b -a <0,则ab >0.故当a >0,b <0时,均能说明“若a >b ,则1a <1b”为假命题.答案 a =1,b =-1(答案不唯一,只需a >0,b <0)。
课时规范练A组基础对点练1.(2016·高考天津卷)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要而不充分条件.答案:C2.(2016·高考四川卷)设p:实数x,y满足x>1且y>1,q:实数x,y满足x +y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若x>1且y>1,则有x+y>2成立,所以p⇒q;反之由x+y>2不能得到x>1且y>1.所以p是q的充分不必要条件.答案:A3.函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:设f(x)=x3,f′(0)=0,但f(x)是单调递增函数,在x=0处不存在极值,故若p则q是一个假命题,由极值的定义可得若q则p是一个真命题.故选C. 答案:C4.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:由原命题和逆否命题的关系可知D正确.答案:D5.原命题为“若a n+a n+12<a n,n∈N*,则{a n}为递减数列”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是() A.真,真,真B.假,假,真C.真,真,假D.假,假,假解析:从原命题的真假入手,由于a n+a n+12<a n⇔a n+1<a n⇔{a n}为递减数列,原命题和逆命题均为真命题,又原命题与逆否命题同真同假,逆命题与否命题同真同假,故选A.答案:A6.(2017·河南质量检测)设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B.答案:B7.“x≥1”是“x+1x≥2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由题意得x+1x≥2⇔x>0,所以“x≥1”是“x+1x≥2”的充分不必要条件,故选A.答案:A8.(2017·天津模拟)已知a,b都是实数,那么“a>b”是“ln a>ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由ln a>ln b⇒a>b>0⇒a>b,故必要性成立;当a=1,b=0时,满足a>b,但ln b无意义,所以ln a>ln b不成立,故充分性不成立,故选B.答案:B9.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析:因为原命题为真,所以它的逆否命题为真;若|z1|=|z2|,当z1=1,z2=-1时,这两个复数不是共轭复数,所以原命题的逆命题是假的,故否命题也是假的.故选B.答案:B10.设x∈R,则“1<x<2”是“|x-2|<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:不等式|x-2|<1的解集为{x|1<x<3},1<x<2可以推出1<x<3,反之不成立,所以“1<x<2”是“|x-2|<1”的充分而不必要条件.故选A.答案:A11.“x=1”是“x2-2x+1=0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:由x2-2x+1=0,解得x=1,所以“x=1”是“x2-2x+1=0”的充要条件,故选A.答案:A12.“x>1”是“log 12(x+2)<0”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件解析:由log 12(x+2)<0,得x+2>1,解得x>-1,所以“x>1”是“log12(x+2)<0”的充分而不必要条件,故选B.答案:B13.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:直线ax+y+1=0与直线(a+2)x-3y-2=0垂直的充要条件为a(a+2)+1×(-3)=0,解得a=1或-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x -3y-2=0垂直”的充分不必要条件.答案:B14.(2017·河南洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若A∩B={4},则m2+1=4,∴m=±3,而当m=3时,m2+1=4,∴“m=3”是“A∩B={4}”的充分不必要条件.答案:A15.(2016·高考山东卷)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P ∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.答案:A16.在△ABC中,角A,B,C所对应的边分别为a,b,c,则“a≤b”是“sin A≤sin B”的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.非充分非必要条件解析:由正弦定理,得asin A=bsin B,故a≤b⇔sin A≤sin B,选A.答案:AB组能力提升练1.设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:因为y=log2x在(0,+∞)上单调递增,所以a>b>1⇔log2a>log2b>log21=0,所以“a>b>1”是“log2a>log2b>0”的充要条件.答案:A2.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A.答案:A3.给定两个命题p,q.若¬p是q的必要而不充分条件,则p是¬q的() A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由q⇒¬p且¬p q可得p⇒¬q且¬q p,所以p是¬q的充分而不必要条件.答案:A4.(2017·辽宁大连双基检测)已知函数f(x)的定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“∃x0∈R,f(x0)=f(-x0)”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若f(x)为偶函数,则有f(x)=f(-x),所以p⇒q;若f(x)=x,当x=0时,f(0)=f(-0),而f(x)=x为奇函数,所以q p,故选A.答案:A5.“x≠y”是“|x|≠|y|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当x≠y时,不可以推出|x|≠|y|,例如:当x=1,y=-1时,有|x|=|y|;但当|x|≠|y|时,可以推出x≠y,故“x≠y”是“|x|≠|y|”的必要不充分条件.答案:B6.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若函数y =2x +m -1有零点,则m <1;若函数y =log m x 在(0,+∞)上为减函数,则0<m <1.故选B.答案:B7.“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x ,f (-x )=sin(-x )-1-x=-sin x +1x =-⎝ ⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数.当f (x )=sin x -1x +a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x+a +sin x -1x +a =2a ,所以2a =0,故a =0. 所以“a =0”是“函数f (x )=sin x -1x +a 为奇函数”的充要条件,故选C.答案:C8.(2017·武汉武昌区调研)“a ≤0”是“函数f (x )=|(ax -1)x |在区间(0,+∞)上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当a =0时,f (x )=|x |在区间(0,+∞)上单调递增;当a <0时,f (x )=(-ax +1)x =-a ⎝ ⎛⎭⎪⎫x -1a x ,结合二次函数的图象可知f (x )=|(ax -1)x |在区间(0,+∞)上单调递增;当a >0时,函数f (x )=|(ax -1)x |的图象大致如图:函数f(x)在区间(0,+∞)上有增有减.所以“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)上单调递增”的充要条件,故选C.答案:C9.设a、b是实数,则“a>b>0”是“a2>b2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件解析:若a>b>0,则a2>b2成立,若a=-2,b=1,满足a2>b2,但a>b>0不成立,故“a>b>0”是“a2>b2”的充分不必要条件,故选C.答案:C10.(2017·江西九校联考)下列判断错误的是()A.若p∧q为假命题,则p,q至少有一个为假命题B.命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”C.“若a∥c且b∥c,则a∥b”是真命题D.“若am2<bm2,则a<b”的否命题是假命题解析:选项A、B中的命题显然正确;选项D中命题的否命题为:若am2≥bm2,则a≥b,显然当m=0时,命题是假命题,所以选项D正确;对于选项C中的命题,当c=0时,命题是假命题,故选C.答案:C11.(2016·高考四川卷)设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足⎩⎨⎧ y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,选A. 答案:A12.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析:要使“对任意x ∈[1,2),x 2-a ≤0”为真命题,只需要a ≥4, ∴a >4是命题为真的充分不必要条件.答案:B13.下列四个结论中正确的个数是( )①“x 2+x -2>0”是“x >1”的充分不必要条件;②命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”;③“若x =π4,则tan x =1”的逆命题为真命题;④若f (x )是R 上的奇函数,则f (log 32)+f (log 23)=0.A .1B .2C .3D .4解析:对于①,由x 2+x -2>0,解得x <-2或x >1,故“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误;对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误;对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0,∵log 32=1log 23≠-log 32, ∴log 32与log 23不互为相反数,故④错误.故选A.答案:A14.直线l :y =kx +1与圆O :x 2+y 2=1相交于A ,B 两点,则“k =1”是“△OAB 的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件解析:若k =1,则直线l :y =x +1与圆相交于(0,1),(-1,0)两点,所以△OAB 的面积S △OAB =12×1×1=12,所以“k =1”⇒“△OAB 的面积为12”;若△OAB 的面积为12,则k =±1,所以“△OAB 的面积为12” “k =1”,所以“k =1”是“△OAB 的面积为12”的充分而不必要条件,故选A.答案:A。
高二命题及其关系、充分条件与必要条件练习题一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.“红豆生南国,春来发几枝.愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,哪句可作为命题( )A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[来源:Z|xx|][ ]解析:因为命题是能判断真假的语句,它必须是陈述句,所以首先我们要凭借语文知识判断这4句诗哪句是陈述句,然后再看能否判定其真假.“红豆生南国”是陈述,意思是“红豆生长在中国南方”,这在唐代是事实,故本语句是命题;“春来发几枝”中的“几”是概数,无法判断其真假,故不是命题;“愿君多采撷”是祈使句,所以不是命题;“此物最相思”是感叹句,故不是命题.答案:A2.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:由|x-1|<2得-1<x<3.由x(x-3)<0得0<x<3.因为“-1<x<3成立”⇒“0<x<3成立”,但“0<x<3成立”⇒“-1<x<3成立”.故选B.答案:B评析:如果p⇒q,q⇒p,则p是q的必要不充分条件.3.“a=1”是“直线x+y=0和直线x-ay=0互相垂直”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:当a=1时,直线x+y=0和直线x-ay=0互相垂直;当直线x+y=0和直线x-ay=0互相垂直时,有a=1.故选C.答案:C评析:如果p⇒q,q⇒p,则p是q的充要条件.4.x2<4的必要不充分条件是( )A.-2≤x≤2B.-2<x<0C.0<x≤2D.1<x<3解析:x2<4即为-2<x<2,因为-2<x<2⇒-2≤x≤2,而-2≤x≤2不能推出-2<x<2,所以x2<4的必要不充分条件是-2≤x≤2.选A.答案:A5.(2011·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:否命题是既否定题设又否定结论.因此否命题应为“若函数f(x)不是奇函数,则f(-x)不是奇函数.”答案:B6.设p:x<-2011或x>2011;q:x<-2011或x>2011,则¬p是¬q的( )A.充分不必要条件B.必要不充分条件[ ZXXK]C.充要条件D.既不充分也不必要条件解析:∵p:x<-2011或x>2011;q:x<-2011或x>2011,∴¬p:-2011≤x≤2011,¬q:-2011≤x≤2011.∵∀x∈[-2011,2011],都有x∈[-2011,2011],∴¬p ⇒¬q,而∃x 0∈[-2011,2011],且x 0 ∉ [-2011,2011],[ ]如x 0=-2011.5,∴¬p 是¬q 的充分不必要条件.故选A.答案:A二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.(2011·江苏金陵中学三模)若“x∈[2,5]或x∈{x|x<1或x>4}”是假命题,则x 的取值范围是____________________________.解析:x ∉[2,5]且x ∉{x|x<1或x>4}是真命题.由x 5,1x 42,x >⎧⎨⎩<或≤≤得1≤x<2,故x∈[1,2). 答案:[1,2)8.设p 、r 都是q 的充分条件,s 是q 的充要条件,t 是s 的必要条件,t 是r 的充分条件,那么p 是t 的________条件,r 是t 的________条件.(用充分、必要、充要填空)解析:由题意可画出图形:由图形可看出p 是t 的充分条件,r 是t 的充要条件.答案:充分 充要9.令P(x):ax 2+3x+2>0,若对任意x∈R,P(x)是真命题,则实数a 的取值范围是__________.解析:对任意x∈R,P(x)是真命题,就是不等式ax 2+3x+2>0对一切x∈R 恒成立.(1)若a=0,不等式仅为3x+2>0不能恒成立.[ ZXXK](2)若0980a a >-∆⎧⎨=<⎩,解得a>98. (3)若a<0,不等式显然不能恒成立. 综上所述,实数a>98. 答案:a>9810.已知p:log (|x|-3)>0,q:x 2- x+16>0,则p 是q 的________条件.[来源:Z*xx*]解析:由log (|x|-3)>0可得0<|x|-3<1,解得3<x<4或-4<x<-3.所以p:3<x<4或-4<x<-3.由x 2- x+16>0可得x<13或x> , 所以q:x<13或x> . 故p 是q 的充分不必要条件.答案:充分不必要三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能来了.”主人听了随口说了句:“你看看,该来的没有来.”张三听了,脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“哎哟,不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人的离去原因.解:张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因:“不该走的又走了”的逆否命题是“该走的没有走”,李四觉得自己是应该走的.评析:利用原命题与逆否命题同真同假解题非常方便,要注意用心体会!12.已知p:113x --≤2,q:x 2-2x+1-m 2≤0(m>0).若¬p 是¬q 的充分不必要条件,求实数m 的取值范围.解:由113x--≤2,得-2≤x≤10.“¬p”:A={x|x>10或x<-2}.由x 2-2x+1-m 2≤0,得1-m≤x≤1+m(m>0).∴“¬q”:B={x|x>1+m 或x<1-m,m>0}.∵¬p 是¬q 的充分而不必要条件,∴A B.结合数轴有0,110,12,m m m >⎧⎪+⎨⎪--⎩≤≥解得0<m≤3.评析:将充要条件问题用集合的关系来进行转化是解此类题目的关键.13.(2011·潍坊质检)设p:实数x 满足x 2-4ax+3a 2<0,其中a>0,命题q:实数x 满足2260,280.x x x x ⎧--⎪⎨+->⎪⎩≤(1)若a=1,且p∧q 为真,求实数x 的取值范围;(2)若¬p 是¬q 的充分不必要条件,求实数a 的取值范围.解:先解不等式,把命题p,q 具体化,第(1)问利用真值表求x;第(2)问由互为逆否命题等价确定p 、q 之间的关系,确定关于a 的不等式,问题可解.(1)由x 2-4ax+3a 2<0得(x-3a)(x-a)<0,又a>0,所以a<x<3a.当a=1时,1<x<3,即p 为真时,实数x 的取值范围是1<x<3.由2260280x x x x --+->⎧⎪⎨⎪⎩≤.得2<x≤3,当q 为真时,实数x 的取值范围是2<x≤3.若p∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x<3.(2)¬p 是¬q 的充分不必要条件,即¬p ⇒¬q,且¬q⇒¬p, 设A={x|¬p},B={x|¬q},则A B,又A={x|¬p}={x|x≤a 或x≥3a},B={x|¬q}={x|x≤2或x>3},则0<a≤2,且3a>3,所以实数a 的取值范围是1<a≤2.评析:本题中,¬p 是¬q 的充分不必要条件,从而推出集合A 与B 的关系,确定关于a 的不等式组,使问题获得解决.2222214.p:x 10:4x 4(2)10p p x 10m 40 2.m 2.044(2)1016m-2)160.03:13p q m 2p .1mx q m x q q mx m p m x m x m q m p q p q p q q m ++=+-+=∨∧++=⎧->∴∴>>⎨-<⎩+-+=∴-<∴<<∴<<∨∧∴>∴∧⌝⌝∧≤2有两个不等的负根。
课时作业A组——基础对点练1.(2017·高考天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件1、解析:由|x-1|≤1,得0≤x≤2,∵0≤x≤2⇒x≤2,x≤20≤x≤2,故“2-x≥0”是“|x-1|≤1”的必要而不充分条件,故选B.2.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数2、解析:由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.答案:C3.已知命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”是真命题B.逆命题“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”是假命题C.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”是真命题D.逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题3、解析:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:D4.“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件,故选A.答案:A5.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是() A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤05、解析:由原命题和逆否命题的关系可知D正确.答案:D6.(2018·惠州市调研)设函数y=f(x),x∈R,“y=|f(x)|是偶函数”是“y=f(x)的图象关于原点对称”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件6、解析:设f(x)=x2,y=|f(x)|是偶函数,但是不能推出y=f(x)的图象关于原点对称.反之,若y=f(x)的图象关于原点对称,则y=f(x)是奇函数,这时y=|f(x)|是偶函数,故选C.答案:C7.(2018·南昌十校模拟)命题“已知a,b,c为实数,若abc=0,则a,b,c中至少有一个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为() A.0 B.1C.2 D.37、解析:原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.答案:D8.(2018·石家庄模拟)已知向量a=(1,m),b=(m,1),则“m=1”是“a∥b”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8、解析:向量a=(1,m),b=(m,1),若a∥b,则m2=1,即m=±1,故“m=1”是“a∥b”的充分不必要条件,选A.答案:A9.(2018·武汉市模拟)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是+a2n<0”的()“对任意的正整数n,a2n-1A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件9、解析:a1>0,a2n-1+a2n=a1q2n-2(1+q)<0⇒1+q<0⇒q<-1⇒q<0,而a1>0,q<0,取q=-1,此时a2n-1+a2n=a1q2n-2(1+q)>0.故“q<0”是“对任2意的正整数n,a2n-1+a2n<0”的必要不充分条件.答案:B10.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“a⊥b”是“α⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10、解析:因为α⊥β,b⊥m,所以b⊥α,又直线a在平面α内,所以a⊥b;但直线a,m不一定相交,所以“a⊥b”是“α⊥β”的必要不充分条件,故选B. 答案:B11.(2018·南昌市模拟)a2+b2=1是a sin θ+b cos θ≤1恒成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件11、解析:因为a sin θ+b cos θ=a2+b2sin(θ+φ)≤a2+b2,所以由a2+b2=1可推得a sin θ+b cos θ≤1恒成立.反之,取a=2,b=0,θ=30°,满足a sin θ+b cos θ≤1,但不满足a2+b2=1,即由a sin θ+b cos θ≤1推不出a2+b2=1,故a2+b2=1是a sin θ+b cos θ≤1恒成立的充分不必要条件.故选A.答案:A12.(2018·洛阳统考)已知集合A={1,m2+1},B={2,4},则“m=3”是“A∩B ={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12、解析:若A∩B={4},则m2+1=4,∴m=±3,而当m=3时,m2+1=4,∴“m =3”是“A ∩B ={4}”的充分不必要条件. 答案:A13.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的__________条件.13、解析:由正弦定理,得a sin A =bsin B ,故a ≤b ⇔sin A ≤sin B . 答案:充要 14.“x >1”是“”的__________条件.14、解析:由,得x +2>1,解得x >-1,所以“x >1”是“”的充分不必要条件.答案:充分不必要15.命题“若x >1,则x >0”的否命题是__________. 15、答案:若x ≤1,则x ≤016.如果“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为__________. 16、解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1. 答案:-1B 组——能力提升练1.(2018·湖南十校联考)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件1、解析:若A =B =0,则S n =0,故数列{a n }不是等比数列;若数列{a n }是等比数列,则a 1=Aq +B ,a 2=Aq 2-Aq ,a 3=Aq 3-Aq 2,由a 3a 2=a 2a 1,得A =-B .故选B. 答案:B2.已知函数f (x )=3ln(x +x 2+1)+a (7x +7-x ),x ∈R ,则“a =0”是“函数f (x )为奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2、解析:由题意知f (x )的定义域为R ,易知y =ln(x +x 2+1)为奇函数,y =7x+7-x 为偶函数.当a =0时,f (x )=3ln(x +x 2+1)为奇函数,充分性成立;当f (x )为奇函数时,则a =0,必要性成立.因此“a =0”是“函数f (x )为奇函数”的充要条件.故选C. 答案:C3.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线;q :l 1,l 2不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充要条件D .p 既不是q 的充分条件,也不是q 的必要条件3、解析:两直线异面,则两直线一定无交点,即两直线一定不相交;而两直线不相交,有可能是平行,不一定异面,故两直线异面是两直线不相交的充分不必要条件,故选A. 答案:A4.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4、、解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A.答案:A5.若a,b为正实数,且a≠1,b≠1,则“a>b>1”是“log a 2<log b 2”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5、解析:当a>b>1时,log a 2-log b 2=ln 2ln a-ln 2ln b=ln 2(ln b-ln a)ln a·ln b<0,所以log a2<log b 2.反之,取a=12,b=2,log a 2<log b 2成立,但是a>b>1不成立.故“a>b>1”是“log a 2<log b 2”的充分不必要条件,选A.答案:A6.已知数列{a n}的前n项和为S n,则“a3>0”是“数列{S n}为递增数列”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6、解析:当a1=1,a2=-1,a3=1,a4=-1,…时,{S n}不是递增数列,反之,若{S n}是递增数列,则S n+1>S n,即a n+1>0,所以a3>0,所以“a3>0”是“{S n}是递增数列”的必要不充分条件,故选B.答案:B7.“a≤-2”是“函数f(x)=|x-a|在[-1,+∞)上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7、解析:结合图象可知函数f(x)=|x-a|在[a,+∞)上单调递增,易知当a≤-2时,函数f(x)=|x-a|在[-1,+∞)上单调递增,但反之不一定成立,故选A.答案:A8.设a,b是向量,则“|a|=|b|”是“|a+b|=|a-b|”的()A.充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8、解析:结合平面向量的几何意义进行判断.若|a |=|b |成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b |=|a -b |不一定成立,从而不是充分条件;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a |=|b |不一定成立,从而不是必要条件.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 答案:D9.(2016·高考四川卷)设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎨⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件9、解析:取x =y =0满足条件p ,但不满足条件q ,反之,对于任意的x ,y 满足条件q ,显然必满足条件p ,所以p 是q 的必要不充分条件,选A. 答案:A10.(2018·广州测试)已知命题p :∃x >0,e x -ax <1成立,q :函数f (x )=-(a -1)x 在R 上是减函数,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件10、解析:作出y=e x与y=ax+1的图象,如图.当a=1时,e x≥x+1恒成立,故当a≤1时,e x-ax<1不恒成立;当a>1时,可知存在x∈(0,x0),使得e x -ax<1成立,故p成立,即p:a>1,由函数f(x)=-(a-1)x是减函数,可得a -1>1,得a>2,即q:a>2,故p推不出q,q可以推出p,p是q的必要不充分条件,选B.答案:B11.直线l:y=kx+1与圆O:x2+y2=1相交于A,B两点,则“k=1”是“△OAB的面积为12”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件11、解析:若k=1,则直线l:y=x+1与圆相交于(0,1),(-1,0)两点,所以△OAB的面积S△OAB=12×1×1=12,所以“k=1”⇒“△OAB的面积为12”;若△OAB的面积为12,则k=±1,所以“△OAB的面积为12”⇒/ “k=1”,所以“k=1”是“△OAB的面积为12”的充分而不必要条件,故选A.答案:A12.对任意实数a,b,c,给出下列命题:①“a=b”是“ac=bc”的充要条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的序号是__________.12、解析:①中“a=b”可得ac=bc,但c=0时逆命题不成立,所以不是充要条件,②正确,③中a>b时a2>b2不一定成立,所以③错误,④中“a<5”得不到“a<3”,但“a<3”可得出“a<5”,“a<5”是“a<3”的必要条件,正确.答案:②④13.已知m∈R,“函数y=2x+m-1有零点”是“函数y=log m x在(0,+∞)上为减函数”的__________条件.13、解析:若函数y=2x+m-1有零点,则m<1;若函数y=log m x在(0,+∞)上为减函数,则0<m<1.答案:必要不充分14.(2018·江西九校联考)下列判断错误的是__________.①若p∧q为假命题,则p,q至少有一个为假命题②命题“∀x∈R,x3-x2-1≤0”的否定是“∃x0∈R,x30-x20-1>0”③“若a∥c且b∥c,则a∥b”是真命题④“若am2<bm2,则a<b”的否命题是假命题14、解析:选项①、②中的命题显然正确;选项④中命题的否命题为:若am2≥bm2,则a≥b,显然当m=0时,命题是假命题,所以选项④正确;对于选项③中的命题,当c=0时,命题是假命题,故填③.答案:③15.下列四个结论中正确的个数是__________.①“x2+x-2>0”是“x>1”的充分不必要条件;②命题:“∀x∈R,sin x≤1”的否定是“∃x0∈R,sin x0>1”;③“若x=π4,则tan x=1”的逆命题为真命题;④若f(x)是R上的奇函数,则f(log32)+f(log23)=0.15、解析:对于①,由x 2+x -2>0,解得x <-2或x >1,故“x 2+x -2>0”是“x >1”的必要不充分条件,故①错误;对于②,命题:“∀x ∈R ,sin x ≤1”的否定是“∃x 0∈R ,sin x 0>1”,故②正确;对于③,“若x =π4,则tan x =1”的逆命题为“若tan x =1,则x =π4”,其为假命题,故③错误;对于④,若f (x )是R 上的奇函数,则f (-x )+f (x )=0,∵log 32=1log 23≠-log 32, ∴log 32与log 23不互为相反数,故④错误.答案:1。
高考数学复习 课时作业2 命题及其关系、充分条件与必要条件一、选择题1.命题“若xy =0,则x =0”的逆否命题是( D ) A .若xy =0,则x ≠0 B.若xy ≠0,则x ≠0 C .若xy ≠0,则y ≠0 D.若x ≠0,则xy ≠0解析:“若xy =0,则x =0”的逆否命题为“若x ≠0,则xy ≠0”.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( D )A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题.3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( D )A .都真B .都假C .否命题真D .逆否命题真解析:对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.已知p :-1<x <2,q :log 2x <1,则p 是q 成立的( B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件解析:由log 2x <1,解得0<x <2,所以-1<x <2是log 2x <1的必要不充分条件,故选B. 5.(2019·郑州质量预测)下列说法正确的是( D ) A .“若a >1,则a 2>1”的否命题是“若a >1,则a 2≤1” B .“若am 2<bm 2,则a <b ”的逆命题为真命题 C .存在x 0∈(0,+∞),使3x 0>4 x 0成立 D .“若sin α≠12,则α≠π6”是真命题解析:对于选项A ,“若a >1,则a 2>1”的否命题是“若a ≤1,则a 2≤1”,故选项A 错误;对于选项B ,“若am 2<bm 2,则a <b ”的逆命题为“若a <b ,则am 2<bm 2”,因为当m =0时,am 2=bm 2,所以其逆命题为假命题,故选项B 错误;对于选项C ,由指数函数的图象知,对任意的x ∈(0,+∞),都有4x >3x,故选项C 错误;对于选项D ,“若sin α≠12,则α≠π6”的逆否命题为“若α=π6,则sin α=12”,且其逆否命题为真命题,所以原命题为真命题,故选D.6.一次函数y =-m nx +1n的图象同时经过第一、三、四象限的必要不充分条件是( B )A .m >1,且n <1B .mn <0C .m >0,且n <0D .m <0,且n <0解析:因为y =-m nx +1n的图象经过第一、三、四象限,故-m n>0,1n<0,即m >0,n <0,但此为充要条件,因此,其必要不充分条件为mn <0.7.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( C ) A .m >14B .0<m <1C .m >0D .m >1解析:不等式x 2-x +m >0在R 上恒成立⇔Δ<0,即1-4m <0,∴m >14,同时要满足“必要不充分”,在选项中只有“m >0”符合.故选C.8.(2019·洛阳市高三统考)已知圆C :(x -1)2+y 2=r 2(r >0),设p :0<r ≤3,q :圆上至多有两个点到直线x -3y +3=0的距离为1,则p 是q 的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:对于q ,圆(x -1)2+y 2=r 2(r >0)上至多有两个点到直线x -3y +3=0的距离为1,又圆心(1,0)到直线的距离d =|1-3×0+3|2=2,则r <2+1=3,所以0<r <3,又p :0<r ≤3,所以p 是q 的必要不充分条件,故选B.二、填空题9.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为:在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角.解析:原命题的条件:在△ABC 中,∠C =90°,结论:∠A ,∠B 都是锐角.否命题是否定条件和结论.即“在△ABC 中,若∠C ≠90°,则∠A ,∠B 不都是锐角”.10.(2019·山西太原联考)已知a ,b 都是实数,那么“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.解析:充分性:若2a >2b ,则2a -b >1,∴a -b >0,∴a >b .当a =-1,b =-2时,满足2a >2b,但a 2<b 2,故由2a >2b 不能得出a 2>b 2,因此充分性不成立.必要性:若a 2>b 2,则|a |>|b |.当a =-2,b =1时,满足a 2>b 2,但2-2<21,即2a <2b ,故必要性不成立.综上,“2a >2b ”是“a 2>b 2”的既不充分也不必要条件.11.已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是(0,3).解析:令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M N ,∴⎩⎪⎨⎪⎧a >0,a +1<4,解得0<a <3.12.下列命题中为真命题的序号是②④. ①若x ≠0,则x +1x≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 解析:当x <0时,x +1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.13.已知m ,n 为两个非零向量,则“m 与n 共线”是“m ·n =|m ·n |”的( D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:当m 与n 反向时,m ·n <0,而|m ·n |>0,故充分性不成立.若m ·n =|m ·n |,则m ·n =|m |·|n |cos 〈m ,n 〉=|m |·|n |·|cos〈m ,n 〉|,则cos 〈m ,n 〉=|cos 〈m ,n 〉|,故cos 〈m ,n 〉≥0,即0°≤〈m ,n 〉≤90°,此时m 与n 不一定共线,即必要性不成立.故“m 与n 共线”是“m ·n =|m ·n |”的既不充分也不必要条件,故选D.14.设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎢⎡⎦⎥⎤12,1[a ,a +1].∴a ≤12,且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.尖子生小题库——供重点班学生使用,普通班学生慎用15.定义在R 上的可导函数f (x ),其导函数为f ′(x ),则“f ′(x )为偶函数”是“f (x )为奇函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.16.已知p :实数m 满足m 2+12a 2<7am (a >0),q :方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆.若p 是q 的充分不必要条件,则a 的取值范围是⎣⎢⎡⎦⎥⎤13,38. 解析:由a >0,m 2-7am +12a 2<0,得3a <m <4a ,即p :3a <m <4a ,a >0.由方程x 2m -1+y 22-m=1表示焦点在y 轴上的椭圆,可得2-m >m -1>0,解得1<m <32,即q :1<m <32.因为p 是q的充分不必要条件,所以⎩⎪⎨⎪⎧3a >1,4a ≤32或⎩⎪⎨⎪⎧3a ≥1,4a <32,解得13≤a ≤38,所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤13,38.。
《命题及其关系、充分条件与必要条件》同步分层能力测试题A组基础题一.选择题1.下列语句中,是命题的个数为()①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.A.1B.2 C.3 D.42.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数4.设集合,,那么“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5. “”是“直线相互垂直”的()A.充分必要条件B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件6.“a>0”是“>0”的()A.充分而不必要条件 B.充分必要条件C.必要而不充分条件 D.既不充分也不必要条件二.填空题7.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.8 用充分、必要条件填空:是的.三.解答题9.已知命题p:lg(x2-2x-2)≥0;命题q:0<x<4,若命题p是真命题,命题q是假命题,求实数x的取值范围.10.若a,b,c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个相异实根”的逆命题、否命题和逆否命题.11.若,求证:不可能都是奇数12.求证:关于的一元二次不等式对于一切实数都成立的充要条件是.B组能力提高题一.选择题1. 设l、m是两条不同的直线,α是一个平面,则下列结论正确的是()A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m2.已知下列四个命题,其中是真命题的有()①命题“若x+y=0,则x,y互为相反数”的逆命题;②“相似三角形的周长相等”的否命题;③命题“若m≤1,则x2-2x+m=0有实根”的逆否命题;④“若A∪B=B,则A⊇B”的逆否命题.A.①②③B.②③C.①③D.②④3.若命题p的逆命题是q,命题p的逆否命题是r,则q是r的()A.逆命题 B.否命题C.逆否命题D.以上都不正确4.下列语句中假命题的个数是()①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.A.2 B.3 C.4 D.55.已知p是r的充分不必要条件,s是r的必要条件,q是s的必要条件.那么p是q成立的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件6.为非零向量,“函数为偶函数”是“”的)()A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件二.填空题7. 给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则3a>3b>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.8. 用充分但不必要、必要但不充分条件填空:已知p:x1,x2是方程x2+5x-6=0的两根,q:x1+x2=-5,则p是q的_______.三.解答题9.已知p:;q:().若p是q的充分而不必要条件,求实数的取值范围.10.求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.《命题及其关系、充分条件与必要条件》同步分层能力测试题答案及解析A组基础题一.选择题1.D.解析:①②③④都是命题,根据命题的概念,它们都是可以判断真假的陈述句.2.D.解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.3.B.解析:根据否命题的概念,不难判断答案为B.4.B.解析:设集合,,,所以若“”推不出“”;若“”,则“”,所以“”是“”的必要而不充分条件,5.B.解析:当时两直线斜率乘积为从而可得两直线垂直,当时两直线一条斜率为0一条斜率不存在,但两直线仍然垂直.因此是题目中给出的两条直线垂直的充分但不必要条件.6.A.解析:,∴a>0”是“>0”的充分不必要条件.二.填空题7.[-3,0] .解析:命题“ax2-2ax-3>0不成立”亦即“ax2-2ax-3≤0恒成立”.当a=0时,-3<0,不等式ax2-2ax-3≤0恒成立.当a 0时,Δ=(-2a)2-4a×(-3) 0,即-3≤a 0.综上,-3≤a≤0.8 既不充分也不必要.解析:若, .三.解答题9.解析:命题p是真命题,则x2-2x-2≥1,∴x≥3或x≤-1,命题q是假命题,则x ≤0或x≥4.∴x≥4或x≤-1.10.解析:逆命题:若ax2+bx+c=0(a,b,c∈R)有两个相异实根,则ac<0;否命题:若ac≥0,则ax2+bx+c=0(a,b,c∈R)至多有一个实根;逆否命题:若ax2+bx+c=0(a,b,c∈R)至多有一个实数,则ac≥0.11.证明:假设都是奇数,则都是奇数得为偶数,而为奇数,即,与矛盾所以假设不成立,原命题成立.12 证明:恒成立.B组能力提高题一.选择题1. B.解析:由线面平行、垂直的判定定理及性质定理知B正确.2.C.解析:①命题:“若x+y=0,则x,y互为相反数”的逆命题是“若x,y互为相反数,则x+y=0”,是真命题;②“相似三角形的周长相等”的否命题是:“若两个三角形不相似,则它们的周长不相等”是假命题;③命题:“若m≤1,则x2-2x+m=0有实根”的逆否命题是:“若x2-2x+m=0无实根,则m>1”,是真命题.④若A∪B=B,则A⊆B,原命题为假命题,所以逆否命题为假命题.故选C.3.B.解析:可以举例说明B正确.4.A.解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.5.A.解析:用双箭头符号表示p、q、r、s的关系:pÞr,s r,q s,即pÞr,rÞs,sÞq,∴pÞrÞsÞq,即pÞq,又r /p,则q /p,故p是q的充分非必要条件.故选A.6.C . 解析:∵,又函数为偶函数∴;反之也成立,∴选C .二.填空题7. ①②③.解析:①否命题:若b2-4ac≥0,则方程ax2+bx+c=0(a≠0)有实根,真命题;②逆命题:若△ABC为等边三角形,则AB=BC=CA,真命题;③因为命题“若a>b>0,则3a>3b>0”是真命题,故其逆否命题为真命题;④逆命题:若mx2-2(m+1)x+(m-3)>0的解集为R,则m>1,假命题.所以应填①②③.8. 充分但不必要条件.解析:∵x1,x2是方程x2+5x-6=0的两根,∴x1,x2的值分别为1,-6,∴x1+x2=1-6=-5.∴,但时,满足x1+x2=-5,却推导不出p.三.解答题9.解析:p是q的充分而不必要条件.设p:;q:;所以,,它等价于所以的取值范围是.10.证明:充分性:当a=0时,方程变为2x+1=0,其根为x= ,方程只有一个负根;当a=1时,方程为x2+2x+1=0.其根为x=-1,方程只有一个负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负根.必要性:若方程ax2+2x+1=0有且仅有一个负根.当a=0时,适合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4(1-a)≥0,∴a≤1,当a=1时,方程有一个负根x=-1.若方程有且仅有一负根,则∴a<0.综上方程ax2+2x+1=0有且仅有一负根的充要。
A 组 考点能力演练1.命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( )A .若a 2+b 2≠0,虽a ≠0且b ≠0B .若a 2+b 2≠0,则a ≠0或b ≠0C .若a =0且b =0,则a 2+b 2≠0D .若a ≠0或b ≠0,则a 2+b 2≠0解析:先确定逆命题为“若a =0且b =0,则a 2+b 2=0”,再将逆命题否定为“若a ≠0或b ≠0,则a 2+b 2≠0”,故选D.答案:D2.“x 1>3且x 2>3”是“x 1+x 2>6且x 1x 2>9”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:x 1>3,x 2>3⇒x 1+x 2>6,x 1x 2>9;反之不成立,例如x 1=12,x 2=20.故选A. 答案:A3.(2016·沈阳一模)“x <0”是“ln(x +1)<0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:设命题p :x <0,命题q :ln(x +1)<0,由对数函数的定义域和对数函数的单调性可知⎩⎪⎨⎪⎧x +1>0,x +1<1,所以-1<x <0,即命题q 为-1<x <0.可知命题q ⇒p ,而p ⇒/ q .所以p 是q 的必要不充分条件,所以选B.答案:B4.设a ,b 为两个非零向量,则“a·b =|a·b |”是“a 与b 共线”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:设a ,b 的夹角为θ.由a·b =|a·b |得:|a ||b |·cos θ=|a ||b |·|cos θ|,|a||b |(cos θ-|cos θ|)=0,即|a||b |=0(舍)因为a ,b 非零,或cos θ≥0,所以由a·b =|a·b |⇒/ a 与b 共线,反过来,当a =-b 时,虽然“a 与b 共线”,但是“a·b =|a·b |”不成立,所以“a·b =|a·b |”是“a 与b 共线”的既不充分也不必要条件.故选D.答案:D5.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-3,+∞)D .(-∞,-3]解析:法一:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1,故选A.法二:令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B ,C ,D ,选A.答案:A6.(2016·成都一诊)设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是________. 解析:找出命题的条件和结论,将命题的条件与结论互换,“若p ,则q ”的逆命题是“若q ,则p ”,故命题“若a =-b ,则|a |=|b |”的逆命题是“若|a |=|b |,则a =-b ”.答案:若|a |=|b |,则a =-b7.(2015·盐城一模)给出以下四个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q ≤-1,则x 2+x +q =0有实根”的逆否命题;④若ab 是正整数,则a ,b 都是正整数.其中真命题是________.(写出所有真命题的序号)解析:①命题“若x +y =0,则x ,y 互为相反数”的逆命题为“若x ,y 互为相反数,则x +y =0”,显然①为真命题;②不全等的三角形的面积也可能相等,故②为假命题;③原命题正确,所以它的逆否命题也正确,故③为真命题;④若ab 是正整数,则a ,b 不一定都是正整数,例如a =-1,b =-3,故④为假命题.答案:①③8.设条件p :实数x 满足x 2-4ax +3a 2<0,其中a <0;条件q :实数x 满足x 2+2x -8>0,且q 是p 的必要不充分条件,则实数a 的取值范围是________.解析:本题考查必要不充分条件的应用与一元二次不等式的解法.由x 2-4ax +3a 2<0得3a <x <a ,由x 2+2x -8>0得x <-4或x >2,因为q 是p 的必要不充分条件,则⎩⎪⎨⎪⎧a <0,a ≤-4,所以a ≤-4.答案:(-∞,-4]9.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.10.已知(x +1)(2-x )≥0的解为条件p ,关于x 的不等式x 2+mx -2m 2-3m -1<0⎝⎛⎭⎫m >-23的解为条件q .(1)若p 是q 的充分不必要条件时,求实数m 的取值范围.(2)若綈p 是綈q 的充分不必要条件时,求实数m 的取值范围.解:(1)设条件p 的解集为集合A ,则A ={x |-1≤x ≤2},设条件q 的解集为集合B ,则B ={x |-2m -1<x <m +1},若p 是q 的充分不必要条件,则A 是B 的真子集⎩⎪⎨⎪⎧ m +1>2,-2m -1<-1m >-23.,解得m >1,(2)若綈p 是綈q 的充分不必要条件,则B 是A 的真子集⎩⎪⎨⎪⎧ m +1≤2,-2m -1≥-1m >-23.解得-23<m ≤0.B 组 高考题型专练 1.(2014·高考新课标全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:由于q ⇒p ,则p 是q 的必要条件;而p ⇒/ q ,如f (x )=x 3在x =0处f ′(0)=0,而x =0不是极值点,故选C.2.(2015·高考重庆卷)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:由log 12(x +2)<0,得x +2>1,解得x >-1,所以“x >1”是“log 12(x +2)<0”的充分而不必要条件,故选B.答案:B3.(2015·高考安徽卷)设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:q :2x >1⇔x >0,且(1,2)⊆(0,+∞),所以p 是q 的充分不必要条件.答案:A4.(2015·高考福建卷)“对任意x ∈⎝⎛⎭⎫0,π2,k sin x cos x <x ”是“k <1”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:因为x ∈⎝⎛⎭⎫0,π2,所以sin 2x >0.任意x ∈⎝⎛⎭⎫0,π2,k sin x cos x <x ,等价于任意x ∈⎝⎛⎭⎫0,π2,k <2x sin 2x.当x ∈⎝⎛⎭⎫0,π2时,0<2x <π,设t =2x ,则0<t <π.设f (t )=t -sin t ,则f ′(t )=1-cos t >0,所以f (t )=t -sin t 在(0,π)上单调递增,所以f (t )>0,所以t >sin t >0,即t sin t>1,所以k ≤1.所以任意x ∈⎝⎛⎭⎫0,π2,k <2x sin 2x,等价于k ≤1.因为k ≤1⇒/ k <1,但k ≤1⇐k <1,所以“对任意x ∈⎝⎛⎭⎫0,π2,k sin x cos x <x ”是“k <1”的必要而不充分条件,故选B. 答案:B5.(2015·高考北京卷)设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:若m ⊂α且m ∥β,则平面α与平面β不一定平行,有可能相交;而m ⊂α且α∥β一定可以推出m ∥β,所以“m ∥β”是“α∥β”的必要而不充分条件.。
命题及其关系、充分条件与必要条件1.若a ∈R ,则“a =1”是“|a |=1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件解析:若a =1,则有|a |=1是真命题,即a =1⇒|a |=1,由|a |=1可得a =±1,所以若|a |=1,则有a =1是假命题,即|a |=1⇒a =1不成立,所以a =1是|a |=1的充分而不必要条件. 答案:A2.已知命题p :∃n ∈N,2n>1 000,则綈p 为( ). A .∀n ∈N,2n≤1 000 B .∀n ∈N,2n>1 000 C .∃n ∈N,2n ≤1 000D .∃n ∈N,2n<1 000解析 特称命题的否定是全称命题.即p :∃x ∈M ,p (x ),则綈p :∀x ∈M ,綈p (x ).故选A. 答案 A3.命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析:原命题的逆命题是:若一个数的平方是正数,则它是负数. 答案:B4.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 (特例法)当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=12<sin60°=32,故sin α>sin β不成立;当sin α>sin β时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件. 答案 D【点评】 本题采用了特例法,所谓特例法,就是用特殊值特殊图形、特殊位置代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效. 5.与命题“若a ∈M ,则b ∉M ”等价的命题是( ) A .若a ∉M ,则b ∉M B .若b ∉M ,则a ∈M C .若a ∉M ,则b ∈MD .若b ∈M ,则a ∉M解析:因为原命题只与逆否命题是等价命题,所以只需写出原命题的逆否命题即可.故选D. 答案:D6 若实数a ,b 满足a ≥0,b ≥0,且ab =0,则称a 与b 互补.记φ(a ,b )=a 2+b 2-a -b ,那么φ(a ,b )=0是a 与b 互补的( ).A .必要而不充分的条件B .充分而不必要的条件C .充要条件D .既不充分也不必要的条件解析 若φ (a ,b )=0,即a 2+b 2=a +b ,两边平方得ab =0,故具备充分性.若a ≥0,b ≥0,ab =0,则不妨设a =0.φ(a ,b )=a 2+b 2-a -b =b 2-b =0.故具备必要性.故选C. 答案 C7.已知集合A ={x ∈R|12<2x<8},B ={x ∈R|-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( ) A .m ≥2 B .m ≤2 C .m >2D .-2<m <2解析:A ={x ∈R|12<2x<8}={x |-1<x <3}∵x ∈B 成立的一个充分不必要条件是x ∈A ∴AB∴m +1>3,即m >2. 答案:C 二、填空题8.若“x ∈[2,5]或x ∈{x |x <1或x >4}”是假命题,则x 的取值范围是________. 解析:x ∉[2,5]且x ∉{x |x <1或x >4}是真命题.由⎩⎪⎨⎪⎧x <2或x >5,1≤x ≤4得1≤x <2.答案:[1,2)9.已知p :“a =2”,q :“直线x +y =0与圆x 2+(y -a )2=1相切”,则p 是q 的________条件.解析:由直线x +y =0与圆x 2+(y -a )2=1相切得,圆心(0,a )到直线x +y =0的距离等于圆的半径,即有|a |2=1,a =± 2.因此,p 是q 的充分不必要条件.答案:充分不必要10.设p :|4x -3|≤1;q :(x -a )(x -a -1)≤0,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 解析 p :|4x -3|≤1⇔12≤x ≤1,q :(x -a )(x -a -1)≤0⇔a ≤x ≤a +1由pq ,得⎩⎪⎨⎪⎧a ≤12,a +1≥1,解得:0≤a ≤12.答案 ⎣⎢⎡⎦⎥⎤0,12 11.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,πp 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π其中真命题的个数是____________.解析 由|a +b |>1可得a 2+2a²b +b 2>1,因为|a |=1,|b |=1,所以a²b >-12,故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a²b >-12,|a +b |2=a 2+2a²b +b 2>1,即|a +b |>1,故p 1正确.由|a -b |>1可得a 2-2a²b +b 2>1,因为|a |=1,|b |=1,所以a²b <12,故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立,p 4正确. 答案 212.给出下列命题:①原命题为真,它的否命题为假; ②原命题为真,它的逆命题不一定为真; ③一个命题的逆命题为真,它的否命题一定为真;④一个命题的逆否命题为真,它的否命题一定为真;⑤“若m >1,则mx 2-2(m +1)x +m +3>0的解集为R”的逆命题. 其中真命题是________.(把你认为正确命题的序号都填在横线上)解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故①④错误,②③正确.又因为不等式mx 2-2(m +1)x +m +3>0的解集为R ,由⎩⎪⎨⎪⎧ m >0Δ=m +2-4m m +⇒⎩⎪⎨⎪⎧m >0m >1⇒m >1.故⑤正确. 答案:②③⑤ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解析:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.求方程ax 2+2x +1=0的实数根中有且只有一个负实数根的充要条件. 解析:方程ax 2+2x +1=0有且仅有一负根. 当a =0时,x =-12适合条件.当a ≠0时,方程ax 2+2x +1=0有实根, 则Δ=4-4a ≥0,∴a ≤1, 当a =1时,方程有一负根x =-1.当a <1时,若方程有且仅有一负根,则x 1x 2=1a<0,∴a <0.综上,方程ax 2+2x +1=0有且仅有一负实数根的充要条件为a ≤0或a =1.15.已知命题p :⎩⎪⎨⎪⎧x +2≥0,x -10≤0,命题q :1-m ≤x ≤1+m ,m >0,若¬p 是¬q 的必要不充分条件,求实数m 的取值范围.解析:p :x ∈[-2,10],q :x ∈[1-m,1+m ],m >0, ∵¬p 是¬q 的必要不充分条件,∴p ⇒q 且q ⇒/ p . ∴[--m,1+m ].∴⎩⎪⎨⎪⎧m >0,1-m ≤-2,1+m ≥10.∴m ≥9.16.已知全集U =R ,非空集合A ={x |x -2x -a +<0},B ={x |x -a 2-2x -a<0}.(1)当a =12时,求(∁U B )∩A ;(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围. 解析:(1)当a =12时,A ={x |2<x <52},B ={x |12<x <94},∁U B ={x |x ≤12或x ≥94},(∁U B )∩A ={x |94≤x <52}.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,得B ={x |a <x <a 2+2}, 当3a +1>2,即a >13时,A ={x |2<x <3a +1},⎩⎪⎨⎪⎧a ≤2a 2+2≥3a +1,解得13<a ≤3-52;当3a +1=2,即a =13时,A =Ø,符合题意;当3a +1<2,即a <13时,A ={x |3a +1<x <2}.⎩⎪⎨⎪⎧a ≤3a +1a 2+2≥2,解得-12≤a <13;综上,a ∈[-12,3-52].。
课时达标 第2讲一、选择题1.已知命题p :正数a 的平方不等于0,命题q :若a 不是正数,则它的平方等于0,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定B 解析 命题“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A 解析 由⎪⎪⎪⎪x -12<12得0<x <1,由x 3<1得x <1,而0<x <1⇒x <1,x <1⇒/ 0<x <1.故选A. 3.原命题为“△ABC 中,若cos A <0,则△ABC 为钝角三角形”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( )A .真、真、真B .假、假、真C .真、真、假D .真、假、假B 解析 因为cos A <0,0<A <π,则A 必为钝角,△ABC 为钝角三角形,所以原命题为真,从而逆否命题也为真;△ABC 为钝角三角形,可能是B 或C 为钝角,A 为锐角,则cos A >0,所以逆命题为假,从而否命题也为假.故选B.4.(2018·浙江卷)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件A 解析 由立体几何知识知m ⊄α,n ⊂α,m ∥n ⇒m ∥α.但m ∥α时,m 与α内的直线n 可能异面.故选A.5.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( )A .a ≤4B .a ≥4C .a ≤5D .a ≥5D 解析 命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充要条件是∀x ∈[1,2],a ≥x 2恒成立,即a ≥4.故命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是D 项.6.(2019·北京东城期末)下列四个选项中错误的是( )A .命题“若x ≠1,则x 2-3x +2≠0”的逆否命题是“若x 2-3x +2=0,则x =1”B .存在x 0∈R ,使x 20+2x 0+3=0C .“若α=β,则sin α=sin β”的逆否命题为真命题D .“x >2”是“x 2-3x +2>0”的充分不必要条件B解析对于A项,显然正确;对于B项,因为Δ=4-12<0,所以方程无实根,故B项错误;对于C项,“若α=β,则sin α=sin β”为真命题,所以其逆否命题也为真命题,故C项正确;对于D项,x2-3x+2>0的解集是{x|x>2或x<1},故D项正确.二、填空题7.已知命题p:若a>b>0,则log12a<log12b+1,命题p的原命题、逆命题、否命题、逆否命题中真命题的个数为________.解析因为a>b>0,所以log12a<log12b,所以命题p为真命题,其逆命题为:若log12a<log12b+1,则a>b>0,因为a=2,b=2时,log12a<log12b+1,而a=b,所以逆命题为假命题.根据命题与其逆否命题的真假相同,逆命题与否命题的真假相同,知命题p的原命题、逆命题、否命题、逆否命题中只有2个是真命题.答案28.能够说明“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为________.解析取a=-1,b=-2,c=-3,满足a>b>c,但a+b=-3=c,不满足a+b>c,故“设a,b,c是任意实数,若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为-1,-2,-3.答案-1,-2,-3(答案不唯一)9.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为________.解析由x2+x-6<0得A=(-3,2),由x-a>0得B=(a,+∞),若“x∈A”是“x∈B”的充分条件,则A⊆B,则a≤-3.答案(-∞,-3]三、解答题10.写出“若x=2,则x2-5x+6=0”的逆命题、否命题、逆否命题,并判断其真假.解析逆命题:若x2-5x+6=0,则x=2,是假命题;否命题:若x≠2,则x2-5x+6≠0,是假命题;逆否命题:若x2-5x+6≠0,则x≠2,是真命题.11.已知函数f(x)=lg(x2-2x-3)的定义域为集合A,函数g(x)=2x-a(x≤2)的值域为集合B.(1)求集合A,B;(2)已知p:m∈A,q:m∈B,若綈p是綈q的充分不必要条件,求实数a的取值范围.解析(1)A={x|x2-2x-3>0}={x|(x-3)(x+1)>0}={x|x<-1或x>3},B={y|y=2x-a,x≤2}={y|-a <y≤4-a}.(2)因为綈p是綈q的充分不必要条件,所以q是p的充分不必要条件,所以B A,所以4-a<-1或-a≥3,所以a≤-3或a>5,即实数a的取值范围是(-∞,-3]∪(5,+∞).12.已知p:A={x|x2-2x-3≤0,x∈R},q:B={x|x2-2mx+m2-9≤0,x∈R,m∈R}.(1)若A ∩B =[1,3],求实数m 的值;(2)若p 是綈q 的充分条件,求实数m 的取值范围.解析 (1)由题意得A ={x |-1≤x ≤3,x ∈R },B ={x |m -3≤x ≤m +3,x ∈R ,m ∈R },因为A ∩B =[1,3],所以m -3=1,解得m =4.(2)因为p 是綈q 的充分条件,所以A ⊆(∁R B ),因为∁R B ={x |x <m -3或x >m +3,x ∈R ,m ∈R },所以m -3>3或m +3<-1,解得m >6或m <-4,即实数m 的取值范围是(-∞,-4)∪(6,+∞).13.[选做题](2019·商南高中模拟)在△ABC 中,设p :a sin B =b sin C =c sin A,q :△ABC 是等边三角形,那么p 是q 的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件A 解析 a sinB =b sinC =c sin A ,即2R sin A sin B =2R sin B sin C,R 为△ABC 外接圆半径,所以sin A sin C =sin 2B ①;2R sin B sin C =2R sin C sin A,sin A sin B =sin 2 C ②. ①-②,得(sin C -sin B )(sin A +sin B +sin C )=0,则sin C =sin B ,所以C =B .代入①得C =A ,所以A =B=C ,则△ABC 是等边三角形.当△ABC 为等边三角形时,即A =B =C ,a =b =c 时,a sin B =b sin C =c sin A=2R 成立,所以p 是q 的充要条件.故选A.。
专题训练(二) 命题及其关系、充分条件与必要条件基础过关一、选择题1.命题“若a >b ,则a +c >b +c ”的否命题是( )A .若a ≤b ,则a +c ≤b +cB .若a +c ≤b +c ,则a ≤bC .若a +c >b +c ,则a >bD .若a >b ,则a +c ≤b +c2.设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.设a >b ,a ,b ,c ∈R ,则下列命题为真命题的是( )A .ac 2>bc 2B .a b >1C .a -c >b -cD .a 2>b 24.若命题p 的否命题是命题q 的逆否命题,则命题p 是命题q 的( ) A .逆命题 B .否命题C .逆否命题D .p 与q 是同一命题 5.“α=π6+2k π(k ∈Z )”是“cos2α=12”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(2020·皖南八校联考)“1x >1”是“e x -1<1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.命题“对任意x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >18.在等比数列{a n }中,“a 1,a 3是方程x 2+3x +1=0的两根”是“a 2=±1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.已知命题p :x 2+2x -3>0;命题q :x >a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]10.(2020·南昌市第一次模拟)已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是( )A .⎝ ⎛⎦⎥⎤0,255 B .(0,1] C .⎣⎢⎡⎭⎪⎫255,+∞ D .[2,+∞)二、填空题11.“在△ABC 中,若∠C =90°,则∠A ,∠B 都是锐角”的否命题为________。
§1.2命题及其关系、充分条件与必要条件一、选择题1.设集合A ={x ∈R|x -2>0},B ={x ∈R|x <0},C ={x ∈R|x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析:A ∪B ={x ∈R|x <0或x >2},C ={x ∈R|x <0或x >2}, ∵A ∪B =C ,∴x ∈A ∪B 是x ∈C 的充分必要条件. 答案:C2.已知命题p :∃n ∈N,2n>1 000,则綈p 为( ). A .∀n ∈N,2n≤1 000 B .∀n ∈N,2n>1 000 C .∃n ∈N,2n ≤1 000D .∃n ∈N,2n<1 000解析 特称命题的否定是全称命题.即p :∃x ∈M ,p (x ),则綈p :∀x ∈M ,綈p (x ).故选A. 答案 A3.命题“若-1<x <1,则x 2<1”的逆否命题是( ) A .若x ≥1或x ≤-1,则x 2≥1 B .若x 2<1,则-1<x <1 C .若x 2>1,则x >1或x <-1 D .若x 2≥1,则x ≥1或x ≤-1解析:若原命题是“若p ,则q ”,则逆否命题为“若綈q 则綈p ”,故此命题的逆否命题是“若x 2≥1,则x ≥1或x ≤-1”. 答案:D4.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 (特例法)当α>β时,令α=390°,β=60°,则sin 390°=sin 30°=12<sin60°=32,故sin α>sin β不成立;当sin α>sin β时,令α=60°,β=390°满足上式,此时α<β,故“α>β”是“sin α>sin β”的既不充分也不必要条件. 答案 D【点评】本题采用了特例法,所谓特例法,就是用特殊值特殊图形、特殊位置代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.5.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:否命题是既否定题设又否定结论.答案:B6.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解析:当a=1时,N={1},此时有N⊆M,则条件具有充分性;当N⊆M时,有a2=1或a2=2得到a1=1,a2=-1,a3=2,a4=-2,故不具有必要性,所以“a=1”是“N⊆M”的充分不必要条件.答案:A7.若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φ(a,b)=a2+b2-a-b,那么φ(a,b)=0是a与b互补的( ).A.必要而不充分的条件B.充分而不必要的条件C.充要条件D.既不充分也不必要的条件解析若φ(a,b)=0,即a2+b2=a+b,两边平方得ab=0,故具备充分性.若a≥0,b≥0,ab=0,则不妨设a=0.φ(a,b)=a2+b2-a-b=b2-b=0.故具备必要性.故选C.答案 C二、填空题8.若不等式成立的充分不必要条件是,则实数的取值范围是______答案:⎥⎦⎤⎢⎣⎡-34,219.有三个命题:(1)“若x +y =0,则x ,y 互为相反数”的逆命题; (2)“若a >b ,则a 2>b 2”的逆否命题; (3)“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的个数为________(填序号).解析 (1)真,(2)原命题假,所以逆否命题也假,(3)易判断原命题的逆命题假,则原命题的否命题假. 答案 110.定义:若对定义域D 上的任意实数x 都有f (x )=0,则称函数f (x )为D 上的零函数. 根据以上定义,“f (x )是D 上的零函数或g (x )是D 上的零函数”为“f (x )与g (x )的积函数是D 上的零函数”的________条件.解析 设D =(-1,1),f (x )=⎩⎪⎨⎪⎧0,x ∈-1,0],x ,x ∈0,1,g (x )=⎩⎪⎨⎪⎧x ,x ∈-1,0],0,x ∈0,1,显然F (x )=f (x )·g (x )是定义域D 上的零函数,但f (x )与g (x )都不是D 上的零函数.答案 充分不必要11.p :“向量a 与向量b 的夹角θ为锐角”是q :“a ·b >0”的________条件. 解析:若向量a 与向量b 的夹角θ为锐角,则cos θ=a ·b|a|·|b|>0,即a ·b >0;由a ·b >0可得cos θ=a ·b|a|·|b|>0,故θ为锐角或θ=0°,故p 是q 的充分不必要条件.答案:充分不必要12.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3 p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π其中真命题的个数是____________.解析 由|a +b |>1可得a 2+2a·b +b 2>1,因为|a |=1,|b |=1,所以a·b >-12,故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a·b >-12,|a +b |2=a 2+2a·b +b 2>1,即|a +b |>1,故p 1正确.由|a -b |>1可得a 2-2a·b +b 2>1,因为|a |=1,|b |=1,所以a·b <12,故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立,p 4正确.答案 2 三、解答题13.设p :函数||()2x a f x -=在区间(4,+∞)上单调递增;:log 21a q <,如果“p ⌝”是真命题,“p 或q ”也是真命题,求实数a 的取值范围。
解析:||:()2x a p f x -=在区间(4,+∞)上递增,||u x a ∴=-在(4,+∞)上递增,故 4.a ≤ …………(3分):q 由log 21log 01 2.a a a a a <=⇒<<>或 …………(6分)如果“p ⌝”为真命题,则p 为假命题,即 4.a > …………(8分) 又因为p q 或为真,则q 为真,即012a a <<>或由0124a a a <<>⎧⎨>⎩或可得实数a 的取值范围是 4.a > …………(12分)14.已知函数f (x )是(-∞,+∞)上的增函数,a 、b ∈R ,对命题“若a +b ≥0,则f (a )+f (b )≥f (-a )+f (-b )”.(1)写出其逆命题,判断其真假,并证明你的结论; (2)写出其逆否命题,判断其真假,并证明你的结论. 解 (1)逆命题是:若f (a )+f (b )≥f (-a )+f (-b ), 则a +b ≥0为真命题.用反证法证明:假设a +b <0,则a <-b ,b <-a . ∵f (x )是(-∞,+∞)上的增函数, 则f (a )<f (-b ),f (b )<f (-a ),∴f (a )+f (b )<f (-a )+f (-b ),这与题设相矛盾,所以逆命题为真. (2)逆否命题:若f (a )+f (b )<f (-a )+f (-b ), 则a +b <0为真命题.因为原命题⇔它的逆否命题,所以证明原命题为真命题即可. ∵a +b ≥0, ∴a ≥-b ,b ≥-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )≥f (-b ),f (b )≥f (-a ),∴f (a )+f (b )≥f (-a )+f (-b ). 所以逆否命题为真.15.判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. 解 法一 写出逆否命题,再判断其真假. 原命题:若a ≥0,则x 2+x -a =0有实根. 逆否命题:若x 2+x -a =0无实根,则a <0. 判断如下:∵x 2+x -a =0无实根, ∴Δ=1+4a <0,∴a <-14<0,∴“若x 2+x -a =0无实根,则a <0”为真命题. 法二 利用原命题与逆否命题同真同假(即等价关系)判断 ∵a ≥0,∴4a ≥0,∴4a +1>0,∴方程x 2+x -a =0的判别式Δ=4a +1>0, ∴方程x 2+x -a =0有实根,故原命题“若a ≥0,则x 2+x -a =0有实根”为真. 又∵原命题与其逆否命题等价,∴“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真命题. 法三 利用充要条件与集合关系判断. 命题p :a ≥0,q :x 2+x -a =0有实根, ∴p :A ={a ∈R|a ≥0},q :B ={a ∈R|方程x 2+x -a =0有实根}=⎩⎨⎧⎭⎬⎫a ∈R|a ≥-14.即A ⊆B ,∴“若p ,则q ”为真,∴“若p ,则q ”的逆否命题“若綈q ,则綈p ”为真. ∴“若a ≥0,则x 2+x -a =0有实根”的逆否命题为真.16.设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)若p 是q 的必要不充分条件,求实数a 的取值范围. 解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则p 真且q 真,所以实数x 的取值范围是2<x <3. (2)p 是q 的必要不充分条件,即q ⇒p 且p q ,设A ={x |p (x )},B ={x |q (x )},则A B ,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a ).所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =∅,不合题意. 综上所述,实数a 的取值范围是1<a ≤2.。