八年级上二元一次方程组典型例题整理
- 格式:docx
- 大小:36.97 KB
- 文档页数:3
北师大版八年级数学(上)解二元一次方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
第五章《二元一次方程组实际应用》专项练习1.疫情期间,为满足市场需求,某厂家每天定量生产医用口罩和N95口罩共80万个.当该厂家生产的两种口罩当日全部售出时,则可获得利润35万元.两种口罩的成本和售价如下表所示:成本(元/个)售价(元/个)医用口罩0.8 1.2N95口罩 2.5 3 (1)求每天定量生产这两种口罩各多少万个.(2)该厂家将每天生产的口罩打包(每包1万个)并进行整包批发销售.为了支持防疫工作,现从生产的两种口罩中分别抽取若干包口罩免费捐赠给疫情严重的地区,且捐赠的N95口罩不超过医用口罩的三分之一.若该企业把捐赠后剩余的口罩全部售出后,每日仍可盈利2万元,则从医用口罩和N95口罩中各抽取多少包?2.列方程组解应用题:2020年5月1日,新修订的《北京市生活垃圾管理条例》正式实施,生活垃圾分为厨余垃圾、可回收物、有害垃圾和其他垃圾四类.北京市现有生活垃圾处理设施中的焚烧设施和生化设施共34座,总处理能力达到约24550吨/日,其中每一座焚烧设施处理能力约为1500吨/日,每一座生化设施处理能力约为350吨/日.则北京市现有生活垃圾处理设施中的焚烧设施和生化设施各有多少座?3.某单位在疫情期间购买甲、乙两种防疫品共三次,只有一次甲、乙同时打折,其余两次均按标价购买.三次购买甲、乙的数量和费用如下表:购买甲的数量(个)购买乙的数量(个)购买总费用(元)第一次购物60 50 1140第二次购物30 70 1110第三次购物90 80 1062 (1)该单位在第次购物时享受了打折优惠;(2)求出防疫品甲、乙的标价.4.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.5.现由A、B两种货车运输救助物资,已知3辆A车和1辆B车每次可运救助物资15吨,4辆A车和3辆B车每次可运救助物资25吨.(1)1辆A车和1辆B车一次分别可运多少吨?(2)若用A,B两种货车一次运完35吨救助物资(货车均装满),该如何安排A、B 两种货车的数量?请写出所有的安排方案.。
《求解二元一次方程组》例1 解方程组 ⎩⎨⎧=-=+)2(124)1(532y x y x 例2 解方程组⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x y x y x例3 用加减法解方程组⎩⎨⎧=-=+)2(1353)1(958y x y x例 4 解方程组⎩⎨⎧=-=+)2( .935)1( ,1323y x y x 例5 若方程组⎩⎨⎧=+=+.12,2y x m y x 的解x 、y ,满足2≤+y x ,求正数m 的取值范围. 例6 已知方程组⎩⎨⎧=+=-31ay bx by ax 的解为⎪⎩⎪⎨⎧==211y x ,求a 、.b例7 解方程组 ⎪⎩⎪⎨⎧⨯=+-=+)2(%2040%25%15)1(43522y x y x y x例8 当1,3<>y x 时,解方程组.2873113152⎪⎩⎪⎨⎧=-+-=-+-y x y x ① ②参考答案例1 分析 观察方程组方程(2)中x 的系数是方程(1)中x 系数的2倍,用加减消元法解较简单.解:(1)×2,得 1064=+y x (3))2()3(-,得 98=y 解得 89=y 把89=y 代入(1)得 58932=⨯+x 解得 1613=x ∴ 方程组的解为 ⎪⎪⎩⎪⎪⎨⎧==891613y x 例2 分析:把方程变成⎩⎨⎧=+=+222111c y b x a c y b x a 形式.解:化简方程得⎩⎨⎧=-=-4831084314y x y x③-④得.x x 9364=∴=把9=x 代入④,得 .y ,y 1448390=∴=-⎩⎨⎧==∴.y x 149 此题还有另外的解法.解b,y x a,y x =-=+3232则原方程组变为⎪⎪⎩⎪⎪⎨⎧=+=+,b a b a 823734 解得⎩⎨⎧-==.b a 2460所以⎩⎨⎧==.y x 149 说明:这种解法叫做换元法,是数学中常见的解题方法.例3 分析:在这两个方程组中,未知数y 的系数互为相反数,把这两个方程的两边分别相③④加就可以消去未知数y .解:(1)+(2),得.x ,x 22211=∴=把2=x 代入方程(1),得57759528-=∴-==+⨯y .y ,y ⎪⎩⎪⎨⎧-==∴572y x 说明:解此题的关键在于消去未知数y ,把“二元”转化成“一元”,消元时,根据等式性质把两个方程两边分别相加(或减)的方法消去一个未知数.例4 分析 方程组的两个方程中,同一个未知数的系数既不相等,也不互为相反数时,可以用适当的数去乘方程的两边,使某一个未知数的系数相等,或互为相反数,再把所得的两个方程相加减就可以消去一个未知数.解 (1)×3,得.3969=+y x (3)(2)×2,得.18610=-y x (4)(3)+(4),得5719=x ,∴ 3=x .把3=x 代入(1)中,得13233=+⨯y ,.2=y∴ ⎩⎨⎧==2,3y x 是原方程组的解. 例5 解 由⎩⎨⎧=+=+.12,2y x m y x 可解得⎪⎪⎩⎪⎪⎨⎧-=-=.312,32m y m x 又∵ 2≤+y x ,∴2312231232≤-+-=-+-m m m m , ∴ 5≤m∴ 满足条件的m 的范围是50≤<m . 例 6 分析 由于⎪⎩⎪⎨⎧==211y x 是二元一次方程组⎩⎨⎧=+=-31ay bx by ax 的解,根据方程组解的定义有⎪⎪⎩⎪⎪⎨⎧=+=-32112a b b a ,解此二元一次方程组即可求a 、b . 解:∵ ⎪⎩⎪⎨⎧==211y x 是方程组 ⎩⎨⎧=+=-31ay bx by ax 的解 ∴ ⎪⎪⎩⎪⎪⎨⎧=+=-321121a b b a 解这个方程组得 ⎩⎨⎧==22b a ∴ 2,2==b a .例7 分析 当方程比较复杂时,应先化简,如去分母、去括号、移项、合并同类项等.解:由(1)得 05=-y x (3)由(2)得 16053=+y x (4))4()3(+,得 1604=x 解得 40=x把 40=x 代入(3),得 0540=-y 解得 8=y∴ 方程组的解为 ⎩⎨⎧==840y x 例8 分析:这是绝对值方程组,必须根据给出条件把未知数从绝对值符号内解脱出来,变成一般的二元一次方程组就可以解下去了.解:,01,02,3<-<-∴>x x x又.07,01,1>-<-∴<y y y原方程组可化为⎩⎨⎧=-=-.83105y x y x解得⎩⎨⎧-==.15y x说明:本题的关键是利用⎪⎩⎪⎨⎧=<->=)0(0)0()0(a a a a a a 化去题中的绝对值.。
八年级数学上册第五章《二元一次方程组》应用练习题1.某超市对甲、乙两种商品进行打折销售,其中甲种商品打八折,乙种商品打七五折,已知打折前,买6件甲种商品和3件乙种商品需600元;打折后,买50件甲种商品和40件乙种商品需5200元.(1)打折前甲、乙两种商品每件分别为多少元?(2)某人购买甲种商品80件,乙种商品100件,问打折后购买这些商品比不打折可节省多少元?2.育德中学800名学生参加第二十届运动会开幕式大型表演,道具选用红黄两色锦绣手幅.已知红色手幅每个4元;黄色手幅每个2.5元;购买800个道具共花费2420元,那么两种手幅各多少个?3.甲、乙两人相距50千米,若同向而行,乙10小时追上甲;若相向而行,2小时两人相遇.求甲、乙两人每小时各行多少千米?4.某山区有若干名中,小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生捐款数额与其捐助贫困中学生和小学生人数的部分情况如下表:捐款数额/元资助贫困中学生人数/名资助贫困小学生人数/名七年级4000 2 4八年级4200 3 3九年级5000(1)求a,b的值;(2)九年级学生的捐款恰好解决了剩余贫困中小学生的学习费用,请计算九年级学生可捐助的贫困小学生人数.5.某写字楼门口安装了一个如图所示的旋转门,旋转门每转一圈按正常负载可以出去6人,每分钟转4圈.(1)问:按正常负载半小时此旋转门可出去多少人?(2)紧急情况时,旋转门每圈负载出去人数可增加50%,但因此每分钟门的转速降低25%.①直接写出紧急情况时旋转门每分钟可以出去人;②该写字楼有9层,每层10间办公室,平均每个办公室6人,为了符合消防安全要求,要在一楼再安装几近普通侧门,每近侧门每分钟能通过45人,在紧急情况下,要使整写字楼的人能在5分钟内全部安全离(下楼时间忽略不计),至少要安装几道普通侧门.6.工厂接到订单生产如图所示的巧克力包装盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,仓库有甲、乙两种规格的纸板共2600张,其中甲种规格的纸板刚好可以裁出4个侧面(如图①),乙种规格的纸板可以裁出3个底面和2个侧面(如图②),裁剪后边角料不再利用.(1)若裁剪出的侧面和底面恰好全部用完,问两种规格的纸板各有多少张?(2)一共能生产多少个巧克力包装盒?7.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”8.列二元一次方程组解应用题:某居民小区为了绿化小区环境,建设和谐家园.准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示.计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?9.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?10.某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?参考答案1.解:(1)设打折前甲种商品每件x元,乙种商品每件y元,依题意,得:,解得:.答:打折前甲种商品每件40元,乙种商品每件120元.(2)80×40+100×120﹣80×0.8×40﹣100×0.75×120=3640(元).答:打折后购买这些商品比不打折可节省3640元.2.解:设购买红色手幅x个;购买黄色手幅y个,根据题意得,解得,答:购买红色手幅280个;购买黄色手幅520个.3.解:设甲每小时行x千米,乙每小时行y千米,则可列方程组为,解得,答:甲每小时行10千米,乙每小时行15千米.4.解:(1)由题意得:解得:(2)设初三年级学生捐助x名贫困中学生,捐助y名贫困小学生.由题意得:800x+600y=5000得:4x+3y=25∵x、y均为非负整数∴x=1,y=7或x=4,y=3答:初三年级学生可捐助1名贫困中学生,捐助7名贫困小学生;或捐助4名贫困中学生,捐助3名贫困小学生.5.解:(1)正常负载下,半小时可出去:30×4×6=720人(2)①紧急情况下,出去人数可增加50%,则每圈出去人数为:6×(1+50%)=9人,每分钟门转速降低25%,即每分钟转的圈数为4×(1﹣25%)=3圏则每分钟可以出去:3×9=27人故答案填27②写字楼的总人数为:9×10×6=540人急情况下,要使整写字楼的人能在5分钟,旋转门出去的人数为:5×27=135人则剩下的人数为540﹣135=405人,要从普通侧门通过则有405÷(45×5)≈1.8,即至少安装2道普通侧门6.解:(1)设甲种规格的纸板有x个,乙种规格的纸板有y个,依题意,得:,解得:.答:甲种规格的纸板有1000个,乙种规格的纸板有1600个.(2)1600×3÷2=2400(个).。
专题5.16应用二元一次方程组——增收节支(知识梳理与考点分类讲解)【知识点1】列二元一次方程组解决增收节支问题(1)增长(降低)率问题:增长(降低)率=增(减)量/基数×100%,增长(减少)后的数量=基数×【1±增长(降低)率】.(2)销售问题:销售额=售价×销量,总利润=总销售额-总成本=单件的利润×销量=(售价-进价)×销量,利润率=利润/进价×100%,打折后的价格=原价×折数÷10(3)储蓄问题:利息=本金×利率×期数.本息和=本金+利息.注意:在计算过程中要保持单位的统一.【特别提醒】1.对于增长(降低)率问题,审题时一定要看清是增长还是降低,而且要看准在哪一个量的基础上增长或降低,不要颠倒.2.在储蓄问题中注意利率要根据期数而定,期数是按月算的,利率就用月利率,期数是按年算的,利率就用年利率.【考点目录】【考点1】方案问题;【考点2】行程问题;【考点3】工程问题;【考点4】销售与利润问题.【考点一】方案问题【例1】(2022上·广东深圳·八年级校考期末)现欲将一批荔枝运往外地销售,若用2辆A型车和1辆B型车载满荔枝一次可运走10吨;1辆A型车和2辆B型车载满荔枝一次可运走11吨.现有荔枝31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题::(1)1辆A型车和1辆B型车都载满荔枝一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案.【答案】(1)1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨;(2)该物流公司共有3种租车方案,方案1:租用9辆A 型车,1辆B 型车;方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.【分析】(1)设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,由“用2辆A 型车和1辆B 型车载满荔枝一次可运走10吨;1辆A 型车和2辆B 型车载满荔枝一次可运走11吨”,列出二元一次方程组,解方程组即可得出结论;(2)由“现有荔枝31吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满荔枝”,列出二元一次方程,结合a 、b 均为非负整数,即可得出各租车方案.(1)解:设1辆A 型车载满荔枝一次可运送x 吨,1辆B 型车载满荔枝一次可运送y 吨,由题意得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩,答:1辆A 型车载满荔枝一次可运送3吨,1辆B 型车载满荔枝一次可运送4吨;(2)由题意得:3431a b +=,∴3143b a -=,又∵a 、b 均为非负整数,∴91a b =⎧⎨=⎩或54a b =⎧⎨=⎩或17a b =⎧⎨=⎩,∴该物流公司共有3种租车方案,方案1:租用9辆A 型车,1辆B 型车;方案2:租用5辆A 型车,4辆B 型车;方案3:租用1辆A 型车,7辆B 型车.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出二元一次方程.【举一反三】【变式1】(2023下·黑龙江齐齐哈尔·七年级统考期末)五四青年节某校举办歌咏比赛,为鼓励本班同学们积极参加,刘老师花了48元钱买了甲、乙两种(两种都买)碳素笔作为奖品.已知甲种碳素笔每支6元,乙种碳素笔每支4元,则老师购买碳素笔的方案共有()A .4种B .3种C .2种D .1种【答案】B 【分析】本题考查了二元一次方程的应用,设刘老师购买x 本甲种碳素笔,y 本乙种碳素笔,利用总价=单价⨯数量,可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数,即可得出张老师购买碳素笔的方案共有3种.解:设刘老师购买x 本甲种碳素笔,y 本乙种碳素笔,根据题意得:6448x y +=,∴3122y x =- ,x y 是正整数,∴29x y =⎧⎨=⎩或46x y =⎧⎨=⎩或63x y =⎧⎨=⎩∴刘老师购买碳素笔的方案共有3种.故选:B .【变式2】(2023下·山东烟台·七年级统考期中)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为.【答案】26【分析】设1艘大船可载x 人,1艘小船可载y 人,依题意:1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.列出二元一次方程组,求出x y +的值即可.解:设1艘大船可载x 人,1艘小船可载y 人,依题意得:232246x y x y +=⎧⎨+=⎩①②,①+②得:3378x y +=,26x y ∴+=,即1艘大船与1艘小船一次共可以满载游客的人数为26,故答案为:26.【点拨】此题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【考点二】行程问题【例2】(2023下·重庆渝中·七年级重庆市求精中学校校考期中)甲乙两地相距240千米,一辆小车和一辆摩托车分别从甲、乙两地同时出发相向而行,1小时20分两车相遇.相遇后,摩托车继续前进,小车在相遇处停留1个小时后调头按原速返回甲地,小车在返回后半小时追上了摩托车,(1)求小车和摩托车的速度.(2)求相遇后,摩托车继续行驶多少小时两车相距30千米?【答案】(1)小汽车和摩托车速度分别为135千米/小时,45千米/小时;(2)23小时或76小时或116小时或103小时【分析】(1)小车的速度为x 千米/时,摩托车的速度为y 千米/时,利用路程=速度⨯时间,结合两车速度间的关系,可得出关于x ,y 的二元一次方程组,解之即可得出小车和摩托车的速度;(2)设相遇后,摩托车继续行驶m 小时两车相距30千米,利用路程=速度⨯时间,结合两车相距30千米,可得出关于m 的一元一次方程,解之即可得出结论.(1)解:1小时20分43=小时.设小车的速度为x 千米/时,摩托车的速度为y 千米/时,根据题意得:4()240311(1)22x y x y ⎧+=⎪⎪⎨⎪=+⎪⎩,解得:13545x y =⎧⎨=⎩.答:小车的速度为135千米/时,摩托车的速度为45千米/时;(2)设相遇后,摩托车继续行驶m 小时两车相距30千米,根据题意得:4530m =或45135(1)30m m --=或135(1)4530m m --=或4524030m =-,解得:23m =或7m 6=或116m =或143m =.答:相遇后,摩托车继续行驶23小时或76小时或116小时或103小时两车相距30千米.【点拨】本题考查了一元一次方程的实际应用,解题的关键是对于(2)要用分类讨论的思想求解,注意不要漏解.【举一反三】【变式1】(2023下·贵州·七年级校联考阶段练习)甲、乙两地相距880km ,小轿车从甲地出发2h 后,大客车从乙地出发相向而行,又经过4h 两车相遇.已知小轿车比大客车每小时多行20km ,设大客车每小时行km x ,小轿车每小时行km y ,则可列方程组为()A .20,64880x y x y -=⎧⎨+=⎩B .20,64880y x y x -=⎧⎨+=⎩C .880,6420y x y x -=⎧⎨+=⎩D .20,46880y x y x -=⎧⎨+=⎩【答案】B 【分析】设大客车每小时行km x ,小轿车每小时行km y ,根据小轿车比大客车每小时多行20千米,甲车行驶2小时,两车相向行驶4小时共走了880千米,据此列方程组求解.解:设大客车每小时行km x ,小轿车每小时行km y ,由题意得:2064880y x y x -=⎧⎨+=⎩,故选:B .【点拨】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.【变式2】(2023下·云南曲靖·七年级统考期末)从甲地到乙地有一段上坡路与一段平路,如果上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需要36分钟,从乙地到甲地需要24分钟,甲地到乙地全程是多少?根据题意,老师给出的方程组为363460245460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,则方程组中x 表示.【答案】从甲地到乙地的上坡路程【分析】设从甲地到乙地的上坡路为km x ,平路为km y ,根据保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地用36分钟,从乙地到甲地用24分钟即可列出方程组363460245460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,据此解答即可.解:设从甲地到乙地的上坡路为km x ,平路为km y ,依题意得363460245460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,∴方程组中x 表示从甲地到乙地的上坡路程,故答案为:从甲地到乙地的上坡路程.【点拨】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.【考点三】工程问题【例3】(2022下·河北石家庄·七年级校考阶段练习)现有一段长为180米的河道整治任务由A ,B 两个工程队先后接力完成.A 工程队每天整治12米,B 工程队每天整治8米,共用时20天.(1)根据题意,甲列出的方程组为20128180x y x y +=⎧⎨+=⎩,,分析甲所列的方程组,请指出未知数x ,y 表示的意义,x 表示,y 表示;(2)若设A 工程队共整治河道m 米,B 工程队共整治河道n 米,请根据题意列出二元一次方程组,并求出m ,n 的值.【答案】(1)A 工程队整治河道的天数;B 工程队整治河道的天数;(2)18020128m n m n +=⎧⎪⎨+=⎪⎩;60,120【分析】(1)根据所列的方程组,结合题意,作答即可;(2)根据有一段长为180米的河道整治任务由A ,B 两个工程队先后接力完成,得到180m n +=,根据共用时20天得到:20128m n +=,即可得出方程组,再求解即可.(1)解:由题意和所列方程组可知:x 表示A 工程队整治河道的天数,y 表示:B 工程队整治河道的天数,故答案为:A 工程队整治河道的天数;B 工程队整治河道的天数;(2)设A 工程队共整治河道m 米,B 工程队共整治河道n 米,由题意,得:18020128m n m n +=⎧⎪⎨+=⎪⎩,解得:12060m n =⎧⎨=⎩.即m ,n 的值分别为60,120.【点拨】本题考查二元一次方程组的实际应用,找准等量关系,正确的列出方程组是解题的关键.【举一反三】【变式1】(2021上·四川巴中·八年级四川省巴中中学校考期中)某污水处理厂库池里现有待处理的污水m 吨.另有从城区流入库池的待处理污水(新流入污水按每小时n 吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为()A .6台B .7台C .8台D .9台【答案】B【分析】设同时开动x 台机组,每台机组每小时处理a 吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m ,n 的二元一次方程组,解之即可得出m ,n 的值(用含a 的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x 的一元一次方程,解之可得出结论.解:设同时开动x 台机组,每台机组每小时处理a 吨污水,依题意,得2303031515a m n a m n ⨯=+⎧⎨⨯=+⎩,解得:30m a n a =⎧⎨=⎩,∵5ax =30a +5a ,∴x =7.答:要同时开动7台机组.故选:B .【点拨】本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.【变式2】(2020上·重庆万州·八年级校考期中)一水池有一个进水管和三个完全相同的出水管,现水池中有一定量的水,打开进水管(注水速度一致),若只打开一个出水管,则1小时正好能把水池中的水放完;若打开两个出水管,则20分钟正好能把水池中的水放完;问若打开三个出水管,则需要分钟恰好能把水池中的水放完.【答案】12【分析】设进水管的进水速度为x ,每一个出水管的出水速度为y ,水池中原有水量为a ,根据题意列方程组求解解:设进水管的进水速度为x ,每一个出水管的出水速度为y ,水池中原有水量为a ,由题意可得:1111233a x y a x y +⋅=⋅⎧⎪⎨+=⨯⎪⎩,解得:2x a y a =⎧⎨=⎩设打开三个出水管需要b 小时能把水池中的水放完,则3a xb b y+=⋅13325a ab y x a a ===-⨯-时=12分故答案为:12【点拨】本题考查二元一次方程组的应用,理解题意,正确列出等量关系求解是关键.【考点四】销售与利润问题【例4】(2023上·全国·八年级专题练习)为促进消费,某商家对商品进行打折促销.打折前,2件A 商品和1件B 商品的总售价为30元;1件A 商品和2件B 商品的总售价为33元.(1)求每件A 商品和每件B 商品的售价;(2)若两种商品的折扣相同,打折后,9件A 商品和8件B 商品共用了141.6元.求商家打几折出售这两种商品.【答案】(1)每件A 商品售价为9元,每件B 商品的售价为12元;(2)商家打8折出售这两种商品【分析】本题考查一元一次方程,二元一次方程组的应用.(1)设每件A 商品售价为x 元,每件B 商品的售价为y 元,根据2件A 商品和1件B 商品的总售价为30元;1件A 商品和2件B 商品的总售价为33元得解方程组求解即可;(2)设商家打m 折出售这两种商品,根据9件A 商品和8件B 商品共用了141.6元列方程求解即可.解:(1)设每件A 商品售价为x 元,每件B 商品的售价为y 元,根据题意得:230233x y x y +=⎧⎨+=⎩,解得912x y =⎧⎨=⎩,∴每件A 商品售价为9元,每件B 商品的售价为12元;(2)设商家打m 折出售这两种商品,根据题意得:99812141.61010m m ⨯⨯+⨯⨯=,解得8m =,答:商家打8折出售这两种商品.【举一反三】【变式1】(2023下·湖南益阳·七年级校考期中)五一节前夕,某超市用1680元购进A ,B 两种商品共60件,A 型商品每件24元,B 型商品每件36元,设购进A 型商品x 件,B 型商品y 件,依题意列方程组正确的是()A .3624601680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .6036241680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩【答案】B【分析】根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可.解:设购进A 型商品x 件,B 型商品y 件,根据题意,得6024361680x y x y +=⎧⎨+=⎩.故选:B【点拨】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.【变式2】(2023下·河北秦皇岛·七年级统考期中)在当地农业技术部门的指导下,小明家种植的大棚油桃喜获丰收,去年大棚油桃的利润(利润=收入-支出)为12000元,今年大棚油桃的收入比去年增加了20%,支出减少了10%,预计今年的利润比去年多11400元,设小明家去年种植大棚油桃的收入为x 元,支出是y 元.依题意列方程组.【答案】12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩【分析】审题,明确等量关系,建立方程组.解:由题意知,今年收入为(120%)x +,今年支出(110%)y -,故12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩故答案为:12000(120%)(110%)1200011400x y x y -=⎧⎨+--=+⎩【点拨】本题考查二元一次方程组的应用,根据题意明确等量关系是解题的关键.。
2022-2023学年八年级上学期数学:二元一次方程组
一.选择题(共5小题)
1.某校学生去看电影,如果每辆汽车坐60人,则空出1辆汽车,如果每辆汽车坐45人,则15人没有座位,那么学生人数和汽车辆数各是多少?()
A.230人、6辆B.240人、5辆C.240人、8辆D.250人、7辆2.若方程ax+3y=2+4x是关于x,y的二元一次方程,则a满足()A.a≠1B.a≠2C.a≠3D.a≠4
3.已知方程3x﹣4y=6,用含y的式子表示x为()
A .
B .
C .
D .
4.已知是方程2x﹣my=8的一个解,则m的值是()
A.3B.﹣3C.﹣2D.﹣12
5.用加减消元法解二元一次方程组时,下列做法正确的是()A.要消去x,可以将①×3+②×5
B.要消去x,可以将①×5﹣②×3
C.要消去y,可以将①×2﹣2
D.要消去y,可以将①×2+2
二.填空题(共5小题)
6.写出一个以为解的方程.
7.将方程2x+3y=15变形为用含x的式子表示y:.
8.方程组的解是.
9.如图是小强同学解方程组过程的框图表示,请你帮他补充完整:
第1页(共11页)。
3(x1) y52u 3v 1x y 33 4 21、解方程组〔 2〕〔 3〕 y z 4〔 1〕1) 3(x1) 184u 5v 75( yz x556152、关于 x 、 y 的二元一次方程组2x 3 y 4k 的值是?kx (k的解中 x 和 y 的值互为相反数,那么 1) y k 2ax by 62x 8 c 而错解为3、关于 x 、 y 的方程组20 y224的解应为,但是小明在解此方程组时,由于看错了cx y 10x 11你能求出 a+b+c 的值吗?y 6x 4 ax y 1 04、是关于 x 、 y 的二元一次方程组x by2 的解,求 a+b 的值。
y3x 2 y 5bx ay 1a 、b 的值。
5、关于 x 、 y 的方程组by与2x 3y有相同的解,求 ax 846、某班同学参加学校运土劳动,一局部同学抬土,一局部同学挑土,全班共有箩筐59 个,扁担36 根〔五闲置不用的工具〕,问:共有多少个同学抬土,多少个同学挑土。
7、“深池一芦苇,出头六分一,假设水涨吴存,出头仅一分,水苇各几何?〞意思是:深池中有一芦苇,露出水面的局部为原长的1,假设水涨 5 寸,那么露出水面的局部占 1 份,水下有11 份,问水有多深?芦苇长多少?6作业一.填空题1、方程中含有_个未知数,并且__的次数是1,这样的方程是二元一次方程。
2、二元一次方程组的解题思想是______,方法有___,___法。
23、将方程 10- 2〔3-y 〕 =3〔 2-x 〕变形,用含 x 的代数式表示 y 是_____。
4、 3x2a+b - 3- 5y 3a - 2b+2 =-1 是关于 x 、 y 的二元一次方程,那么〔 a+b 〕 b =___。
5、在公式1at 2中 , 当 t = 1 时, s=13,当 t=2 时, s=42,那么 t=5 时,s=_____。
s=v t+ 2 6、解方程组 2 x3y 12 (1)____________将 y 项的系3x4 y17时,可以 __________ 将 x 项的系数化相等,还可以(2)数化为互为相反数。
专题5.20应用二元一次方程组——里程碑上的数(知识梳理与考点分类讲解)【知识点1】里程碑上的数字问题两位数:十位数字×10+个位数字.三位数:百位数字×100+十位数字×10+个位数字.四位数:千位数字+百位数字×100+十位数字×10+个位数字.......例如:如果一个两位数,个位数字为x,十位数字为y,则这个两位数可表示为10y+x,而不可表示为yx,因为yx表示y乘x,应注意区别.特别提醒:1.在表示多位数时,什么数位上的数字就乘什么,如百位上的数字乘100,千位上的数字乘1000.2.若用两个数拼一个新数,则要关注两个数的前后顺序和前面的数扩大的倍数与后面的数的数位的关系.【考点目录】【考点1】数字问题;【考点2】几何问题;【考点3】图表信息题;【考点4】开放问题;【考点5】其他问题.【考点一】数字问题【例1】(2023下·河南南阳·七年级校考阶段练习)小明和小华在一起玩数字游戏,他们每人取了一张数字卡片,拼成了一个两位数,小明说:“哇!这个两位数的十位数字与个位数字之和恰好是9.”他们又把这两张卡片对调,得到了一个新的两位数,小华说:“这个两位数恰好也比原来的两位数大9.”那么,你能回答以下问题吗?(1)他们取出的两张卡片上的数字分别是几?(2)第一次,他们拼出的两位数是多少?【答案】(1)他们取出的两张卡片上的数字分别是4、5;(2)第一次他们拼成的两位数为45.【分析】(1)设他们取出的两个数字分别为x 、y .根据题意列方程组求解即可;(2)根据(1)的结果即可求解.(1)解:设他们取出的两个数字分别为x 、y .第一次拼成的两位数为10x y +,第二次拼成的两位数为10y x +.根据题意得:910910x y y x x y +=⎧⎨+-=+⎩①②,由②,得:1y x -=③,+①③得:5y =.把5y =代入①得:4x =,∴他们取出的两张卡片上的数字分别是4、5.(2)解:根据(1)得:十位数字是4,个位数字是5,所以第一次他们拼成的两位数为45.【点拨】本题考查二元一次方程组的应用,找出合适的等量关系是解题的关键.【举一反三】【变式1】(2022下·重庆江津·七年级校联考阶段练习)甲乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙数的151倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1089.求这两个两位数?如果设甲数为x ,乙数为y .则得方程组()A .1001511001001089x y y y x x y +=⎧⎨+=+-⎩B .1001511001001089x y x y x x y +=⎧⎨+=++⎩C .1001001089100151x y x y y x y +=++⎧⎨+=⎩D .1001001089100151x y x y y x y +=+-⎧⎨+=⎩【答案】A【分析】设甲数为x ,乙数为y .根据题意,列出二元一次方程组即可求解.解:设甲数为x ,乙数为y .根据题意,得方程组1001511001001089x y y y x x y +=⎧⎨+=+-⎩,故选A .【点拨】本题考查了二元一次方程组的应用,理解题意是解题的关键.【变式2】(2023下·江苏扬州·七年级统考期末)小凡出门前看了下智能手表上的运动APP ,发现步数计数是一个两位数,步行下楼后发现十位数字与个位上数字互换了,到小区门口时,发现步数计数比下楼后看到的两位数中间多了个1,且从出门到小区门口共走了...........586步,则出门时看到的步数是.【答案】26【分析】设出门时看到的步数的十位数字为x ,个位数字为y ,根据从出门到小区门口共走了586步,可列出关于x ,y 的二元一次方程,结合x ,y 均为一位正整数,即可得出x ,y 的值,再将其代入()10x y +中,即可求出结论.解:设出门时看到的步数的十位数字为x ,个位数字为y ,根据题意得:()1001010586y x x y ++-+=,∴1164y x =+.又∵x ,y 均为一位正整数,∴2 6x y =⎧⎨=⎩,∴10102626x y +=⨯+=,即出门时看到的步数是26.故答案为:26.【点拨】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【考点二】几何问题【例2】(2023上·四川内江·八年级威远中学校校考期中)(1)一个正方形的边长增加3cm ,面积就增加281cm ,求原正方形的边长;(2)已知一个长方形,若它的长增加4cm ,宽减少1cm ,则面积保持不变;若它的长减少2cm ,宽增加1cm ,则面积仍保持不变.求这个长方形的面积.【答案】(1)12cm ;(2)224cm 【分析】本题考查了二元一次方程组的应用:(1)设原正方形的边长为cm x ,根据“正方形的边长增加3cm ,面积就增加281cm ”,列出方程,即可求解;(2)设长方形原来的长为cm x ,宽为cm y ,根据“它的长增加4cm ,宽减少1cm ,则面积保持不变;若它的长减少2cm ,宽增加1cm ,则面积仍保持不变”,列出方程组,即可求解.(1)解:设原正方形的边长为cm x ,()22381x x +-=,解得12x =.答:原正方形的边长为12cm ;(2)解:设长方形原来的长为cm x ,宽为cm y ,依题意,得()()()()4121x y xy x y xy ⎧+-=⎪⎨-+=⎪⎩,整理得:4422x y x y -=-⎧⎨-=⎩,解得:83x y =⎧⎨=⎩,所以这个长方形的面积23824cm S xy ==⨯=.答:这个长方形的面积是224cm .【举一反三】【变式1】(2021上·福建漳州·八年级校考阶段练习)如图,周长为34的大长方形ABCD 被分成7个全等的小长方形,则每个小长方形的面积为()A .10B .14C .20D .30【答案】A 【分析】本题中的两个等量关系是:长方形长的四倍与宽的七倍之和为34;长的二倍等于宽的五倍,据此建立二元一次方程组求解即可.解:设长方形的长为x ,宽为y ,根据题意,得:473425x y x y +=⎧⎨=⎩,解得:52x y =⎧⎨=⎩,∴5210xy =⨯=,∴每个小长方形的面积为10.故选:A .【点拨】本题考查二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.【变式2】(2023上·陕西西安·八年级高新一中校考期中)如图,在一个大长方形中放入六个形状、大小相同的小长方形,有关尺寸如图所示,则图中大长方形ABCD 的面积是2cm .【答案】560【分析】本题主要考查二元一次方程组的应用,设小长方形的长、宽分别为x 、y ,根据图示可以列出方程组,然后解这个方程组即可求出小长方形长和宽,然后求得大长方形的长和宽,从而求得面积.解题的关键是会根据图示找出数量关系,然后利用数量关系列出方程组解决问题.解:设小长方形的长、宽分别为cm cm x y ,,依题意得212328x y y x y +-=⎧⎨+=⎩,解之得164x y =⎧⎨=⎩,∴小长方形的长、宽分别为16cm 4cm ,,∴12220cm,28cm AB y BC =+==,∴大长方形ABCD 的面积22028560cm AB BC =⋅=⨯=,【考点三】图表信息问题【例3】(2022上·陕西西安·八年级统考期末)张老师在某文体店购买商品A 、B 若干次(每次A 、B 两种商品都购买,且A 、B 都只能购买整数个),其中第一、二两次购买时,均按标价购买,两次购买商品A 、B 的数量和费用如表所示:购买商品A 的数量/个购买商品B 的数量/个购买总费用/元第一次购物65980第二次购物37940(1)求商品A 、B 的标价;(2)若张老师第三次购物时,商品A 、B 同时打6折出售,这次购买总费用为960元,则张老师有哪几种购买方案?【答案】(1)商品A 的标价为80元/个,商品B 的标价为100元/个;(2)张老师共有三种购买方案,方案一:购买15个商品A ,4个商品B ;方案二:购买10个商品A ,8个商品B ;方案三:购买5个商品A ,12个商品B【分析】(1)设商品A 的标价为x 元/个,商品B 的标价为y 元/个,根据“表格信息”建立方程组,再解方程组即可;(2)设张老师购买m 个商品A ,n 个商品B ,根据“这次购买总费用为960元”建立二元一次方程,再利用方程的正整数解可得答案.(1)解:设商品A 的标价为x 元/个,商品B 的标价为y 元/个,根据题意得:6598037940x y x y +=⎧⎨+=⎩,解得:80100x x =⎧⎨=⎩.答:商品A 的标价为80元/个,商品B 的标价为100元/个.(2)设张老师购买m 个商品A ,n 个商品B ,根据题意得:800.61000.6960m n ⨯+⨯=,∴5204m n =-.当4n =时,15m =;当8n =时,10m =;当12n =时,5m =.答:张老师共有三种购买方案,方案一:购买15个商品A ,4个商品B ;方案二:购买10个商品A ,8个商品B ;方案三:购买5个商品A ,12个商品B .【点拨】本题考查的是二元一次方程组的应用,二元一次方程的正整数解的含义,理解题意,确定相等关系建立方程组或方程是解本题的关键.【举一反三】【变式1】(2023下·河北邢台·七年级校考期末)如图,两架天平均保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是()A .10gB .20gC .25gD .30g【答案】B 【分析】通过理解题意可知本题存在两个等量关系,即三块巧克力的质量=两个果冻的质量,一块巧克力的质量+一个果冻的质量50=克.根据这两个等量关系式可列一个方程组,进行求解即可.解:设每块巧克力的重量为x 克,每块果冻的重量为y 克.由题意列方程组得:3250x y x y =⎧⎨+=⎩,解方程组得:2030x y =⎧⎨=⎩.即:每块巧克力的质量是20克.故选:B .【点拨】题考查二元一次方程的应用,根据等量关系列方程组是关键.【变式2】(2023下·浙江湖州·七年级统考期末)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”,把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在33⨯(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.如图2的方格中填写了一些代数式,若能构成一个广义的三阶幻方,则a b +=.【答案】6-【分析】根据三阶幻方中的数字列方程组求解即可.解:由题意知,322224a a b +=-⎧⎨-=+-⎩,解得33a b =-⎧⎨=-⎩,∴336a b +=--=-,故答案为:6-.【点拨】本题主要考查二元一次方程组的应用,熟练根据三阶幻方列方程求解是解题的关键.【考点四】开放问题【例4】(2017下·江苏南通·七年级校考期中)由大小两种货车,3辆大车与4辆小车一次可以运货22吨,2辆大车与6辆小车一次可以运货23吨.请根据以上信息,提出一个能用二元一次方程组解决的问题,并写出这个问题的解答过程.【答案】问题:1辆大车与1辆小车一次可以运货多少吨?(本题的答案不唯一),答案:6.5吨.【分析】1辆大车与1辆小车一次可以运货多少吨?根据题意可知,本题中的等量关系是“3辆大车与4辆小车一次可以运货22吨”和“2辆大车与6辆小车一次可以运货23吨”,列方程组求解即可.解:问题:1辆大车与1辆小车一次可以运货多少吨?(本题的答案不唯一)设1辆大车一次运货x 吨,1辆小车一次运货y 吨.根据题意,得3422{2623x y x y +=+=,解得4{ 2.5x y ==.则x+y=4+2.5=6.5(吨).答:1辆大车与1辆小车一次可以运货6.5吨.【举一反三】【变式1】(2020上·辽宁铁岭·八年级校联考期中)小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是()A .20B .22C .23D .25【答案】C 【分析】设投掷中外环区、内区一次的得分分别为x ,y 分,根据等量关系列出方程组,解方程组即可;解:设投掷中外环区、内区一次的得分分别为x ,y 分,依题意得:32192321x y x y +=⎧⎨+=⎩,∴解这个方程组为:35x y =⎧⎨=⎩,∴大壮的得分为:432023x y +=+=.故选:C .【点拨】本题主要考查了二元一次方程组的应用,准确计算是解题的关键.【变式2】(2018下·七年级单元测试)如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23cm ,小红所搭的“小树”的高度为22cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =,y =.【答案】45解:根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,解得45x y =⎧⎨=⎩.故答案为:4和5.【点拨】本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.【考点五】其他问题【例5】(2023上·全国·八年级专题练习)在疫情防控期间,某中学为保障广大师生生命健康安全,预从商场购进一批免洗手消毒液和84消毒液.如果购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)若商场有两种促销方案:方案一,所有购买商品均打八折;方案二,购买5瓶免洗手消毒液送2瓶84消毒液,学校打算购进免洗手消毒液100瓶,84消毒液60瓶,请问学校选用哪种方案更节约钱?节约多少钱?【答案】(1)每瓶免洗手消毒液价格是15元,每瓶84消毒液的价格是8元;(2)学校选用方案一更节约钱,节约76元.【分析】本题考查二元一次方程组的应用.(1)根据购买40瓶免洗手消毒液和90瓶84消毒液,共需花费1320元,如果购买60瓶免洗手消毒液和120瓶84消毒液,共需花费1860元,可以列出相应的二元一次方程组,从而可以求出每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元;(2)根据题意,可以求出方案一和方案二的花费情况,然后比较大小并作差即可解答本题.(1)解:设每瓶免洗手消毒液和每瓶84消毒液的价格分别是a 元、b 元,40901320601201860a b a b +=⎧⎨+=⎩,解得:158a b =⎧⎨=⎩,答:每瓶免洗手消毒液和每瓶84消毒液的价格分别是15元、8元;(2)方案一的花费为:()151008600.81584⨯+⨯⨯=(元),方案二的花费为:()15100860100521660⨯+⨯-÷⨯=(元),1660158476-=(元),15841660<,答:学校选用方案一更节约钱,节约76元.【举一反三】【变式1】(2023下·河南新乡·七年级统考期末)如图,2个塑料凳子叠放在一起的高度为60cm ,4个塑料凳子叠放在一起的高度为80cm ,塑料凳子相同且叠放时均忽略缝隙,则11个塑料凳子叠放在一起时的高度为()A .120cmB .130cmC .140cmD .150cm【答案】D 【分析】设1支塑料凳子的高度为 cm x ,每叠放1支塑料凳子高度增加 cm y ,根据2个塑料凳子叠放在一起的高度为60cm ,4个塑料凳子叠放在一起的高度为80cm ,列出二元一次方程组,解之求出x 、y 的值,即可解决问题.解:设1支塑料凳子的高度为 cm,x 每叠放1支塑料凳子高度增加 cm y ,依题意得:60380x y x y +=⎧⎨+=⎩解得:5010x y =⎧⎨=⎩10501010150x y ∴+=+⨯=,即11支塑料凳子整齐地叠放在一起的高度为150cm .故选:D .【点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式2】(2022·黑龙江齐齐哈尔·校考三模)某学校计划为“建党百年,铭记党史”演讲比赛购买奖品.已知购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元.学校准备用160元全部购买A ,B 两种奖品若干个,那么可以购买B 种奖品个.【答案】4或8【分析】设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据“购买2个A 种奖品和4个B 种奖品共需100元;购买5个A 种奖品和2个B 种奖品共需130元”,可得出关于x ,y 的二元一次方程组,解之可得出两种奖品的单价,设可以购买A 种奖品m 个,B 种奖品n 个,利用总价=单价×数量,可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数,即可得出n 的值.解:设A 种奖品的单价为x 元,B 种奖品的单价为y 元,根据题意得:2410052130x y x y +=⎧⎨+=⎩,解得:2015x y =⎧⎨=⎩,∴A 种奖品的单价为20元,B 种奖品的单价为15元.设可以购买A 种奖品m 个,B 种奖品n 个,根据题意得:2015160m n +=,∴384m n =-,∵m ,n 均为正整数,∴54m n =⎧⎨=⎩或28m n =⎧⎨=⎩,∴可以购买B种奖品4或8个.故答案为:4或8.【点拨】本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系,正确列出二元一次方程组(或二元一次方程)是解题的关键.。
二元一次方程常见题型例1 关于x,y的二元一次方程2(n﹣3)x2|m|﹣|n|+3(m﹣2)y3|n|﹣4|m|=2,求m+n.练1、如果(m﹣3)x+2y|m﹣2|+8=0是关于x,y的二元一次方程,试求m的值.练2、已知关于x,y的方程(m2﹣4)x2+(m+2)x+(m+1)y=m+5.(1)当m为何值时,它是一元一次方程?(2)当m为何值时.它是二元一次方程?例2 方程x+y=4与2x﹣3y=3的公共解是()A.B.C.D.练1、已知:|2x+y﹣3|+(x﹣3y﹣5)2=0,则y x的值为()A.1B.﹣1C.2D.﹣2例3 已知是关于x、y的二元一次方程3x﹣ay=7的一个解,则a的值为()A.5B.C.﹣D.﹣5练1、若,是二元一次方程y=kx﹣5的一个解,则k的值为()A.﹣2B.2C.﹣3D.3练2、已知是关于x,y的二元一次方程组的解,求a+b的值.例4 已知,关于x、y二元一次方程组的解满足方程2x﹣y=13,求a的值.练1、已知关于x,y的方程组的解也满足方程4x﹣3y=21,求k的值.练4、已知关于x、y的二元一次方程组的解x与y互为相反数,求k的值.练2、若关于x,y的二元一次方程组的解满足2x+y=4,求m的值.例5已知关于x,y的方程组和的解相同,求(3a+b)2020的值.练1、已知关于x、y的方程组与有相同的解,求a、b的值.练2、关于x、y的方程组和的解相同,求a、b的值.练3、若方程组与方程组的解相同,求m,n的值.例6解方程组时,由于粗心,小天看错了方程组中的a,得到解为,小轩看错了方程组中的b,得到解为,求方程组正确的解.练1、甲、乙两同学同时解方程组,甲看错了a,求得解为,乙看错了b,求得解为,求原方程组的解.练2、解方程组时,一同学把c看错而得到,而正确的解是,求a、b、c的值.例7 一种商品有大小盒两种包装,3大盒、4小盒共装102瓶,2大盒、3小盒共装72瓶,大盒与小盒每盒各装多少瓶?练1、列方程组解应用题现有甲、乙两种型号的钢板,准备用这两种钢板制成A型零件15个,制成B型零件18个.已知一块甲型钢板可制成2个A型零件和1个B型零件;一块乙型钢板可制成1个A型零和2个B型零件.问:恰好需要甲型钢板和乙型钢板各几块?1、已知和都是方程ax+b﹣y=0的解,则a的值是()A.a=1B.a=﹣1C.a=2D.a=﹣22、已知方程组的解满足x=y,则k的值为()A.1B.2C.3D.43、已知关于x,y的方程组和有相同解,求(﹣a)b的值.4、已知关于x、y的二元一次方程组的解满足二元一次方程5x﹣3y=60,求m的值?5、已知方程(2m﹣4)x m+3+(n+3)y|n|﹣2=6是关于x,y的二元一次方程,试求m,n的值.6、某养牛场2头大牛和1头小牛一天约用饲料40kg;4头大牛和3头小牛一天约用饲料90kg;1头大牛和1头小牛一天约用饲料各多少kg?1、如果|2x﹣y﹣2|+(2x+y+10)2=0,那么()A.B.C.D.2、解下列二元一次方程组:(1)(2)3、已知方程组与方程组的解相同.求(2a+b)2020的值.4、已知2020(x+y)2与|y﹣1|的值互为相反数,试求:(1)求x、y值;(2)求的平方根.5、在解方程组时,由于粗心,甲看错了方程组中的a,而得到解为;乙看错了方程组中的b而得到解为.(1)求正确的a、b值;(2)求原方程组的解.6、疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与3辆小货车可以一次运货多少吨?。
《第五章4 应用二元一次方程组——增收节支》讲解与例题1.列方程组解答生活中的增收节支问题在生活中,咱们时刻都在与经济打交道,常常面临利润问题、利息问题等.解决这种问题,应熟记一些大体公式:(1)增加率问题: 增加率=增长量计划量×100%. 打算量×(1+增加率)=增加后的量; 打算量×(1-减少率)=减少后的量.(2)经济类问题:利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润商品的进价×100%. 【例1】 某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比总支出多950万元.今年的总产值和总支出各是多少万元?分析:可列下表(去年总产值x 万元,总支出y 万元):总产值 总支出 差 去年x y 500 今年 (1+15%)x (1-10%)y950 题中有两个相等关系:(1)去年的总产值-去年的总支出=500万元;(2)今年的总产值-今年的总支出=950万元.解:设去年的总产值是x 万元,去年的总支出是y 万元,由题意,得⎩⎪⎨⎪⎧x -y =500,1+15%x -1-10%y =950. 解得⎩⎪⎨⎪⎧x =2 000,y =1 500.因此(1+15%)x =2 300,(1-10%)y =1 350.因此今年的总产值是2 300万元,总支出是1 350万元.谈重点 分析表格中数字含义找等量关系先认真审题,找出问题中的已知量和未知量.再借助于表格分析具体问题中蕴涵的数量关系,问题中的相等关系就会清楚地浮现出来.2.列方程组解答行程问题、水路问题、工程问题在咱们的生活中,常常面临行程问题、水路问题、工程问题.解决这种问题,应熟记一些大体公式:(1)行程问题的大体数量关系:路程=速度×时刻.(2)水路问题的大体数量关系:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.(3)工程问题的大体数量关系:工作量=工作效率×工作时刻.【例2-1】 A 市至B 市航线长1 200 km ,一架飞机从A 市顺风向飞往B 市需2小时30分,从B 市逆风向飞往A 市需3小时20分.求飞机的速度与风速.分析:此题中明显的未知数有两个,即:飞机的速度与风速.除此之外,还有两个隐藏的未知数,即:顺风速度与逆风速度.因此咱们能够通过设直接未知数和间接未知数,列出二元一次方程组求解.解:设飞机速度为x km/h ,风速为y km/h ,依照路程=速度×时刻列出方程组:⎩⎪⎨⎪⎧ 212x +y =1 200,313x -y =1 200.解得⎩⎪⎨⎪⎧x =420,y =60. 因此飞机的速度为420 km/h ,风速为60 km/h.【例2-2】 某地为了尽快排除堰塞湖险情,决定在堵塞体表面开挖一条泄流槽,经计算需挖出土石方13.4万立方米,开挖2天后,为了加速施工进度,又增调了大量的人员和设备,天天挖的土石方比原先的2倍还多1万立方米,结果共用5天完成任务,比打算时刻大大提早.依照以上信息,求原打算天天挖土石方多少万立方米?增调人员和设备后天天挖土石方多少万立方米? 分析:抓住关键语句:开挖2天和增调人员后所干的3天里,一共挖出土石方13.4万立方米;天天挖的土石方比原先的2倍还多1万立方米来构建数学模型.解:设原打算天天挖土石方x 万立方米,增调人员和设备后天天挖y 万立方米,依据题意,可列出方程组:⎩⎪⎨⎪⎧y =2x +1,2x +5-2y =13.4. 解得⎩⎪⎨⎪⎧x =1.3,y =3.6.因此原打算天天挖土石方1.3万立方米,增调人员和设备后天天挖3.6万立方米.3.配套问题中的相等关系 在实际问题中,大伙儿常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这种问题的方式是抓住配套关系,设出未知数,依照配套关系列出方程组,通过解方程组解决问题.产品配套是工厂生产中大体原那么之一,如何分派生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系.常见的题型有:(1)配套与人员分派问题.(2)配套与物质分派问题.析规律 配套问题配套问题的背景尽管不同,但解决问题的方式是一样的,需要抓住配套问题的关键语句进行配套.【例3】 某车间22名工人一辈子产螺钉和螺母,每人天天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母,为了使天天生产的产品恰好配套,应该分派多少名工人一辈子产螺钉,多少名工人一辈子产螺母?分析:此题的配套关系是:一个螺钉配两个螺母,即螺钉数∶螺母数=1∶2.解:设分派x 名工人一辈子产螺钉,y 名工人一辈子产螺母,那么一天生产的螺钉数为1 200x 个,生产的螺母数为2 000y 个. 依照题意,得 ⎩⎪⎨⎪⎧x +y =22,2×1 200x =2 000y . 整理得⎩⎪⎨⎪⎧x +y =22,6x =5y ,解得⎩⎪⎨⎪⎧x =10,y =12. 因此为了使天天生产的产品恰好配套,应安排10名工人一辈子产螺钉,12名工人一辈子产螺母.4.注意及时幸免一些常见的错误 二元一次方程组是反映现实世界数量之间相等关系的数学模型之一,其应用即能够将实际问题转化为数学模型,列出二元一次方程组,最终求得符合实际的解.而在具体求解时,很多同窗由于审题不清等问题,总会显现如此那样的错误,这就要求咱们认真地审题,及时地找出题目中的等量关系.若是两车相向而行,那么其相对速度为速度之和,若是两车同向而行,那么其相对速度为速度之差,这一点很多同窗是可不能明白得错的,问题是在相对移动的进程中,移动的距离应为两车的长度之和,很多同窗往往忽略这一点而造成错解.【例4】 一列快车长168 m ,一列慢车长184 m ,若是两车相向而行,从相碰到离开需4 s ,若是同向而行,从快车追及慢车到离开需16 s ,求两车的速度.分析:两车相向而行,其相对速度为两车的速度之和,两车同向而行,其相对速度为两车的速度之差,如此设快车速度为x m/s ,慢车速度为y m/s ,即可利用方程组求解.解:设快车速度为x m/s ,慢车速度为y m/s. 由题意,得⎩⎪⎨⎪⎧ 4x +y =168+184,16x -y =168+184, 即⎩⎪⎨⎪⎧4x +4y =352,16x -16y =352, 也即⎩⎪⎨⎪⎧x +y =88,x -y =22. 解得⎩⎪⎨⎪⎧ x =55,y =33.因此快车的速度为55 m/s ,慢车的速度为33 m/s.。
北师大版八年级数学(上)实际问题与二元一次方程组题型归纳类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。
北师大版八年级数学初二上册:二元一次方程组的应用题集二元一次方程组应用题1.一次篮、排球竞赛,共有48个队,520名运动员参加,此中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2.某厂买进甲、乙两种资料共56吨,用去9860元。
若甲种资料每吨190元,乙种资料每吨160元,则两种资料各买多少吨?3.某人用元买进甲、乙两种股票,在甲股票增值15%,乙股票下跌10%时卖出,共赢利1350元,试问某人买的甲、乙两股票各是多少元?4.一次篮、排球竞赛,共有48个队,520名运动员参加,此中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?5.某厂买进甲、乙两种资料共56吨,用去9860元。
若甲种资料每吨190元,乙种资料每吨160元,则两种资料各买多少吨?6.某人用元买进甲、乙两种股票,在甲股票增值15%,乙股票下跌10%时卖出,共赢利1350元,试问某人买的甲、乙两股票各是多少元?7.有甲乙两种债券年利率分别是多少?10%与12%,现有400元债券,一年后赢利45元,问两种债券各有8.种饮料大小包装有3种,1此中瓶比2小瓶廉价2角,1个大瓶比1此中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。
3种包装的饮料每瓶各多少元?9.某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先搭车、乙组步行。
车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站。
已知汽车速度是度是4千米/时,求A点距北山站的距离。
60千米/时,步行速10.一级学生去饭堂开会,假如每4人共坐一张长凳,则有28人没有地点坐,假如6人共坐一张长凳,求初一级学生人数及长凳数.11.两列火车同时从相距910千米的两地相向出发,10小时后相遇,假如第一列车比第二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.12.购置甲种图书10本和乙种图书16本共付款410元,甲种图书比乙种图书每本贵乙两种图书每本各买多少元?15元,问甲、13.甲、乙两人分别从甲、乙两地同时相向出发,在甲超出中点乙抵达乙、甲两地后立刻返身往回走,结果甲、乙两人在距甲地地的行程。
《求解二元一次方程组》例1 解方程组⎩⎨⎧=++=++)2(.0765 (1) ,0432y x y x例2解方程组 ⎪⎩⎪⎨⎧-=-++=-+)2(5225123)1(0223x y x y x例3 解方程组⎩⎨⎧=--=)2(123)1(12y x x y例4 用代入法解方程组⎩⎨⎧≠=-+-=+).3()2(2)2(,5a x y a x y x例5解下列方程组:(1)⎩⎨⎧=-++=--+6)(4)(22)(3)(5y x y x y x y x (2)⎪⎪⎩⎪⎪⎨⎧-=-=+1975432y xy x例6 解方程组⎩⎨⎧=-+--=-)()(2.5)1()2(21 ),1(22y x y x例7若⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,求n m 2-的值.例8 解方程组⎪⎪⎩⎪⎪⎨⎧=-=+)()(2 .23 431 ,21332y x y x例9用代入法解二元一次方程组⎩⎨⎧=+=-)2(825)1(73y x y x参考答案例1 分析 先从方程组中选出一个方程,如方程(1),用含有一个未知数的代数式表示另一个未知数,把它代入另一个方程中,得到一个一元一次方程,解这个方程求出一个未知数的值,再代入求另一个未知数的值.解 由(1),得243--=y x , (3) 把(3)代入(2)中,得0762435=++--⋅y y ,解得2-=y 把2-=y 代入(3)中,得24)2(3--⨯-=x ,∴ 1=x ∴ ⎩⎨⎧-==.2,1y x 是原方程组的解. 例2 解:由(1)得 223=+y x (3)把(3)代入(2),得522512-=-+x ,解得 21=x . 把21=x 代入(3),得 22213=+⨯y ,解得 41=y . ∴ 方程组的解为 ⎪⎪⎩⎪⎪⎨⎧==.41,21y y 说明: 将y x 23+作为一个整体代入消元,这种方法称为整体代入法,本题把y x 23+看作一个整体代入消元比把(1)变形为232x y -=再代入(2)简单得多. 例3 分析:由于方程(1)和(2)中同一字母(未知数)表示同一个数,因此将(1)中y 的值代入(2)中就可消去y ,从而转化为关于x 的一元一次方程.解:将(1)代入(2),得 1)12(23=--x x ,解得,1=x .把1=x 代入(1)得 1112=-⨯=y ,∴ 方程组的解为 ⎩⎨⎧==.1,1y x 例4 分析:首先观察方程组,发现方程x y a x =-+-)2(2)2(的形式不是很好,将其整理成)2(22)1(+=+-a y x a ,再由5=+y x 得y x -=5或x y -=5代入其中进行求解;也可由5=+y x 得x y -=-32代入原式第二个方程先求x ,再求y 。
初中八年级上的二元一次方程80道带答案1) 66x+17y=396725x+y=1200答案:x=48 y=47(2) 18x+23y=230374x-y=1998答案:x=27 y=79(3) 44x+90y=779644x+y=3476答案:x=79 y=48(4) 76x-66y=408230x-y=2940答案:x=98 y=51(5) 67x+54y=854671x-y=5680答案:x=80 y=59(6) 42x-95y=-141021x-y=1575答案:x=75 y=48(7) 47x-40y=85334x-y=2006答案:x=59 y=48(8) 19x-32y=-178675x+y=4950答案:x=66 y=95(9) 97x+24y=720258x-y=2900答案:x=50 y=98(10) 42x+85y=636263x-y=1638答案:x=26 y=62(11) 85x-92y=-251827x-y=486答案:x=18 y=44(12) 79x+40y=241956x-y=1176答案:x=21 y=19(13) 80x-87y=215622x-y=880答案:x=40 y=12(14) 32x+62y=513457x+y=2850答案:x=50 y=57初中各年级课件教案习题汇总语文数学英语物理化学(15) 83x-49y=8259x+y=2183答案:x=37 y=61 (16) 91x+70y=5845 95x-y=4275答案:x=45 y=25 (17) 29x+44y=5281 88x-y=3608答案:x=41 y=93 (18) 25x-95y=-4355 40x-y=2000答案:x=50 y=59 (19) 54x+68y=3284 78x+y=1404答案:x=18 y=34 (20) 70x+13y=3520 52x+y=2132答案:x=41 y=50 (21) 48x-54y=-3186 24x+y=1080答案:x=45 y=99 (22) 36x+77y=7619 47x-y=799答案:x=17 y=91 (23) 13x-42y=-2717 31x-y=1333答案:x=43 y=78(24) 28x+28y=3332 52x-y=4628答案:x=89 y=30(25) 62x-98y=-2564 46x-y=2024答案:x=44 y=54(26) 79x-76y=-4388 26x-y=832答案:x=32 y=91(27) 63x-40y=-821 42x-y=546答案:x=13 y=41(28) 69x-96y=-1209 42x+y=3822答案:x=91 y=78(29) 85x+67y=7338 11x+y=308答案:x=28 y=74(30) 78x+74y=12928 14x+y=1218答案:x=87 y=83(31) 39x+42y=533159x-y=5841答案:x=99 y=35 (32) 29x+18y=1916 58x+y=2320答案:x=40 y=42 (33) 40x+31y=6043 45x-y=3555答案:x=79 y=93 (34) 47x+50y=8598 45x+y=3780答案:x=84 y=93 (35) 45x-30y=-1455 29x-y=725答案:x=25 y=86 (36) 11x-43y=-1361 47x+y=799答案:x=17 y=36 (37) 33x+59y=3254 94x+y=1034答案:x=11 y=49 (38) 89x-74y=-2735 68x+y=1020答案:x=15 y=55(39) 94x+71y=7517 78x+y=3822答案:x=49 y=41 (40) 28x-62y=-4934 46x+y=552答案:x=12 y=85 (41) 75x+43y=8472 17x-y=1394答案:x=82 y=54 (42) 41x-38y=-1180 29x+y=1450答案:x=50 y=85 (43) 22x-59y=824 63x+y=4725答案:x=75 y=14 (44) 95x-56y=-401 90x+y=1530答案:x=17 y=36 (45) 93x-52y=-852 29x+y=464答案:x=16 y=45 (46) 93x+12y=8823 54x+y=4914答案:x=91 y=30 (47) 21x-63y=84 20x+y=1880答案:x=94 y=30 (48) 48x+93y=9756 38x-y=950答案:x=25 y=92 (49) 99x-67y=4011 75x-y=5475答案:x=73 y=48 (50) 83x+64y=9291 90x-y=3690答案:x=41 y=92 (51) 17x+62y=3216 75x-y=7350答案:x=98 y=25 (52) 77x+67y=2739 14x-y=364答案:x=26 y=11 (53) 20x-68y=-4596 14x-y=924答案:x=66 y=87 (54) 23x+87y=4110 83x-y=5727答案:x=69 y=29 (55) 22x-38y=804 86x+y=6708答案:x=78 y=24 (56) 20x-45y=-3520 56x+y=728答案:x=13 y=84 (57) 46x+37y=7085 61x-y=4636答案:x=76 y=97 (58) 17x+61y=4088 71x+y=5609答案:x=79 y=45 (59) 51x-61y=-1907 89x-y=2314答案:x=26 y=53 (60) 69x-98y=-2404 21x+y=1386答案:x=66 y=71 (61) 15x-41y=754 74x-y=6956答案:x=94 y=16 (62) 78x-55y=65689x+y=5518答案:x=62 y=76(63) 29x+21y=1633 31x-y=713答案:x=23 y=46(64) 58x-28y=2724 35x+y=3080答案:x=88 y=85(65) 28x-63y=-2254 88x-y=2024答案:x=23 y=46(66) 43x+50y=7064 85x+y=8330答案:x=98 y=57(67) 58x-77y=1170 38x-y=2280答案:x=60 y=30(68) 92x+83y=11586 43x+y=3010答案:x=70 y=62(69) 99x+82y=6055 52x-y=1716答案:x=33 y=34(70) 15x+26y=1729 94x+y=8554补充:(71) 64x+32y=3552 56x-y=2296答案:x=41 y=29(72) 94x+66y=10524 84x-y=7812答案:x=93 y=27(73) 65x-79y=-5815 89x+y=2314答案:x=26 y=95(74) 96x+54y=6216 63x-y=1953答案:x=31 y=60(75) 60x-44y=-352 33x-y=1452答案:x=44 y=68(76) 79x-45y=510 14x-y=840答案:x=60 y=94(77) 29x-35y=-218 59x-y=4897答案:x=83 y=75(78) 33x-24y=1905 30x+y=2670答案:x=89 y=43(79) 61x+94y=11800 93x+y=5952答案:x=64 y=84(80) 61x+90y=5001 48x+y=2448答案:x=51 y=21。
二元一次方程组考点解析考点一二元一次方程(组)的解的概念【例1】已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.变式练习1.若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】解方程组:1 28. x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2. xy==⎧⎨⎩方法二:1, 28. x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2. 所以原方程组的解为3,2. xy==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.变式练习2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.变式练习4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.变式练习5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2014·抚州)已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222x y z ===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a 、b12.已知2,1x y ==⎧⎨⎩是二元一次方程组7,1mx ny nx my +=-=⎧⎨⎩的解,则m+3n 的立方根为__________.13.孔明同学在解方程组,2y kx b y x =+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,x y =-=⎧⎨⎩又已知3k+b=1,则b 的正确值应该是__________. 14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x y x y +=-⎧=⎨⎩,①;② (2)1151.x y z y z x z x y +-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y xy +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.214 34 15.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得15x y +=⎧⎨,解得5x =⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。
八年级数学二元一次方程组计算题一、基础计算类。
1. x + y = 5 2x - y = 1- 解析:- 将两个方程相加消去y,(x + y)+(2x - y)=5 + 1,即3x=6,解得x = 2。
- 把x = 2代入x + y = 5,得2+y=5,解得y = 3。
所以方程组的解为x = 2 y = 3。
2. 2x+3y = 8 x - 2y=-3- 解析:- 由方程x - 2y=-3可得x=2y - 3。
- 将x = 2y-3代入2x + 3y = 8,得到2(2y - 3)+3y=8。
- 展开式子得4y-6 + 3y = 8,7y=14,解得y = 2。
- 把y = 2代入x = 2y - 3,得x = 2×2-3 = 1。
所以方程组的解为x = 1 y = 2。
3. 3x - y = 7 5x + 2y = 8- 解析:- 由3x - y = 7可得y = 3x - 7。
- 将y = 3x - 7代入5x + 2y = 8,得到5x+2(3x - 7)=8。
- 展开式子得5x + 6x-14 = 8,11x = 22,解得x = 2。
- 把x = 2代入y = 3x - 7,得y = 3×2 - 7=-1。
所以方程组的解为x = 2 y=-1。
- 解析:- 由方程2x - 3y=-1可得2x = 3y - 1,即x=(3y - 1)/(2)。
- 将x=(3y - 1)/(2)代入4x + 5y = 11,得到4×(3y - 1)/(2)+5y = 11。
- 化简得2(3y - 1)+5y = 11,6y-2 + 5y = 11,11y = 13,解得y=(13)/(11)。
- 把y=(13)/(11)代入x=(3y - 1)/(2),得x=(3×frac{13)/(11)-1}{2}=(frac{39)/(11)-1}{2}=(frac{28)/(11)}{2}=(14)/(11)。
2 求解二元一次方程组1.用代入消元法解二元一次方程组(1)代入法的定义:在二元一次方程组中,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.这种解方程组的方法称为代入消元法,简称代入法.(2)代入法解二元一次方程组的基本思想是:通过代入达到消元的目的,从而将解二元一次方程组转化为解一元一次方程.其步骤为:①变形:从方程组中选一个系数比较简单的方程,将这个方程化为用含一个字母的代数式表示另一个字母.例如y ,用含x 的代数式表示出来,得y =ax +b .②代入:将y =ax +b 代入另一个方程中,消去y ,得到一个关于x 的一元一次方程. ③解元:解所得的一元一次方程,求出x 的值.④求值:把求得的x 的值代入y =ax +b 中,求出y 的值,从而得到方程组的解. ⑤把求得的x ,y 的值联立起来就是方程组的解. 谈重点 代入消元法解二元一次方程组代入消元法是通过代入将“二元”变为“一元”的,体现了“转化”的思想方法.对于一般形式的二元一次方程用代入法求解关键是选择哪一个方程变形,消什么元,选取的恰当往往会使计算简单,而且不易出错,选取的原则是:①选择未知数的系数是1或-1的方程;②常数项为0的方程;③若未知数的系数都不是1或-1,选系数的绝对值较小的方程,将要消的元用含另一个未知数的代数式表示,再把它代入没有变形的方程中去.这样就把二元一次方程组转化为一元一次方程了.总之,用代入消元法解二元一次方程组时,一定要使变形后的方程比较简单或代入消元后化简比较容易,这样不但避免错误,还能提高运算速度.【例1-1】 解方程组:⎩⎪⎨⎪⎧ 3x -y =5,2x +3y =7.①②分析:方程①中y 的系数为-1,容易把它化为用含x 的代数式表示y ,故把①变形为y =3x -5③,然后代入方程②转化为关于x 的一元一次方程求出x ,再代入③求出y 即可.解:把①变形为y =3x -5.③ 把③代入②,得2x +3(3x -5)=7. 解得x =2.把x =2代入③,得y =1.故原方程组的解为⎩⎪⎨⎪⎧x =2,y =1.析规律 用代入消元法解方程的条件当有一个方程的某个未知数的系数为1或-1时,选择该方程变形,并用含另一个未知数的代数式表示该未知数,然后代入另一个方程.【例1-2】 解方程组:⎩⎪⎨⎪⎧2x -7y =3,3x -8y =10.分析:这两个方程中未知数的系数都不是1,那么如何求解呢?消哪一个未知数呢?如果将2x -7y =3写成用一个未知数来表示另一个未知数,那么用x 表示y ,还是用y 表示x 好呢?观察方程组,因为x 的系数为正数,且系数也较小,所以应用y 来表示x 较好.解:由方程2x -7y =3变形,得x =7y +32.将x =7y +32代入方程3x -8y =10,得3×7y +32-8y =10,解得y =115.再把y =115代入x =7y +32,得x =465.因此原方程组的解是⎩⎨⎧x =465,y =115.2.用加减消元法解二元一次方程组(1)加减法的定义:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.(2)加减法的基本思想是:解二元一次方程组时,使方程组中同一个未知数的系数相等或是互为相反数,再将所得两个方程的两边分别相减或相加,消去一个未知数,从而转化为一元一次方程.其步骤为:①变形:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就要用适当的数去乘方程的两边,使其中一个未知数的系数相等或互为相反数.②加减:当同一个未知数的系数互为相反数时,用加法消去这个未知数,得到关于另一个未知数的一元一次方程;当同一个未知数的系数相等时,用减法消去这个未知数,得到关于另一个未知数的一元一次方程.③解元:解所得的一元一次方程,求出未知数的值. ④求值:把求出的未知数的值代入原方程组中的任一个方程中,求出另一个未知数的值,从而得到方程组的解.⑤求得的两个未知数的值联立起来就是方程组的解. 谈重点 加减消元法解二元一次方程组当方程组中两个未知数的系数均不成整数倍时,一般选择系数较为简单的未知数消元,将两个方程分别乘以某个数,使该未知数的系数的绝对值相等,再加减消元求解,但必须注意,在方程两边同乘以某个数时,每一项都要乘,尤其常数项不要漏乘.【例2-1】 解方程组:⎩⎪⎨⎪⎧3x -5y =4,① 2x +5y =1.②分析:两个方程中未知数y 的系数正好互为相反数,可将两方程直接相加消元求出x ,再代入①或②求出y 即可.解:①+②,得5x =5,x =1. 把x =1代入②,得y =-15.故原方程组的解为⎩⎪⎨⎪⎧x =1,y =-15.点技巧 巧用加减消元法当方程组中两个方程中的同一个未知数的系数的绝对值相等时,可直接用加减法进行消元.【例2-2】 解方程组:⎩⎪⎨⎪⎧3x -2y =1, x +3y =4.①②分析:两个方程中的未知数x 的系数成倍数关系,可通过将x 的系数化成相等后消元,求出y ,再代入②求出x 即可.解:由②×3,得3x +9y =12.③③-①,得11y =11,y =1.把y =1代入②,得x =1.故原方程组的解为⎩⎪⎨⎪⎧x =1,y =1.析规律 变系数,用加减消元法解方程组如果方程组中未知数的系数的绝对值不相等,这时可以变化其中一个未知数的系数,使其系数的绝对值相等.3.灵活选用代入法或加减法解二元一次方程组本节的重点是灵活选用代入法或加减法解二元一次方程组,特别是在实际情景中的应用,难点是需变形的二元一次方程组的求解问题.【例3-1】 解方程组:⎩⎪⎨⎪⎧x 3+y 4=1,0.3x +0.4y =1.6.①,②分析:方程组中的系数是分数或小数,一般要化成整数后再消元.方程①可化为4x +3y =12,方程②可化为3x +4y =16,利用加减法求解即可.解:①×12,②×10得⎩⎪⎨⎪⎧4x +3y =12,③3x +4y =16.④③+④,得7x +7y =28,即x +y =4.⑤ ③-④,得x -y =-4.⑥解由⑤、⑥组成的方程组,得⎩⎪⎨⎪⎧x =0,y =4.点评:当二元一次方程组的形式较复杂时,一般要把它化为形式简单的方程组,再消元求解.【例3-2】 解方程组:⎩⎨⎧y -2=x -26-x -y 2,2x =x +2y 3+2.分析:先化简,再观察系数的特点,再选择方法求解.解:化简方程组,得 ⎩⎪⎨⎪⎧2x +3y =10,①5x -2y =6.②①×2+②×3,得19x =38,x =2. 把x =2代入①,得y =2.故原方程组的解为⎩⎪⎨⎪⎧x =2,y =2.析规律 化简较复杂的方程组为基本形式当方程组比较复杂时,应通过去分母,去括号,移项,合并同类项等,使之化为⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式(同类项对齐),为消元创造条件.4.换元法解二元一次方程组换元消元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化,使复杂问题简单化,使问题变得容易处理.换元法又称辅助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,把隐含的条件显露出来,或者把条件与结论联系起来,或者变为熟悉的形式,把复杂的计算和推证简化.换元法要注意变量之间的等价性,消元的实质是由繁到简、由难到易、由多(元)到少(元)的转化方法.析规律 用换元法解二元一次方程组当二元一次方程组的结构比较复杂,但又有一定的规律时,可以考虑利用换元法,从而使原方程组变成结构比较简单、求解方便的二元一次方程组.【例4】 解方程组:⎩⎨⎧x +y 2+x -y 3=13,x +y 3-x -y4=3.分析:考虑方程组的结构虽然比较复杂,但还是有一定的规律:x +y 和x -y 的相同因子.故可以通过换元,设x +y =m ,x -y =n ,这样就可以化复杂为简单,从而能快速、准确地求解.解:设x +y =m ,x -y =n ,则原方程组可变形为 ⎩⎨⎧12m +13n =13,13m -14n =3,即⎩⎪⎨⎪⎧3m +2n =78,4m -3n =36, 解得⎩⎪⎨⎪⎧m =18,n =17.因此⎩⎪⎨⎪⎧x +y =18,x -y =17,解得⎩⎨⎧x =352,y =12.故原方程组的解为⎩⎨⎧x =352,y =12.5.整体思想解二元一次方程组整体思想:利用整体代入法或整体加减法解二元一次方程组可避繁就简、减少错误、简化运算.如解方程组:⎩⎪⎨⎪⎧2x -3y -2=0, ①2x -3y +57+2y =9.②通过观察两个方程都有2x -3y ,于是考虑整体代入②即可.由①得2x -3y =2,③ 把③代入②,得 2+57+2y =9.解得y =4. 把y =4代入①得2x -3×4-2=0,解得x =7.故原方程组的解是⎩⎪⎨⎪⎧x =7,y =4.析规律 用整体思想解方程组解题时要注意观察两式子的共同部分,把它们看成一个整体.利用“整体思想”可以避繁就简地帮助解决问题. 【例5】 解方程组: ⎩⎪⎨⎪⎧6(x -y )-7(x +y )=21,2(x -y )-5(x +y )=-1.分析:方法一:将两个方程化简后,再利用代入法解答;方法二:根据方程组的特点考虑把(x +y ),(x -y )看成一个整体,利用整体加减法解答.解法一:原方程可化为⎩⎪⎨⎪⎧ x +13y =-21,3x +7y =1.①②①×3-②,得32y =-64,y =-2. 把y =-2代入①,得x =5.故原方程组的解为⎩⎪⎨⎪⎧x =5,y =-2.解法二:⎩⎪⎨⎪⎧ 6(x -y )-7(x +y )=21,2(x -y )-5(x +y )=-1.①②把(x +y )、(x -y )看成整体, ①-②×3,得x +y =3.③把③代入②,得2(x -y )-5×3=-1, 即x -y =7.④由③、④联立方程组,得⎩⎪⎨⎪⎧ x -y =7,x +y =3.解得⎩⎪⎨⎪⎧x =5,y =-2.。
八年级上二元一次方程组典型例题整理
一.填空题
1、方程中含有2个未知数,并且一次项的次数是1,这
样的方程是二元一次方程。
2、二元一次方程组的解题思想是代入法,方法有消元法,图解法。
3、将方程10-2(3-y)=3(2-x)变形,用含x的代数式表示y
是6-x。
4、已知3x2a+b3-5y3a2b+2=-1是关于x、y的二元一次方程,则(a+b)b=-1/3.
5、在公式s=vt+at2中,当t=1时,s=13,当t=2时,s=42,则t=5时,s=155.
6、解方程组
2x+3y=12(1)
3x-4y=17(2)
时,可以通过乘以一个系数将x项的系数化相等,还可以通过加减两个方程将y项的系数化为互为相反数。
7、已知2x3m-2n+2ym+n与x5y4n+1是同类项,则m=4,n=1.
8、写出2x+3y=12的所有非负整数解为(0,4),(3,2),(6,0)。
9、已知a-b=2c,求a∶b∶c的值。
10、已知x=m,y=n,且2x-3y=1,则3n-5y=n/m的值为
多少?
21、解下列方程组:
1.4x-3y=5,2x-y=2,用代入法解。
2.3x-5y=-9,2x+7y=-6,用代入法解。
3.2x-2y=4,xy=32/(y-1),用加减法解。
4.x+y=8,y+z=9,z+x=5,用加减法解。
5.2x+y+3z=38,3x+2y+4z=56,4x+y+5z=66,用加减法解。
22、解关于x、y的方程组:
m+1)x-(3n+2)y=8
5-n)x+my=11
用(1)×2+(2)消去未知数x,或者用(1)+(2)×5消去未知数y,求m、n的值。
23、已知有理数x、y、z满足│x-z-2│+│3x-6y-7│+
(3y+3z-4)²=0,证明x=0,y=1,z=2.
25、当a为何整数值时,方程组2x+ay=16,x-2y=a无正整数解?
26、已知关于x、y的二元一次方程(a-1)x+(a+2)y+5-
2a=0,⑴当a=1时,得方程2x+3y=3;当a=-2时,得方程-
3x+2y=-9.求②③组成的方程组的解,并将解代入方程①的左边,得到的结果是什么?由此得出什么结论?验证结论的正确性。