遥感摄影绪论
- 格式:ppt
- 大小:3.16 MB
- 文档页数:86
遥感导论知识点整理【题型】一、选择题二、填空题三、名词解释四、简答题五、论述题注意:标注页码的地方比较难理解,希望大家多看看书,看看ppt。
【第一章】绪论1、【名】遥感(remote sensing)广义:泛指一切无接触的远距离探测;定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。
2、遥感系统包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用。
(5个哦亲!详见书第2页图哈~)3、【名】信息源:任何目标具有发射、反射和吸收电磁波的性质,被称为遥感的信息源。
4、遥感的类型:a)按照遥感平台分地面遥感、航空遥感、航天(空间)遥感、航宇遥感b)按传感器的探测波段分紫外遥感(0.05μm-0.38μm)、可见光遥感(0.38-0.76μm)、红外遥感(0.76-1000μm)、微波遥感(1mm-10m)c)按工作方式分主动遥感、被动遥感;成像遥感、非成像遥感5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性6、遥感发展简史Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,61年正式通过。
遥感发展的三个阶段:(1)萌芽阶段1839年,达格雷发表第一张空中相片;1858年,法国人用气球携带照相机拍摄了巴黎的空中照片。
1882年,英国人用风筝拍摄地面照片;J N Niepce (1826, France)The world’s first photographic imageIntrepidballoon, 18621906, KitesPigeons, 1903.(2)航空遥感阶段1903年,莱特兄弟发明飞机,创造了条件。
1909年,意大利人首次利用飞机拍摄地面照片。
一战中,航空照相技术用于获取军事情报。
一战后,航空摄影用于地形测绘和森林调查与地质调查。
遥感概论复习整理第一章绪论1.遥感概念狭义遥感:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术2.遥感技术系统组成信息源、信息的获取、信息的记录和传输、信息的处理、信息的应用。
3.信息源,传感器概念信息源:任何地物都可以发射、反射和吸收电磁波信号,都是遥感信息源;目标物与电磁波发生相互作用,会形成目标物的电磁波特性,这为遥感探测提供了获取信息的依据。
传感器:接收、记录地物电磁波特征的仪器,主要有:扫描仪、雷达、摄影机、光谱辐射计等4.遥感类型(区分不同波段属于那种类型)按遥感平台分类:航天、航空、地面遥感按工作波段分类:紫外遥感:收集和记录目标物在紫外波段辐射能量可见光遥感:收集和记录目标物反射的可见光辐射能量,传感器有:摄影机、扫描仪、摄像仪等红外遥感μm):收集与记录目标物反射与发射的红外能量,传感器有:摄影机、扫描仪等微波遥感(1mm-1m):收集和记录在微波波段的反射能量,传感器有:扫描仪、微波辐射计、雷达、高度计等按传感器工作原理分类:被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量主动遥感:传感器主动发射一定电磁波能量,并接收目标的后向散射信号按资料获取方式分类:成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像非成像遥感:传感器接收的目标电磁辐射信号不能形成图像波段宽度与波谱的连续性分类:按应用领域分类:土地遥感(Domanial)环境遥感(Environmental)大气遥感(Atmospheric)海洋遥感(Oceanographic)农业遥感(Agricultural)林业遥感(Forestry)水利遥感(Hydrographic)地质遥感(Geological )5.遥感特点(一帧遥感图像代表地面多大位置)宏观性动态性技术手段多,信息海量应用领域广泛,经济效益高100nmile x 100nmile(185km x 185km)=34225km26.气象卫星有哪些1957年10月4日,前苏联成功发射了人类第一颗人造地球卫星1960年,美国发射了TIROS-1和NOAA-1太阳同步卫星1972年,美国发射ERTS-1(后改名为Landsat-1),装有MSS传感器,分辨率79米1982年,Landsat-4发射,装有TM传感器,分辨率提高到30米1986年,法国发射SPOT-1,装有PAN和XS传感器,分辨率提高到10米1988年9月7日,中国发射第一颗“风云1号”气象卫星1999年,美国发射IKNOS,空间分辨率提高到1米1999年,美国发射QUICKBIRD-2,空间分辨率提高到0.6米7.遥感发展历史无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1838-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)8.对遥感进行处理的软件PCI ERDAS ENVI ER-MAPPER9.SAR是什么是合成孔径雷达Synthetic Aperture Radar 的缩写10.遥感发展现状高分遥感发展迅速,多种传感器并存遥感从定性到定量分析遥感信息提取逐步自动化遥感商业化第二章电磁辐射与地物光谱特征1什么是电磁波谱(应用较多的波段)按照电磁波在真空中传播的波长或频率,递增或递减排列,形成的一个连续谱带。
数字摄影测量知识点总结第一章绪论摄影测量和遥感的概念:摄影测量和遥感是一门记录、测量和解释非接触式传感器系统获得的图像及其数字表达,从而获得可靠的自然物体和环境信息的技术、科学和技术。
摄影测量与遥感的主要特点:①在像片上进行量测和解译;② 它不需要接触物体本身,受自然和地理条件的限制较小;③ 可拍摄瞬时动态物体图像;④像片及其它各类影像提供物体的大量几何信息和物理信息摄影测量学的三个发展阶段:① 模拟摄影测量(1851-1970)利用光学/机械投影方法实现摄影过程的反转。
用两个/多个投影器模拟摄影机摄影时的位置和姿态,构成与实际地形表面成比例的几何模型,通过对该模型的量测得到地形图和各种专题图。
② 分析摄影测量学(1950-1980)是一门以计算机为主要手段,通过摄影照片测量和分析计算方法的交叉,研究和确定物体的形状、大小、位置、性质和关系,并提供各种摄影测量产品的科学。
③ 数字摄影测量(1970年至今)基于摄影测量的基本原理,通过对所获取的数字/数字化影像进行处理,自动(半自动)提取被摄对象用数字方式表达的几何与物理信息,从而获得各种形式的数字产品和目视化产品。
摄影测量学三个发展阶段的特点:摄影测量分类:按距离:航空航天摄影测量、航空摄影测量、地面摄影测量、近景摄影测量、微距摄影测量。
根据目的:地形摄影测量、非地形摄影测量按处理手段:模拟摄影测量、解析摄影测量、数字摄影测量单幅图像摄影测量的理论基础:共线方程和共面条件摄影测量的任务:地形测量场c各种比例尺的地形图、专题图、特种地图、正射影像地图、景观图。
c建立各种数据库。
C提供地理信息系统和土地信息系统所需的基础数据。
非地形测量领域C生物医学C公共安全检测c古文物、古建筑c建筑物变形监测c军事侦察c矿山工程第二章单张航相机胶片分析航摄机主距:航空摄影机物镜中心至底片面的距离是固定值,常用f表示。
摄影机的主距分为:长焦距(主距≥200mm)中焦距(主距100~200mm)短焦距(主距≤l00mm)对应的像场角分为:恒定角度(低于75°)广角(75°~100°)超广角(高于100°)摄影比例尺:是指航摄像片上一线段为l与地面上相应线段的水平距l之比。
第一章 绪论一、摄影测量与遥感的定义与任务1、摄影测量与遥感定义摄影测量与遥感乃是对非接触式传感器系统获得的影像及其数字表达进行记录量测和解译,从而获得自然物体和环境的可靠信息的一门科学和技术。
传统的摄影测量学是利用光学摄影机摄影的像片,研究和确定所摄物体的形状、大小、性质及其空间位置的理论、技术和方法的一门学科。
内容包括 : 影像信息获取 影像信息处理影像信息表达 影像信息应用2、摄影测量目前的主要任务是:测制各种比例尺的地形图和专题图;建立地形数据库;为各种地理信息系统和土地信息系统提供基础数据。
3、主要特点:1).影像记录目标信息客观、逼真、丰富;2).测绘作业无需接触目标本身,不受现场条件限制;3).可测绘动态目标和复杂形态目标;4).影像信息可永久保存、重复量测使用;二、摄影测量学的分类●分类原则与方法基本要素: 目标、图像、信息●按被测目标分(按用途分):地形摄影测量 (地形图)非地形摄影测量(其他用途)●按获取目标的距离分(按距离分):航天摄影测量(<160Km) ;航空摄影测量(2Km~30Km);地面摄影测量(100m~300m);近景摄影测量(<100m) ;显微摄影测量按图像类型分:光学图像;雷达摄影测量;双介质摄影测量;X射线摄影测量按图像处理方式分(按技术方法分):模拟摄影测量(1900~1960年);解析摄影测量(1950~1980年) ;数字摄影测量(1980年~~~)三、摄影测量学的发展历史[参考资料]●1839年尼普斯和达盖尔发明摄影术。
●1851~1859年,法国陆军上校劳赛达特提出和进行交会摄影测量,这被称为摄影测量学的真正起点。
这一阶段主要用于建筑物的摄影测量。
●1858年,纳达通过气球获取了第一张地面的空中照片。
●二十世纪初,发明了立体观察方法。
1901年,立体坐标量测仪问世。
由于飞机尚未发明,主要用于地面摄影测量。
●1903年,莱特兄弟发明飞机,使航空摄影测量成为可能。
问题第一章--绪论1、遥感的基本概念2、遥感探测系统组成3、遥感与常规观测手段的区别重点:遥感的概念及应用领域1.遥感的广义理解和狭义理解?P12.遥感探测系统包括哪几个部分?P13.遥感的特点?P54.遥感的信息源?遥感探测的依据?P35.遥感的类型?P3第二章--电磁辐射与地物光谱特征1、电磁波谱与电磁辐射的概念及特点2、太阳辐射及大气对辐射的影响3、地球的辐射与地物波谱重点:地物波谱特征难点:电磁辐射原理1.大气层次与成分?P262.散射现象的实质?P293.大气散射的三种情况?P294.根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾能力而可见光不能?P295.物体的反射状况?(镜面反射、漫反射、实际物体反射)P376.大气窗口对于遥感探测的重要意义?P317.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象?8.从地球辐射的分段特性说明为什么对于卫星影象解译必须了解地物反射波谱特性?P35 9.黑体辐射定律?P19第三章--电磁辐射与地物光谱特征1、了解主要的遥感平台及各平台的工作特点。
2、摄影成像的基本原理及图像特征。
3、扫描成像的基本原理及扫描图像的特征。
4、微波成像与摄影、扫描成像的区别。
5、评价遥感图像质量的方法。
重点:摄影成像的基本原理及图像特征、评价遥感图像质量的方法难点:中心投影的原理1.主要遥感平台是什么,各有何特点?P462.摄影成像的基本原理是什么?其图象有什么特征?P53、P573.扫描成像的基本原理是什么?P674.扫描成像和摄影图象有何区别?5.微波成像与摄影、扫描成像有何本质的区别?6.如何评价遥感图象的质量?P80-P837.气象卫星特点?P488.海洋遥感的特点?P529.中心投影与垂直投影的区别?P5810.中心投影的透视规律?P5911.光/机扫描成像的概念?P6712.瞬时视场角(像元)的概念?P6813.总视场角的概念?P6814.固体自扫描成像的概念?P6915.高光谱成像光谱扫描的概念?P7016.微波遥感的特点?P7217.微波遥感方式和传感器?P74-P8018.遥感解译人员需要通过遥感图像获取的信息?P8019.遥感图像的特征?P80-P83第四章--遥感图象处理1、光学原理与光学处理2、数字图像的校正3、数字图像增强4、多源信息复合重点:数字图象的增强难点:数字图象的校正及数字图象增强的原理与计算方法1.影响亮度值的两个物理量?P982.引起辐射畸变的两个原因?P983.辐射校正的方法(直方图最小值去除法、回归分析法)?P1004.遥感影像变形的原因?P1035.几何畸变校正的方法(最近邻法、双线性内插法、三次卷积内插法)?P1076.空间滤波的概念以及手段?P1167.彩色变换?P1208.图像运算(差值运算、比值运算)?P1229.多光谱变换(主成分变换、缨帽变换)?P12310.遥感信息的复合(不同传感器的遥感数据复合、不同时相的遥感数据复合)?P128 11.遥感与非遥感信息的复合?P13012.简述多波段彩色变换的不同方法?P120第五章--遥感图像目视解译与制图1、遥感图像目视解译原理2、遥感图像目视解译基础3、遥感制图1.遥感图像目标地物识别特征?P1352.图像知觉形成的客观条件?P1423.摄影像片的特点?P1454.摄影像片的解译标志?P1455.遥感摄影像片的判读方法?P1496.遥感扫描影像的判读?P1537.遥感扫描影像特征?P1618.遥感影像主要解译方法?P1619.微波影像的特点?P16310.微波影像解译标志及地物影像特征?P16611.微波影像的判读方法?P17112.目视解译方法?P17113.目视解译步骤?P17414.遥感影像地图的主要特征?P17615.对比分析MSS影像与TM影像的不同特点?P154第六章--遥感数字图像计算机解译1、遥感数字图像的性质与特点2、遥感数字图像的计算机分类3、遥感图像多种特征的抽取重点与难点:遥感数字图像的计算机分类方法1.遥感数字图像计算机解译的概念及其难度?P1872.按波段数量,遥感数字图像的类型?P1903.多波段数字图像的存储与分发通常采用的数据格式?P1904.航空像片的数字化过程?P1925.遥感数字图像计算机分类原理?P1936.遥感数字图像计算机分类方法(监督分类方法、非监督分类方法)?P195、P196 7.遥感数字图像计算机分类基本过程?P1958.植被、水体及土壤反射波谱特征?P399.计算机分类存在的问题?P20110.地物边界跟踪的方法?P20311.遥感图像解译专家系统的组成?P214-P21712.计算机解译的主要技术发展趋势?P219第七章--遥感应用1、地质遥感的主要原理与应用2、水体遥感的主要原理与应用3、植被遥感的主要原理与应用4、土壤遥感的主要原理与应用5、高光谱遥感的应用1.地质遥感的任务?基础?P2252.从遥感影像上识别地质构造的内容?P2313.岩石的反射光谱特征是什么?如何对沉积岩、岩浆岩、变质岩的影像进行识别?P225-P230 4.如何进行地质构造识别?P2315.水体的光谱特征是什么?水体识别可包括哪些内容?P237-P2396.植物的光谱特征是什么?如何区分植物类型,监测植物长势?P240-P2447.作物估产的原理和方法是什么?P2458.土壤的光谱特征是什么?如何进行土类的识别?P249-P2529.什么是高光谱遥感?它与传统遥感手段有何区别?P25310.高光谱提取地质矿物成分的主要技术方法是什么?P25411.高光谱在植被研究中有哪些应用?主要技术方法是什么?P256第八章--3S综合应用1.GIS的基本概念及其基本功能?P2612.GPS的基本原理、作用及其组成?P2643.RS的作用?P267概念第一章--绪论1.传感器(遥感器):接收、记录目标物电磁波特征的仪器2.遥感平台:装载传感器的平台,包括地面平台、空中平台、空间平台3.地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等4.航空遥感:传感器设置于航空器上,主要是飞机、气球等5.航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等6.航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测7.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号8.被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量9.成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图象10.非成像遥感:传感器接收的目标电磁辐射信号不能形成图象第二章--电磁辐射与地物光谱特征1.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列2.朗伯源:辐射亮度与观察角无关的辐射源3.绝对黑体:一个对于任何波长的电磁辐射都全部吸收的物体4.太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量5.太阳光谱:通常指光球产生的光谱,是连续光谱,且辐射特性与绝对黑体辐射特性基本一致6.散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开7.大气窗口:电磁波通过大气层时较少被反射、吸收或者散射的,透过率较高的波段8.比辐射率=发射率第三章--电磁辐射与地物光谱特征1.遥感平台:搭载传感器的工具2.低轨:近极地太阳同步轨道,卫星每天在固定的时间(地方时)经过每个地点的上空,使资料获得时具有相同的照明条件3.高轨:指地球同步轨道4.摄影机:成像遥感最常用的传感器,有分幅式和全景式摄影机之分,通常的遥感探测和制图大都采用分幅式摄影5.垂直摄影:摄影机主光轴垂直于地面或偏离垂线在3°以内,取得的像片称水平像片或垂直像片6.倾斜摄影:摄影机主光轴偏离垂线大于3°,有时为了获取较好的立体效果且对制图要求不高时采用7.像点位移:在中心投影的像片上,地形的起伏除引起像片比例尺变化外,还会引起平面上的点位在像片位置上的移动的现象,位移量就是中心投影与垂直投影在同一水平面上的"投影误差",位移量与摄影高度(航高)成反比8.感光特征曲线:横坐标为曝光量的对数值,纵坐标为胶片的光学密度9.光学密度:指胶片经感光显影后,影象表现出的深浅程度10.感光度:指胶片的感光速度。
第一章绪论遥感的概念1 广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。
物探(物理探测):狭义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理、分析,判别出目标地物的属性及其变化特征的综合性探测技术。
空间遥感过程需综合遥测和遥控技术。
2 遥感数据(遥感数据获取示图)太阳辐射经过大气层到达地面,一部分与地面发生作用后反射,再次经过大气层,到达传感器。
传感器将这部分能量记录下来,传回地面,即为遥感数据(遥感数据示例)。
3 传感器是收集、量测和记录遥远目标的信息的仪器,是遥感技术系统的核心。
传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。
遥感技术系统1遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输处理到分析判读、应用的完整技术系统。
信息的获取:传感器、遥感平台信息的接收:地面卫星接收站遥感类型1 按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。
2按照探测电磁波的工作波段分类:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感等。
3按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等4按照资料的记录方式:成像方式、非成像方式5按照传感器工作方式分类:主动遥感、被动遥感遥感平台是装载传感器的运载工具,按高度分为:地面平台:为航空和航天遥感作校准和辅助工作。
航空平台:80 km以下的平台,包括飞机和气球。
航天平台:80 km以上的平台,包括高空探测火箭、人造地球卫星、宇宙飞船、航天飞机。
人造地球卫星的类型:低高度、短寿命卫星:150-350 km,用于军事。
中高度、长寿命卫星:350-1800 km,地球资源。
高高度、长寿命卫星:约3600 km,通信和气象。
遥感的特点1多波段性:波段的延长使对地球的观测走向了全天候。
2 多时相性:重复探测,有利于进行动态分析。
1 相对定向:恢复两张像片的相对位置,建立立体模型;2 绝对定向:将立体模型纳入到地面测量坐标系中,并规化为所需的模型比例尺3 立体像对:在立体摄影测量中由不同摄影站对同一地面景物摄取的,具有一定影像重叠的两张像片称为立体像对;4 像片纠正:将中心投影的构像经过投影变换转变为正射投影,同时消除像片倾斜所引起的像点位移,使其相当于水平像片的构想,符合规定的比例尺,此变换过程为像片纠正;5 解析空三:只测定少量必需的外业控制点,在室内测出一批测图所需要的像片点坐标,通过解析的方法一定的数学模型平差计算出相应地面点的地面坐标;6 核线相关:核面与两像片的交线为同名核线,同名像点必定在同名核线上,沿核线相关计算,寻找同名像点;7 数字高程模型:是国家基础空间数据的重要组成部分,表示地表区域上地形的三维向量的有限序列,即地表单元高程的集合Z=fx,y研究地表起伏;8 GPS辅助空三:利用GPS动态定位原理,采用机械GPS接收机与地面基准站的GPS接收机同时,快速;连续地记录相同的GPS信号,通过相对定位技术的离线数据处理后,获得航摄飞行中摄站点相对与该地面基准点的三维坐标,并将作为辅助数据应用于光束法区域平差中;9 内方位元素:确定摄影中心与像片间相关位置的参数为内方位元素;10外方位元素:确定摄影中心和像片在地面坐标系中的位置与姿态的参数为外方位元素;11 像片调绘:利用航摄像片所提供的影像特征,对照实地进行识别,调查和做必要的注记,并按照规定的取舍原则,图示符号表示在航片上的工作;12 4D产品:DEM数字高程模型DOM数字正摄影像DRG数字栅格地图DLG 数字线划地图1航空摄影测量的定义与任务:定义:利用飞机或其他飞行器所载的摄影机在空中拍摄地面像片;结合地面控制点测量,调绘和立体测绘等步骤,绘制出地形图的作业;任务:测制各种比例尺地形图和影像地图,建立地形数据库,并为各种地理信息系统和土地信息系统提供基础依据;2 航空摄影特殊点,线,面:点:摄影中心S,像主点O,地底点N,等角点C主合点i线:摄影机轴SO,垂线SN,主纵线W,主横线h o h o等比线h c h c摄影方向线vv,透视轴TT,合线h i h i面:像平面P,地平面E,主垂面W,合面E s;3航空摄影测量有哪些常用的坐标系各怎样定义的1像方坐标系像平面坐标系:用于表示像点在像平面上的位置,以像主点为原点的像平面坐标系用0-XY表示;2像框标坐标系:使用航摄像片的框标来定义像平面坐标系3像空间坐标系:为便于进行像点的空间坐标转换建立的能够描述像点空间位置的坐标系;4向空间辅助坐标系:将不统一的像空间坐标系转化到一种相对统一的坐标系中从而方便计算,该坐标系的坐标原点扔为摄影中心S,UW坐标轴方向视情况而定; (2)物方坐标系:1 摄影测量坐标系:将第一个像对的像空间辅助坐标系S-UVW沿W轴反方向平移到地面点P得到的坐标系P-XpYpZp2地面测量坐标系:用国家测图所采用的高斯-克吕格3度或6度带投影的平面直角坐标系和以某平面为起算面的高程系所组成的空间左手坐标系T-XtYtZt3地面摄影测量坐标系:为方便摄影测量坐标系和地面测量坐标系的转换而建立的过渡性坐标系;坐标原点在测区内的某一地面点,X轴为大致与航向一致的水平方向,Z轴沿铅垂方向,构成右手系;4 简述空间后方交会的解析过程1获取已知数据2量测控制点的像点坐标3确定未知数的初始值4计算旋转矩阵R5逐点计算像点坐标的近似值6组成误差方程式7组成法方程式8求解外方位元素9检查计算是否收敛5 述解析空三的作业过程1原始资料处理2自动空中三角测量准备3加密点自动生成4交互式编辑5接边及成果输出6 简述双向解析的相对定向—绝对定向方法的基本过程1用连续像对或单独像对的相对定向元素的误差方程式解求像对的相对定向元素;2由相对定向元素组成左右像片旋转矩阵R1 R2并利用前方交会式求出模型点在像空间辅助坐标系中的坐标3根据已知地面控制点坐标按绝对定向元素的误差方程式求解该立体模型的绝对定向元素4按绝对定向公式将所有待定点的坐标纳入地面摄影测量坐标中;7连续像对与独立像对各取什么样的空间坐标系各有哪些相对元素单独相对相对定向:像空间辅助坐标系V轴,摄影基线,V轴垂直于左主核面,W轴;位于左主核面;相对元素:φ 1 k1 φ 2 w2k2连续:以左片像空间坐标系作为本像对的像空间辅助坐标系,相对定向元素:b vb w φ2w2 k28 航空像片与地形图区别是1表示方法地形图是按成图比例尺所规定的各种符号,注记和等高线来表示地物地貌,航摄像片影像的大小,形状,色调;2表示内容:地形图用相应符号,文字,数字注记表示,房屋,道路等,这些在像片上是表示不出来的,且地形图上必须经过综合取舍,只表示经选择的有意义的地物,像片上有所摄地物的全部影像,显示内容广泛,3投影方式不同:地形图是正射投影,比例尺出处一致,地形图上图形不仅与实际形状完全相似,而且某相关方位保持不变;航片是中心投影,由于像片倾斜,地形起伏误差影响,使航片上影像有变化,各处比例尺不一致相关方位也发生变化;9解析空中三角测量有哪几种常用的方法基本思想是什么1航带法解析空中三角测量;以单元航带模型作为一个基本单元,利用地面控制点的摄影测量坐标与实际地面坐标相等以及相邻航带公共点坐标应相等为条件,用平差差在全区域求各加密点坐标,平差模型; 2独立模型法:以构成的每一单元模型为独立单元,进行全区域的整体平差计算,通过平移,缩放,旋转最终达到最或是位置; 3光束法解析空中三角测量;以每张像片所组成一束光线为平差的基本单元,在全区域内建立误差方程式,求每张像片的六个外方位元素和加密点的地面坐标;平差基础方程为:共线条件方程10 像片控制点布设的基本原则1像控点的布设必须满足布点方案的要求,一般情况下按图幅布设,也可以按航线或采用区域网布设;2位于不同成图方法的图幅之间的控制点或位于不同航线,不同航区分界处的像片控制点,应分别满足不同成图方法的图幅或不同航线和航区各自测图的要求,否则应分别布点;3在野外选择像片控制点,不论是平面点,高程点或平高点,都应该选在明显目标点上; 4当图幅内地形复杂,需采用不同成图方法布点时,一幅图内不超过两种布点方案,每种布点方案所包括的像对范围相对集中,可能时应尽量按航线布点,以便于航测内业作业;5像控点的布设,应尽量使内业作业所用的平面点和高程点合二为一,即布设成平高点;11 航摄像片的判读特征有哪些1形状特征 2大小特征 3色调特征 4阴影特征 5相关位置特征 6纹理特征 7图案结构特征 8色彩特征 9活动特征 12 简述DEM 数据处理的流程.1数据格式转换 2 坐标系统变换 3 数据编辑4 栅格数据矢量化 5 数据分块 6 子区边界的提取13 数字正摄影像图制作方法:1 全数字摄影测量方法:就是利用计算机对数字影像进行处理,并用计算机视觉,影像匹配和影像识别代替人眼,与计算机进行立体测量2单片数字微分纠正方法:首先,对航摄负片进行影像扫描,然后根据区域内已有的数字高程模型的数据和控制点坐标对数字影像内定向,数字微分纠正3正摄影图扫描方法:可直接对已有的光学制作的正射影像图进行影像扫描数字化,再经过平移缩放旋转和仿射等图像变换就能获得正确的数字正射影像图; 1共线方程各参数含义和用途)()()()()()()()()()()()(333222333111S A S A S A S A S A S A S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a f y Z Z c Y Y b X X a Z Z c Y Y b X X a fx -+-+--+-+--=-+-+--+-+--=x,y→ 想点坐标观测值; XYZ→ 相应地面点坐标控制点已知X s,Y s,Z s → 摄影中心在选取的地面摄影测量坐标一般未知待求a1...c3→ 由三个外方位元素00.0..0.0确定一般未知待求作用:由控制点解算外方位元素-单像空间后方交会,光束法由立体像对的像点坐标解算对应地面点坐标-多像前方交会利用DEM 制作数字正射影像图;利用DEM 进行单张像片测图;2摄影测量基本思想利用拍摄手段把物体摄成影像以获取物体各方面信息 原始资料 投影方式 仪器 操作方式 产品模拟摄影测量 像片 物理 模拟测图仪 作业人员 模拟产品 解析摄影测量 像片 数字 解析测图仪 机助作业员操作 模拟 数字数字摄影测量 像片 数字 计算机 自动化操作+作业员干预 模拟 数字3 grid 与tin 的优缺点优点:1只存储了高程坐标,2数据结果简单,3易于管理缺点:1 有时不能准确表示地表物结构与细部特征;2格网过大会损失地形的关键特征;3格网太小地形简单地区又存放在大量冗余数据4格网点高程内插时损失精度5如不改变格网大小,则无法适用起伏程度不同的地区;6对于某些特殊计算如视线计算时,格网的轴线方向被夸大7由于栅格过于粗略,不能精确表示地形的关键特征,如山,峰等;TIN 优点:1 能充分利用地貌的特征点,线,面;较好地表示复杂地形;2 可根据不同地形,选取合适的采样点数;3 分析地形和绘制立体图方便,4 克服了高程矩阵中冗余数据的问题,缺点: 存储量大,数据结构复杂,不便于规范管理,难以与矢量和栅格数据进行联合分析4航空摄影作业过程主要步骤和内容1航空摄影2 航测外业3航测内业4测绘产品1.航空摄影:在专用飞机上安装航空摄影机,通过对地面的连续摄影,以获取所摄地区的原始航摄资料和信息,主要为航摄提供基本的测图资料及一些影像数据;2.航测外业:像片控制测量;像片调绘;像片图测图;2.1像片控制测量:技术计划的拟定,高级地形控制点观测与计算;控制点的迭制;像片控制点的观测,计算,控制测量成果的整理;2.2像片调绘:调绘前准备工作;像片判读;地物地貌元素的综合取舍‘调查有关情况和测量有关数据;补测新增地物;像片着墨清绘;接边;检查验收;2.3像片图测图:固定比例尺像片图测图是综合法测图的主要方法,以航摄像片为基础,经像片纠正制作或具有与测图比例尺相等的像片平面图,根据像片图的影像确定地物,地貌点的平面位置,利用像片平面图在野外,通过普通地形测量方法确定地面高程,测绘等高线,调绘地物地貌,最终获得地形图;3 航测内业:控制点加密,像片纠正,立体测图像片加密:满足内业测图或制作像平面图的需要;像片纠正:消除航摄片与正射片间差异,满族像片图及制作正射图的需要;立体测图:航测成图的主要方法;4 测绘产品:4D产品,立体景观图,立体透视图,各种工程设计所需要的三维信息5通过本课学习,你认为要干好摄影测量工作要哪些方面的素质摄影测量时信息摄取,处理,提取和成果表达的一门信息学科,主要任务是测制各种不同比例尺地形图,建立地形数据库,并为各种地理信息系统和土地信息系统提供基础数据;摄影测量学与工程测量学,测绘学及其他学科间有密切的关系,摄影测量学必须具备大地测量学,工程测量学,地图制图学,遥感,地理信息系统,GPS及地籍测量与土地管理方面知识;误差理论测量平差,整理统计是处理摄影像片的基础,除此之外,还应掌握数学,应用学,物理学,工程科学,计算机科学,人文管理学等方面知识;为了加强交流,需熟练掌握英语,掌握专业知识后;还应培养我们的个人情操,在工作中认真严谨,态度端正,多动手实践,有吃苦精神不怕苦不怕累,只有具备以上素质,才能学好这门学科,才能为摄影测量做贡献;第一章绪论1.摄影测量的三个阶段:模拟、解析、数字;2.摄影测量的主要特点:①无需接触被摄物体本事获得其信息;②有二维影像重建三维目标;③面采集数据形式;④同时提取物体的几何与物理特征;3.摄影测量按用途可分为:地形和非地形测量;4.传统的摄影测量与数字摄影测量的区别:传统的摄影测量是利用光学摄影机提取像片,通过像片来研究和确定被摄物体的形状、大小、位置和相互关系的一门科学技术;数字摄影测量是利用所采集的数字化影像,在计算机上进行各种数值、图形和影像处理,研究目标的几何和物理特性,从而获得各种形式的数字产品和可视化产品;第二章影像获取1.框标的作用:建立像片的直角框标坐标系;2.摄影机主距f:航空摄影机物镜中心至底片面的距离是固定值,称为摄影机主距;它与物镜焦距基本一致,因物镜畸变等因素而有少许差异;3.常用的遥感数据有:美国陆地卫星LandsatTM和MSS遥感数据,法国SPOT卫星遥感数据;4.量测型相机与非量测型相机的区别:是否有框标;第三章摄影测量基础知识1.绝对航高:摄影瞬间摄影机物镜中心相对于平均海水面的航高;2.相对航高:摄影瞬间摄影机物镜中心相对于其他某一基准面或某一点的高度;3.影像方位元素:方位元素:确定摄影时摄影物镜摄影中心S 、像片与地面三者之间相关位置的参数;即摄影瞬间摄影中心S 、像片在地面设定的空间坐标系中的位置与姿态;①内方位元素:摄影物镜中心S 相对于影像位置关系的参数x 0 ,y 0 f ;②外方位元素:确定影像或摄影光束在摄影瞬间的空间位置和姿态的参数Xs, Ys, Zs,φ,ω,κ ;获取方法:①单像空间后方交会求解;②GPS 测定一台,Xs,Ys, Zs,三台φ,ω,κ ;③POS 系统测定,GPS+惯导系统;4.R 阵为旋转矩阵,正交矩阵;5.中心投影构象方程式及其应用:)()()()()()()()()()()()(333222333111s s s s s s s s s s s s Z Z c Y Y b X X a Z Z c Y Y b X X a f y Z Z c Y Y b X X a Z Z c Y Y b X X a fx -+-+--+-+--=-+-+--+-+--= 应用:①单像空间后方交会和多像空间前方交会;②解析空中三角测量光束法平差中的基本数学模型;③摄影测量中的数字投影基础;④航空影像模拟已知影像内外方位元素和物点坐标求像点坐标; ⑤利用DEM 与共线方程制作数字正射影像图;⑥利用DEM 与共线方程进行单幅影像测图;6摄影测量常用坐标系:①像平面直角坐标系o – x y该坐标系原点:像主点O 即摄影中心S 在像平面上的垂足像平面坐标系的坐标轴方向与框标坐标系相同;是右手坐标系; ②像空间直角坐标系S-xyz为了进行像点的空间坐标变换,而建立的描述像点在像空间位置的坐标系;每张像片的像空间坐标系是各自独立的;③像空间辅助坐标系S-uvw由于各张像片的像空间坐标系不统一,给计算带来了困难,为此,需要建立一种相对统一的坐标系,称为像空间辅助坐标系;将像空间坐标系的Z 轴方向转到铅垂方向或某一竖直方向;④地面摄影测量坐标系D-XpYpZp由于像空间坐标系是右手系,地面测量坐标系是左手系,给地面点由像空间辅助坐标系转换到地面测量坐标系带来了困难,为此,需要在两种坐标系之间建立一个过渡性的坐标系,称为地面摄影测量坐标系;坐标原点D 为测区内的某一地面点;⑤地面测量坐标系T-XtYtZt地面测量坐标为国家统一坐标系,平面坐标系为高斯-克吕格三度带或六度带1980西安坐标系,高程坐标系为1985黄海高程系;第四章双像立体测图基础与立体测图1.双像立体测图:双像立体测图是指利用一个立体像对即在两个位置对同一景物摄取有一定影像重叠的两张像片重建地面立体几何模型,并对立体几何模型进行量测,直接给出符合规定比例尺的地形图,获取地理基础信息;使用一个立体像对构建地面立体模型的方法也称为立体摄影测量;2.人造立体观察的条件:①立体像对:两张像片必须是在两个不同位置对同一景物摄取的立体像对;②分像条件:每只眼睛必须只能观察像对的一张像片;③两像片上相同景物同名像点的连线与眼基线应大致平行;④两像片的比例尺应相近差别<15%;3.主核面:是指同多像主点的核面;4.左右视差P:同名投影点在仪器X方向上的偏差称为左右视差;5.上下视差Q:同名投影点在仪器Y方向上的偏差称为上下视差;6.完成相对定向的唯一标准:两像片上同名投影光线对对相交;7.内定向:恢复像片对的内方位元素;8.相对定向:确定一个立体像对两像片的像对位置;相对定向元素:确定两像片相对位置关系的元素;9.绝对定向:是借助已知的控制点对几何模型进行平移、旋转与缩放,使其成为地面模型,纳入到地面摄影测量坐标系中D-XYZ;10.绝对定向公式:第五章摄影测量解析基础1.单像空间后方交会:利用影像覆盖范围内一定数量的地面控制点的空间坐标和相应的影像坐标,根据共线条件方程反求出影像的外方位元素;这种方法称为单幅影像的空间后方交会;目的:获取外方位元素;基本思想:以单幅影像为基础,从该影像所覆盖地面范围内若干地面控制点的已知坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时的外方位元素Xs, Ys, Zs,φ,ω,κ;2.空间后方交会法的详细过程:①获取已知数据 m, x , y , f , Xt, Yt, Zt;②量测控制点像点坐标 x,y;③确定未知数初值 Xs, Ys, Zs, , , ;④计算旋转矩阵R;按3-9式;⑤逐点计算像点坐标的近似值x、y;按5-1式;⑥逐点计算误差方程式5-3式的系数和常数项,组成误差方程式;系数计算按5-4式5-8式和5-9b式;⑦计算法方程的系数矩阵ATA与常数项ATL,组成法方程ATAX= ATL;⑧解求外方位元素;按5-6式 X=ATA-1 ATL,并与相应的近似值求和,得到外方位元素新的近似值;⑨检查迭代计算是否收敛;3.解析法绝对定向:解析法绝对定向,就是利用已知的地面控制点,从绝对定向的关系式出发,解求七个绝对定向元素;目的:将相对定向后求出的模型点在像空间辅助坐标系中的坐标变换为地面摄影测量坐标;4.立体像对双像前方交会:由立体像对中两张像片的内、外方位元素和同名像点的影像坐标量测值来确定该点在物方空间坐标系中坐标的方法;5.什么叫单像空间后方交会其观测值和未知数各是什么至少需要几个已知控制点,为什么答:根据共线方程利用一直控制点与其影像对应点,反求该像片的外方位元素Xs,Ys,Zs, Ψ,ω,k的方法称为单像空间后方位交会;观测值为:从摄影资料查找像片的比例1/m,平均航高,内方位元素x0,y0,f;从外业测量成果中,获取控制点的地面测量坐标,Xt,Yt,Zt;并转换为地面摄影测量坐标X,Y,Z;6.双像解析摄影测量有哪三种解析方法各有什么特点后交---前交解法,该方法前交的结果依赖于空间后方交会的精度,前交过程中没有充分利用多余条件平差计算;常在已知像片的外方元素,需确定少量待定坐标时采用;相对定向---绝对定向解法,该方法计算公式比较多,最后的点位精度取决于相对定向和绝对定向的精度,用这种方法的结果不能严格表述一副影像的外方元素,多在航带法解析空三测量中用;光束法,该方法理论严密,要求精度最高,带顶点坐标是按最小二乘准则解的,在光束法解析空三测量中用;第六章解析空中三角测量一、解析空中三角测量:采用严密的数学公式,按最小二乘法原理,用计算机进行的空中三角测量;二、解析空三的平差模型:1.航带法区域网平差;2.独立模型法区域平差;3.光束法区域网平差;三、航带网法空中三角测量基本思想:把许多立体像对构成的单个模型连结成一个航带模型,将航带模型视为单元模型进行解析处理,通过消除航带模型中累积的系统误差,将航带模型整体纳入到测图坐标系中,从而确定加密点的地面坐标四、独立模型法区域网空中三角测量基本思想:独立模型法区域网空中三角测量的基本思想是:把一个单元模型视为刚体,利用各单元模型彼此间的公共点连成一个区域,在连接过程中,每个单元模型只能作平移、缩放、旋转因为它们是刚体即单元内不加任何改正的独立模型,这样的要求只有通过单元模型的空间相似变换来完成;在变换中要使模型间公共点的坐标尽可能一致,控制点的摄测坐标应与其地面摄测坐标尽可能一致,同时误差的平方和为最小,在满足这些条件下,根据最小二乘准则对全区域网实施整体平差,解求每个模型的七个绝对定向参数,从而求出所有待定点的地面坐标;五、光束法空中三角测量的基本思想:以一张像片组成的一束光线作为一个平差单元,以中心投影的共线方程作为平差的基础方程,通过各光线束在空间的旋转和平移,使模型之间的公共光线实现最佳交会,将整体区域最佳地纳入到控制点坐标系中,从而确定加密点的地面坐标及像片的外方位元素;六、GPS辅助空中三角测量:GPS辅助三角测量就是利用机载GPS接收机与地面基准站的GPS接收机同时、快速、连续的记录相同的GPS卫星信号,通过相对定位技术的离线数据处理后获得航摄飞行中摄站点相对于该地面基准点的三维坐标,将其作为区域网平差中的辅助数据用于区域网联合平差,从而可大量节省甚至省去地面控制点;第七章数字地面模型及其应用数字地面模型就是一个用于表示地面特征的空间分布的数据阵列;最常用的是用一系列地面店的平面坐标X、Y及该点的地面高程Z或属性组成的数据阵列;二、数字高程模型:数字高程模型DEM或 DHM是表示区域D上地形的三维向量有限序列{Vi=Xi,Yi,Zi,i=1,2,…n}其中Xi,Yi∈D是平面坐标,Zi是Xi,Yi对应的高程;三、数字高程模型数据内插方法:DEM的数据内插就是根据参考点已知点上的高程求出其他待定点上的高程;1.移动曲面拟合法;2.线性内插;3.双线性多项式内插法;第八章全数字摄影测量基础。
遥感复习资料第⼀章绪论1、遥感的定义⼴义的概念:⽆接触远距离探测(磁场、⼒场、机械波)狭义的概念:在遥感平台的⽀持下,不与⽬标地物相接触,利⽤传感器从远处将⽬标地物的地磁波信息记录下来,通过处理和分析,揭⽰出地物性质及其变化的综合性探测技术我们通常理解的遥感,主要是指空对地的遥感,对地⾯进⾏探测,为地球科学提供具有全球性、周期性、数字化的第⼀⼿资料,它是对地观测系统的重要组成部分。
2、遥感的分类按遥感平台分:地⾯遥感、航空遥感、航天遥感、航宇遥感按探测波段分:紫外遥感、可见光遥感、红外遥感、(发射红外遥感、热红外遥感)微波遥感、多光谱遥感、⾼光谱遥感按⼯作⽅式分:主动遥感、被动遥感按是否成像分:成像遥感、⾮成像遥感按覆盖区域分:全球遥感、区域遥感、城市遥感按研究领域分:陆地遥感、海洋遥感、⼤⽓层遥感、外空间遥感按应⽤领域分:资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、⽓象遥感、⽔⽂遥感、⼯程遥感、灾害遥感、军事遥感等3、遥感的特点⼤⾯积同步观测、时效性、数据的综合性和可⽐性、经济性、局限性第⼆章遥感的电磁辐射原理1、⿊体:对任何波长的电磁辐射都全吸收的假想的辐射体。
α (λ,T)≡1 α与λ⽆关普朗克辐射定律(Plank):描述了⿊体辐射源的辐射出射度与波长、温度的关系(Plank公式) 玻尔兹曼定律(Stefan-Boltzmann):描述了⿊体的总辐射出射度与温度的定量关系:M =∫M λ(λ)dλ—— M =σ T4维恩位移定律(Wien’s):描述了⿊体的辐射峰值与温度的定量关系λmax · T = b⿊体辐射性质:(1)⿊体辐射出射度随波长连续变化。
每条曲线只有⼀个最⼤值。
(普朗克定律)(2)温度愈⾼,⿊体的辐射出射度也愈⼤。
不同温度的曲线是不相交的。
绝对⿊体的总辐射出射度与⿊体温度的4次⽅成正⽐。
(斯玻定律)(3)⿊体辐射光谱中,最强辐射的波长与⿊体绝对温度成反⽐。