(7)管壳式热交换器结构
- 格式:ppt
- 大小:2.34 MB
- 文档页数:41
管壳式换热器的工作原理及结构随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。
换热器顾名思义就是用来热交换的机械设备。
换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。
尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。
换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。
换热器分为很多类型,管壳式换热器是很普遍的一种。
管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。
本文对管壳式换热器的原理进行简单介绍。
一、管壳式换热器的工作原理管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。
管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。
通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。
一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。
工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。
A 流体从接管1流入壳体内,通过管间从接管2流出。
B流体从接管3流入,通过管内从接管4流出。
如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。
壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。
管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。
管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。
通常壳体为圆筒形;管子为直管或U形管。
为提高换热器的传热效能,也可采用螺纹管、翅片管等。
管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。
按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。
管壳式换热器的工作原理及结构(山东华昱压力容器有限公司,济南250305)随着今天快速发展的科技,换热器已广泛运用于我国各个生产区域,换热器跟人们生活一脉相连。
用来热交换的机械设备就是所谓的换热器。
本文综述了管壳式换热器的工作原理及结构。
标签:管壳式换热器;工作原理;结构1 管壳式换热器的工作原理属于间壁式换热器的就是管壳式换热器,其换热管内组成的流体通道称为管程,换热管外组成的流体通道称为壳程。
管程以及壳程分别经过2个不一样温度的流体时,温度相对高的流体经过换热管壁把热量传递给温度相对低的流体,温度相对高的流体被冷却,温度相对低的流体被加热,进而完成两流体换热工艺的目标。
(工作原理和结构见图1)管壳式换热器关键由管箱、管板、管子、壳体以及折流板等组成。
一般圆筒形为壳体;直管或U形管为管子。
为把换热器的传热效能提高,也能使用螺纹管、翅片管等。
管子的安排有等边三角形、正方形、正方形斜转45°以及同心圆形等几种方式,最为常见的是前面三种。
依照三角形部署时,在一样直径的壳体内能排列相对多的管子,以把传热面积增加,但管间很难用机械办法清洗,也相对大的流体阻力。
在管束中横向部署一些折流板,引导壳程流体几次改变流动目标,管子有效地冲刷,以把传热效能提高,同时对管子起支承作用。
弓形、圆形以及矩形等是折流板的形状。
为把壳程以及管程流体的流通截面减小、流速加快,以把传热效能提高,能在管箱以及壳体内纵向安排分程隔板,把壳程分为二程以及把管程分为二程、四程、六程以及八程等。
管壳式换热器的传热系数,水换热在水时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;气体用水冷却时,为10~280W/(m(℃);水蒸汽用水冷凝时,为570~4000W/(m(℃)。
2 管壳式换热器依据结构特征能分为下面2类2.1 刚性构造的管壳式换热器:固定管板式是这种换热器的另一个名称,一般能可分为单管程以及多管程2种。
在两块管板上换热器的管端以焊接、胀接、胀焊并用的办法固定,而管板则以焊接的办法以及壳体相连。
管壳式换热器结构设计与强度计算中的重要问题管壳式换热器是一种常用的热交换器结构,其结构设计和强度计算是非常重要的问题。
在设计和计算过程中,需要考虑许多因素,包括材料选择、壳体和管道的结构、支撑和密封等。
以下是管壳式换热器结构设计和强度计算中的一些重要问题:1、材料选择选择合适的材料是管壳式换热器设计中最基本的问题之一。
材料应该具有足够的强度,耐腐蚀能力强,且具有良好的导热性能。
一般使用不锈钢、钛合金、镍基合金、铜合金等材料。
2、壳体和管道的结构壳体的结构应该具有足够的强度和刚度,以承受内部压力和外部载荷。
壳体由壳体头和壳体筒组成,一般采用对接或法兰连接方式。
管道的结构应该考虑流体的流动特性和换热流程的要求,一般采用不同的形状、长度和数量的管子,以满足流体的流量和换热效果要求。
3、支撑和密封在运行过程中,管壳式换热器需要足够的支撑和密封,以保证安全和稳定的运行。
支撑应该均匀,以避免管子的弯曲和扭转,导致热交换效率下降。
密封应该具有良好的密封性能,以避免流体泄漏或渗透,导致系统失效。
4、强度计算强度计算是管壳式换热器设计和制造中最重要的问题之一。
强度计算主要包括壳体和管子的强度计算、法兰连接的强度计算、焊接接头的强度计算等。
强度计算需要考虑不同的载荷情况、温度变化、材料蠕变等因素,以保证管壳式换热器在不同的工作条件下都具有足够的强度和安全性。
总之,管壳式换热器结构设计和强度计算是非常重要的问题,需要深入研究和细致分析,并结合实际应用要求进行优化和改进,以满足不同工况下的热交换需求。
管壳式换热器泄漏原因分析与处理预防策略摘要:换热器在化工,石油,电力,食物和其他很多行业中起着非常关键的作用,是化工生产的主要传热装置,可以用作加热器,冷却器,冷凝器;而在这些设备中,管壳换热器由于结构紧凑,操作灵活,材质选择范围广而得到了广泛的应用。
根据管壳式换热设备在使用过程中经常会遇到的一些常见的泄漏问题,文章简要地介绍了管壳式换热设备的构造,论述了管壳式换热器在行业中的地位和目前的应用情况,并就管道泄漏的成因进行了相应的剖析;同时,根据管壳换热装置的工作特性及工作机理,给出了相应的防范对策,并且对管壳热交换器的泄漏进行了分析,并就如何提高其密封性进行了讨论,可供换热设备的操作与管理一些借鉴。
关键词:管壳式换热器;泄漏;处理预防前言管壳换热器是一种常用的换热装置,与其他类型的间壁式换热器比较,该换热器具有更大的换热面积和更高的换热效率。
装置结构紧凑,结构坚固,可选择不同的材质进行加工,具有很好的适用性,特别应用在高温高压条件以及大型设备上。
1 管壳式换热器概述1.1管壳式换热器结构图1 管壳式换热器结构示意图换热管道数为331,管道程为气体,外壳为气体;气流呈顺时针方向流动。
为了使流体更加均匀地流入管程或壳程管箱内,在管道或壳程管箱内都设有流体分布装置。
另外,在壳侧设置3个弧型挡板,用于支承换热管束并调节流体的流向,以增加流体速度及紊流度,并加强流体在壳侧的对流换热。
管-壳热交换器的具体结构参数见表1。
表1 管壳式换热器结构尺寸1.2在工业领域的作用及其使用现状热换器属于一种用于两种或多种流体之间进行热交换的设备。
在实际应用中,换热器的最大功能就是将高温的热能从高温的流体中转移到低温的流体中,从而让产品的温度达到工艺流程中的要求,是化学,石油,电力,食品,轻工业,原子能,医药等众多行业中得到普遍应用的通用装置。
在化工企业中,换热设备的投入一般占10%-20%,对于精炼企业来说,这类项目的投入大约在35%到40%之间。