坐标正反算计算公式
- 格式:docx
- 大小:37.16 KB
- 文档页数:3
坐标正反算及导线测量的内业计算导线测量内业计算的目的就是计算各导线点的平面坐标x、y。
计算之前,应先全面检查导线测量外业记录、数据是否齐全,有无记错、算错,成果是否符合精度要求,起算数据是否准确。
然后绘制计算略图,将各项数据注在图上的相应位置,如图6-11所示。
一、坐标计算的基本公式1.坐标正算根据直线起点的坐标、直线长度及其坐标方位角计算直线终点的坐标,称为坐标正算。
如图6-10所示,已知直线AB 起点A 的坐标为(x A ,y A ),AB 边的边长及坐标方位角分别为D AB 和αAB ,需计算直线终点B 的坐标。
直线两端点A 、B 的坐标值之差,称为坐标增量,用Δx AB 、Δy AB 表示。
由图6-10可看出坐标增量的计算公式为:⎭⎬⎫=-=∆=-=∆AB AB A B AB AB AB A B AB D y y y D x x x ααsin cos (6-1) 根据式(6-1)计算坐标增量时,sin 和cos 函数值随着α角所在象限而有正负之分,因此算得的坐标增量同样具有正、负号。
坐标增量正、负号的规律如表6-5所示。
表6-5 坐标增量正、负号的规律y图6-10 坐标增量计算则B 点坐标的计算公式为:⎭⎬⎫+=∆+=+=∆+=AB AB A AB A B AB AB A AB A B D y y y y D x x x x ααsin cos (6-2) 例6-1 已知AB 边的边长及坐标方位角为456380m 62.135'''︒==AB AB D α,,若A 点的坐标为m 82.658m 56.435==A A y x ,,试计算终点B 的坐标。
解 根据式(6-2)得m 62.792456380sin m 62.135m 82.658sin m 68.457456380cos m 62.135m 56.435cos ='''︒⨯+=+=='''︒⨯+=+=AB AB A B AB AB A B D y y D x x αα2.坐标反算根据直线起点和终点的坐标,计算直线的边长和坐标方位角,称为坐标反算。
坐标正反算定义及公式一、坐标正算(地理坐标转平面坐标)坐标正算是将地球上的地理坐标(经纬度)转换为平面坐标(笛卡尔坐标或者极坐标)。
坐标正算是地图制图的一项基本工作。
1.大地参考椭球体模型在进行坐标正算之前,需要先定义一个大地参考椭球体模型,用于近似地球的形状。
常用的大地参考椭球体模型有WGS84、北京54等。
这些模型定义了地球的椭球体参数,如长半轴、扁率等。
2.经度、纬度的度分秒表示法地理坐标通常使用度分秒表示法来表示经度和纬度。
经度是以东西方向为正负,以本初子午线(通常是格林威治子午线)为基准;纬度是以南北方向为正负,以赤道为基准。
3.大地坐标系和平面坐标系大地坐标系是地球表面的经纬度坐标系,平面坐标系是一个笛卡尔坐标系或者极坐标系,用于表示地球表面的平面位置。
4.坐标正算公式坐标正算的公式根据大地参考椭球体模型的不同而有所不同,这里以WGS84椭球体模型为例。
假设待转换的地理坐标是经度λ、纬度φ,转换后的平面坐标是X、Y。
首先,计算出椭球体的参数e:e=√(a^2-b^2)/a其中,a是椭球体的长半轴,b是椭球体的短半轴。
然后,计算出曲率半径N:N = a / √(1 - e^2 * sin^2(φ))接着,计算出当前点的平面坐标:X = (N + h) * cos(φ) * cos(λ)Y = (N + h) * cos(φ) * sin(λ)其中,h是当前点的海拔高度。
以上就是坐标正算的基本公式,可以将地理坐标转换为平面坐标。
二、坐标反算(平面坐标转地理坐标)坐标反算是将平面坐标(笛卡尔坐标或者极坐标)转换为地理坐标(经纬度)。
坐标反算是地图制图或者位置定位的一项重要工作。
1.平面坐标的原点和单位平面坐标通常以其中一点为原点,单位长度为米或者其他距离单位。
原点可以在任意位置,但是通常选择区域的中心或者其中一突出地物为原点。
2.坐标反算的过程坐标反算的过程是根据平面坐标和大地参考椭球体模型,计算出对应的地理坐标。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
坐标正反算程序(4850)正算主程序:ZS1.Prog “SJ”2.Lbl 0: {ZS}3.Z<A=>Rec(sqrt(S2+(Z-Q)2),F+180-tan-1(S÷(Q-Z))):X=N+I:Pause 0:Y=E+J◢4.Goto 0◣第一直线5.Z<B=>L=Z-A:W=F+90GL2÷πRU+90:H=U:O=Z[5]:P=Z[6]:T=F+90G:Goto 1◣第一回旋线6.Z<C=>L=Z-B7.W=F+G((90U+180L)÷πR+270)8.Rec(R-GS,W):X=Z[9]+I: Pause 0:Y=Z[10]+J◢9.Goto 0◣圆曲线10.Z<D=>L=D-Z:W=F+G(K-90L2÷πR V)+90:H=V:O=Z[7]:P=Z[8]:T=F+G(K+90):Goto 1◣第二回旋线11.Lbl 1:X=L-L5÷40R2V2+L9÷3456R4V412.Y=L3÷6RV-L7÷336R3V3+L11÷42240R5V513.Rec(sqrt(X2+Y2),T):X=O+I:Y=P+J14.Rec(S,W): X=X+I: Pause 0:Y=Y+J◢15.Goto 0◣16.Z>D=>Rec(sqrt(S2+(Z-D+Z[4])2),F+G(K+tan-1(S÷(Z-D+Z[4])))):X=N+I: Pause 0:Y=E+I◢17.Goto 0◣第二直线反算主程序:FS1.Prog"SJ"2.H=90U÷πR第一回旋线所对圆心角β013.T=90V÷πR第二回旋线所对圆心角β024.Rec((Z[3] +Z[4]÷cosK)/tanK,F+90G):Z[11]=Z[5]+I:Z[12]=Z[6]+J ZH、HZ点垂线交点坐标5.Z[13]=F+90G+180 ZH点与ZH、HZ点垂线交点连线方位角6.Z[14]=Z[13]+GH HY点与圆心连线方位角7.Z[15]=Z[13]+G(K-H) YH点与圆心连线方位角8.Z[16]=Z[15]+GT HZ点与ZH、HZ点垂线交点连线方位角9.Lbl 0:{XY}10.Pol(X-Z[11],Y-Z[12]):J<0=>J=J+360◣11.GJ<GZ[13]=> Pol(N-X,E-Y):Rec(I,F-J): “Z”:Z=Q-I:Pause 0:“S”:J◢12.Goto 0◣第一直线13.GJ>GZ[16]=> Pol(X-N,Y-E):Rec(I,J-F-GK): “Z”:Z=I-Z[4]+D:Pause 0:“S”:J◢14.Goto 0◣第二直线15.GJ>GZ[13]=>Pol(X-Z[9],Y-Z[10]):J<0=>J=J+360◣16.GJ<GZ[14]=>P=Z[13]:H=U:M=A:T=1:Z[17]=Z[5]:Z[18]=Z[6]:Z[19]=F:Goto 1◣第一缓和曲线17.GJ<GZ[15]=> “Z”:Z=B+RG(J-Z[14]):Pause 0:“S”:S=G(R-I)◢18.Goto 0◣圆曲线19.GJ>GZ[15]=>P=Z[16]:H=V:M=D:T=-1:Z[17]=Z[7]:Z[18]=Z[8]:Z[19]=F+GK+180:Goto 1◣第二缓和曲线20.Lbl 1:Pol(X-Z[11],Y-Z[12]):J<0=>J=J+360:L= Abs(J-P) πR÷180 “L=H×Abs(J-P)÷2÷(90H÷πR)”21.Lbl 2:O=L-L5÷40R2H2+L9÷3456R4H4-L13÷599040R6H622.P=L3÷6RH-L7÷336R3H3+L11÷42240R5H5-L15÷9676800R7H723.Rec(sqrt(O2+P2),Z[19]+TGtan-1(P÷O)):O=Z[17]+I:P=Z[18]+J24.Pol(X-O,Y-P):Rec(I,J-(Z[19]+90TGL2÷πRH)):AbsI>0.001=>L=L+I:Goto 2:≠>“Z”:Z=M+TL: Pause 0: “S”:TJ◢25.Goto 0◣子程序(曲线要素数据):SJ1.Defm 19:M:M=1=>F=*:K“ZJ”=*:G=*:U(Ls1)=*:V(Ls2)=*:R=*:Q=*:N“XJ”=*:E“YJ”=*:Goto 1◣2.M=2=>F=*:K“ZJ”=*:G=*:U(Ls1)=*:V(Ls2)=*:R=*:Q=*:N“XJ”=*:E“YJ”=*:Goto 1◣3.………………4.Lbl 1:Z[1]=U2÷24R-U4÷2688R3+U6÷506880R5Z[1]第一回旋线内移值P15.Z[2]=V2÷24R-V4÷2688R3+V6÷506880R5Z[2]第二回旋线内移值P26.M=(R+Z[2]-(R+Z[1])cosK)÷sinK7.P=(R+Z[1]-(R+Z[2])cosK)÷sinK8.Z[3]= M+U÷2-U3÷240R2Z[3]第一回旋线切线长T19.Z[4]= P+V÷2-V3÷240R2Z[4]第二回旋线切线长T210.L=RKπ÷180+(U+V)÷2曲线长(Ls1+圆+Ls2)11.A=Q-Z[3]:B=A+U:D=A+L:C=D-V ZH,HY,HZ,YH里程桩号12.I=0:J=0:Rec(Z[3],F+180):Z[5]=N+I:Z[6]=E+J ZH点坐标增量计算,ZH点坐标13.Rec(Z[4],F+GK):Z[7]=N+I:Z[8]=E+J HZ点坐标增量计算,HZ点坐标14.Rec(sqrt(M2+(R+Z[1])2),F+G(K+tan-1((R+Z[2])÷P))):Z[9]=N+I:Z[10]=E+J 圆心坐标注:F-起始边方位角K-转角G-线路左转为-,右转为+U-第一回旋线长V-第二回旋线长R-半径Q-交点桩号N,E-交点坐标Z-待求点桩号S-偏距(左偏为-,右偏为+)sqrt为根号。
测量坐标正反算公式是什么引言在测量领域中,坐标正反算是一种常用的计算方法,用于将实际测量值转换为地理坐标或者将地理坐标转换为实际测量值。
本文将介绍测量坐标正反算的基本原理和公式,并通过示例进行说明。
坐标正算坐标正算是将实际测量值(如长度、角度等)转换为地理坐标的过程。
在进行坐标正算时,通常需要已知一些控制点的地理坐标,并通过测量的实际值来计算待测点的地理坐标。
点的水平坐标正算对于点的水平坐标正算,通常使用以下公式:X = X₀ + ∑(Di * cos ai)Y = Y₀ + ∑(Di * sin ai)其中,X₀和Y₀为已知控制点的地理坐标,Di为待测点到控制点的实测距离,ai 为待测点到控制点的真方位角(或差角)。
点的高程坐标正算对于点的高程坐标正算,通常使用以下公式:Z = Z₀ + ∑(Hi)其中,Z₀为已知控制点的高程坐标,Hi为待测点到控制点的高差。
坐标反算坐标反算是将已知的地理坐标转换为实际测量值的过程。
在进行坐标反算时,通常需要已知一些控制点的地理坐标,并通过测量待测点与已知控制点的实际值来计算实际测量值。
点的水平坐标反算点的水平坐标反算根据已知的控制点的地理坐标和实测距离,计算待测点与已知控制点的方位角(或差角)和距离。
其中,方位角可使用以下公式计算:tan α = (Y-Y₀) / (X-X₀)其中,X₀和Y₀为已知控制点的地理坐标,α为待测点到控制点的方位角。
待测点的距离可以使用以下公式计算:D = √((X-X₀)² + (Y-Y₀)²)点的高程坐标反算点的高程坐标反算根据已知的控制点的高程坐标和实测高差,计算待测点与已知控制点的高差。
已知控制点的高程坐标和高差可以通过以下公式计算:Hi = Z-Z₀其中,Z₀为已知控制点的高程坐标,Hi为待测点到控制点的高差。
示例为了更好地理解坐标正反算的原理,这里给出一个示例。
假设有一个测量任务,要求测量某点A的地理坐标。
坐标正反算定义及公式1.坐标正算:坐标正算是指根据给定的地球坐标系的椭球体参数、基准椭球体参数和初始二维坐标,通过一系列计算,求解出地球上对应的三维坐标。
这是将地图中的二维信息转换为地球上的三维信息的过程。
坐标正算的公式如下:X=cosB*cosL*HY=cosB*sinL*HZ=sinB*H其中,X、Y、Z分别表示地球上的三维坐标,B表示纬度,L表示经度,H表示高程。
2.坐标反算:坐标反算是指根据给定的地球坐标系的椭球体参数、基准椭球体参数和地球上的三维坐标,通过一系列计算,求解出地图上对应的二维坐标。
这是将地球上的三维信息转换为地图中的二维信息的过程。
坐标反算的公式如下:L=atan(Y/X)B=atan(Z/sqrt(X^2+Y^2))H=sqrt(X^2+Y^2+Z^2)其中,L表示经度,B表示纬度,H表示高程,X、Y、Z表示地球上的三维坐标。
在坐标正反算中,还需要考虑一些特殊情况,如椭球体的椭率偏差、大地基准面的形状等。
根据这些特殊情况,需要进行一些修正和适用于不同地区的公式。
此外,还有其他一些常见的坐标系统,如平面坐标系统、高斯投影坐标等,它们都有相应的坐标正反算公式。
值得注意的是,坐标正反算在实际应用中非常广泛,例如地图的绘制、GPS定位、导航系统等都需要通过坐标正反算来实现。
因此,熟练掌握坐标正反算的原理和公式对于地理信息专业人员至关重要。
总之,坐标正反算是将地图上的二维坐标与地球上的三维坐标相互转换的过程。
通过实际坐标的正算,可以确定地球上的位置,而通过坐标的反算,可以确定地图上的位置。
坐标正反算是地理信息系统中的一项重要技术,对于许多实际应用具有重要意义。
第五节、坐标正、返算及应用实例1、基本概念所谓坐标正算,即已知一点的坐标和至另一已知点的起始方位,以及起始点至待定点的转角和边长,推求待定点坐标的计算称之为坐标正算。
所谓坐标返算,即已知两点的坐标,进行两点间的边长及边长方位角的计算,称之为坐标返算。
所谓点的坐标是指该点在某一坐标系统中相对纵、横坐标轴线的垂距。
在测量坐标系统中,纵、横轴分别以x、y表示。
坐标增量是指一点的坐标相对另一点坐标的增值。
在测量坐标系统中分别用△x、△y表示纵、横坐标增量。
所谓边的方位角是指该边与坐标纵轴的夹角。
方位角有正、反方位之分,正方位角即为以坐标纵轴正方向为零,顺时方向转至边起止方向的夹角。
相反方向的则为反向方位角,正、反方位角相差180°。
在坐标系统中,四个象限的划分是以东北方向开始按顺时方向规定为Ⅰ、Ⅱ、Ⅲ、Ⅳ象限,如图9所示。
轴线方向规定纵轴往北为正,反之为负,横轴往东为正,反之为负。
xⅣⅠyⅢⅡ图9由此可见:在Ⅰ象限中,X、Y均正值,在Ⅱ象限中,X为负Y为正,在Ⅲ象限中,X、Y均为负,在Ⅳ象限中,X为正Y为负。
弄清以上概念以后,便可进行坐标的正、返算运算。
如图10所示:正算公式:已知A、B两点坐标和转角β,及BP的边长S,推算P点坐标。
P =XB+ScosαBPx . P= X B+Scos(αBA+β)YP =YB+SsinαBPA βS= YB +Ssin(αBA+β) B注意:在进行坐标推算 Y 时,推算方位角所用的转折 (0,0) 图10 角为左角时则应加转角,所用的转折角为右角时,则应减转角。
返算公式:已知A、B两点坐标,计算AB的边长和方位角。
SAB =((XB-XA)2+(YB-YA)2)1/2=(ΔX2BA +ΔY2BA) 1/2αBA =tg-1((YA-YB)/ (XA-XB))2、坐标正、返算实例。
如图11所示:已知中山路上m、n两测量控制点的坐标为:Xm =76.11Ym=179.51Xn =137.00 Yn=182.84设计给定拟建建筑物角点A、D两点(设计图纸中的)坐标为:X A =117.82YA=134.20X D =148.50 YD=120.04根据以上已知资料,对拟建建筑物进行定位。
坐标正反算计算程序```pythonimport mathdef coordinate_forward(h0, l0, alpha, s):"""坐标正算函数,根据给定的起始位置和观测角度、距离计算目标位置的坐标。
:param h0: 起始位置的水平坐标。
:param l0: 起始位置的纵向坐标。
:param alpha: 观测角度,以正北方向为基准,顺时针方向为正。
:param s: 距离。
:return: 目标位置的水平坐标和纵向坐标。
"""d = math.radians(alpha)h = h0 + s * math.sin(d)l = l0 + s * math.cos(d)return h, ldef coordinate_inverse(h0, l0, h, l):"""坐标反算函数,根据给定的起始位置和目标位置的坐标计算观测角度和距离。
:param h0: 起始位置的水平坐标。
:param l0: 起始位置的纵向坐标。
:param h: 目标位置的水平坐标。
:param l: 目标位置的纵向坐标。
:return: 观测角度和距离。
"""dh = h - h0dl = l - l0s = math.sqrt(dh ** 2 + dl ** 2)alpha = math.degrees(math.atan2(dh, dl))if alpha < 0:alpha += 360return alpha, s```使用这个坐标正反算计算程序,可以简单地实现坐标的正反算。
例如:```python#坐标正算示例h0=0l0=0alpha = 45s=10h, l = coordinate_forward(h0, l0, alpha, s)print(f"目标位置坐标:h={h}, l={l}")#坐标反算示例h0=0l0=0h=5l=5alpha, s = coordinate_inverse(h0, l0, h, l)print(f"观测角度和距离:alpha={alpha}, s={s}")```这段程序中的坐标正算函数`coordinate_forward`接受起始位置的坐标`h0`和`l0`,观测角度`alpha`(以正北方向为基准,顺时针方向为正),以及距离`s`作为参数,返回目标位置的水平坐标`h`和纵向坐标`l`。
第六章T第二节T导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6所示,点的坐标可由下式计算:巾=M +仏心式中:上、上山为两导线点坐标之差,称为坐标增量,即:为如=y 厂V A = 盘血【例题6-1】已知点A 坐标,I =1000、」\ =1000;!、方位角:上=35° 17/ 36.5", 两点水平距离 f =200.416 ,计算 点的坐标?\- […二* IIH+ : II - / 350177 36.5"=1163.580n:二匚I 2'jj.L j :,:35o17z 36.5"=1115.7932、坐标反算已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角% = J 山此(6-3)(6-4)式中反正切函数的值域是-90°〜+90°,而坐标方位角为 0°〜360°,因此坐标方位角的值,可根据、 的正负号所在象限,将反 正切角值换算为坐标方位角。
【例题 6-2 】 =3712232.528、 =523620.436 、 =3712227.860、应=523611.598 ,计算坐标方位角计算坐标方位角 二工、水平距离% - J 竝 + 今:=27.8150 - 32.528)2 + f 611.598 - 620.436 )2= 799.900468 =9.995^=arclan 今塑y.-y.611.598 - 620.436 - 8.838a Jfl arctan —_—= arctan ------------- > arclan ----亦-心27,860 - 32.528 - 4.668=62° 09/ 29.4"+180 ° =242° 09/29.4"注意:一直线有两个方向,存在两个方位角,式中:二】」、的计算是过A点坐标纵轴至直线」的坐标方位角,若所求坐标方位角为,二,则应是A点坐标减点坐标。
坐标正反算计算公式1.经纬度坐标转平面直角坐标:经纬度坐标通常由经度和纬度两个值表示,其中经度表示东西方向的位置,纬度表示南北方向的位置。
为了将经纬度坐标转换为平面直角坐标,需要用到大地测量学中的相关公式。
-平面坐标系原点:平面直角坐标系的原点通常设置在所研究区域的一些特定位置。
该位置的经纬度可以通过GPS定位等手段获得。
-基准面:平面坐标系的基准面是一个理想的平面,通常在使用中会选择合适的基准面,如WGS84椭球体的水准面。
经纬度坐标转平面直角坐标的计算公式如下:-将经纬度坐标转换为大地坐标系的坐标:将经度和纬度转换为弧度表示,然后通过大地坐标系的正反算公式计算得到大地坐标系的坐标。
-将大地坐标系的坐标通过投影变换到平面直角坐标系:根据所采用的投影方式,通过不同的变换参数计算得到平面直角坐标系下的坐标。
常见的投影方式有:-平面直角坐标:将地球投影到平面上,通常使用高斯-克吕格投影或UTM投影。
-经纬度网格:将地球分成经纬度网格,在每个网格上采用平面直角坐标方式进行表示。
-等距圆柱投影:将地球投影到圆柱面上。
2.平面直角坐标转经纬度坐标:平面直角坐标转换为经纬度坐标的核心问题是解方程,即根据平面直角坐标系求解对应的经度和纬度。
计算公式如下:-将平面直角坐标系下的坐标通过反投影转换为大地坐标系下的坐标。
-将大地坐标系下的坐标通过大地坐标系的反算公式转换为经纬度坐标。
在转换过程中需要考虑的因素还包括:-椭球体参数:平面直角坐标系的计算需要用到地球的椭球体参数,如长半轴和短半轴。
-投影参数:转换过程中可能需要用到一些投影参数,如中央子午线经度、带号等。
总结:坐标正反算是地图制作、导航定位及GIS系统中常见的计算问题。
经纬度坐标转平面直角坐标的计算需要通过大地测量学中的公式进行,而平面直角坐标转经纬度坐标则需要解方程。
在实际应用中,还需要考虑椭球体参数和投影参数,以获得更精确的计算结果。
测量坐标正反算公式在测量学中,坐标正反算公式是一种常用的计算方法,用于在测量过程中进行坐标值的转换和计算。
通过坐标正反算公式,可以将测量点的坐标值进行转化,从而得到更加准确和可靠的测量结果。
1. 坐标正算坐标正算是指通过已知的控制点坐标和测量数据,计算出其他未知点的坐标值。
坐标正算一般涉及到测量仪器的观测数据、观测角度和测量点的距离等信息。
坐标正算的基本原理是根据已知控制点的坐标,通过观测数据和测量原理,进行一系列计算和推导,得到待测点的坐标值。
坐标正算的公式可以表示为:X = X0 + ∑(Ri * sinθi * cosαi)Y = Y0 + ∑(Ri * sinθi * sinαi)Z = Z0 + ∑(Ri * cosθi)其中,X、Y、Z分别表示待测点的坐标值,X0、Y0、Z0表示已知控制点的坐标值,Ri表示测量点与控制点的距离,θi表示测量点与控制点的垂直角,αi表示测量点与控制点的水平角。
坐标正算的步骤主要包括:1.根据已知控制点的坐标值,计算观测点与控制点的距离和方向角;2.根据观测数据和测量原理,计算待测点与控制点的垂直角和水平角;3.根据坐标正算公式,进行计算,得到待测点的坐标值。
2. 坐标反算坐标反算是指通过已知的控制点坐标和测量数据,计算出观测点与控制点之间的距离和方向角。
坐标反算常用于测量点在平面内或空间中的相对位置计算。
坐标反算的基本原理是根据已知控制点的坐标,通过观测数据和测量原理,进行一系列计算和推导,得到观测点与控制点之间的距离和方向角。
坐标反算的公式可以表示为:Ri = √((X - X0)² + (Y - Y0)² + (Z - Z0)²)θi = arccos((Z - Z0) / Ri)αi = arctan((Y - Y0) / (X - X0))其中,Ri表示观测点与控制点的距离,θi表示观测点与控制点的垂直角,αi表示观测点与控制点的水平角,X、Y、Z分别表示观测点的坐标值,X0、Y0、Z0表示已知控制点的坐标值。
坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角αAB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B=X A + ΔX ABY B=X A+ ΔY AB(1-18)二式中,ΔX AB与ΔY AB分别称为A~B的纵、横坐标增量,其计算公式为:ΔX AB=X B-X A=D AB · cosαABΔY AB=Y B-Y A=D AB · sinαAB(1-19)注意,ΔX AB和ΔY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。
二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角αAB,为坐标反算。
其计算公式为:(1-20)(1-21)注意,由(1-20)式计算αAB时往往得到的是象限角的数值,必须先根据ΔX AB、ΔY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。
三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。
角AOD为α,BO D为β,旋转AOB使OB与OD重合,形成新A'OD。
A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))OA'=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)[1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)[编辑本段]倍角公式Sin2A=2SinA•CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A))[编辑本段]三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)[编辑本段]三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosasin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)上述两式相比可得tan3a=tanatan(60°-a)tan(60°+a)[编辑本段]半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.[编辑本段]和差化积sinθ+sinφ = 2sin[(θ+φ)/2]cos[(θ-φ)/2]sinθ-sinφ = 2cos[(θ+φ)/2]sin[(θ-φ)/2]cosθ+cosφ = 2cos[(θ+φ)/2]cos[(θ-φ)/2]cosθ-cosφ = -2sin[(θ+φ)/2]sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) [编辑本段]积化和差sinαsinβ = -1/2*[cos(α+β)-cos(α-β)]cosαcosβ = 1/2*[cos(α+β)+cos(α-β)]sinαcosβ = 1/2*[sin(α+β)+sin(α-β)]cosαsinβ = 1/2*[sin(α+β)-sin(α-β)][编辑本段]诱导公式sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = -cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα[编辑本段]万能公式[编辑本段]其它公式(sinα)^2+(cosα)^2=11+(tanα)^2=(secα)^21+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立[编辑本段]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)[编辑本段]双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαtan(kπ+α)= tanαcot(kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A·sin(ωt+θ)+ B·sin(ωt+φ) =√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)}}√表示根号,包括{……}中的内容。
工程测量计算之-----(一)坐标正反算详解一、方位角、坐标方位角测量工作中、常用方位角来表示直线的方向。
方位角是由标准方向的北端起,顺时针方向度量到某直线的夹角,取值范围为0°-360°,如下图所示。
若标准方向为真子午线方向,则其方位角称为真方位角,用A表示真方位角;若标准方向为磁子午线方向,则其方位角称为磁方位角,用Am表示磁方位角。
若标准方向为坐标纵轴,则称其为坐标方位角,用α表示。
(在高斯直角坐标系中,由坐标纵轴方向的北端起,顺时针度量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用α表示。
)所以,我们测量中常说的方位角其实是坐标方位角,也就是X轴顺时针旋转至所在直线的角度。
二、象限角以基本方向北端或南端起算,顺时针或逆时针方向量至直线的水平角,称为象限角,用R表示。
象限角不但要表示角度大小,而且还要注明该直线所在的象限。
从坐标纵轴的北端或南端顺时针或逆时针起算至直线的锐角称为坐标象限角。
其角值变化从0°~90°,为了表示直线的方向,应分别注明北偏东、北偏西或南偏东、南偏西。
如北东85°,南西47°等。
显然,如果知道了直线的方位角,就可以换算出它的象限角,反之,知道了象限也就可以推算出方位角。
三、坐标正反算公式详解坐标正算根据直线的坐标方位角、边长和一个已知端点的坐标计算直线上另一端点坐标的过程。
或若两点间的平面位置关系由极坐标化为直角坐标,称为坐标正算。
1、坐标计算条件①起算点(定位点)的平面坐标(X0,Y0),②起算点至待求点的坐标方位角α,③起算点至待求点的平面距离D。
2、坐标计算过程坐标反算根据两已知点的平面坐标,计算该直线的方位角及两点间平面距离的过程。
或若两点间的平面位置关系由直角坐标化为极坐标,称为坐标反算。
α=arctan(△y / △x)D=√(△x*△x + △y*△y)其中,用计算器计算出的α称为象限角,之后还要根据△x、△y的正负号转换为坐标方位角。
坐标正反算公式范文一、坐标正算(后方交汇计算):已知起点坐标及观测角度和距离的情况下,求目标点的坐标。
1.观测角度求目标点坐标:在测量中,常常通过角度观测来确定目标点的坐标。
如果已知起点坐标和观测角度,可以通过以下公式求解目标点的坐标:X = X0 + L * sin(α + θ)Y = Y0 + L * cos(α + θ)其中,X0和Y0是起点的坐标,L为观测点到起点的距离,α为起点和观测点之间的方位角,θ为观测角度。
2.观测距离求目标点坐标:在一些情况下,可以通过观测距离来确定目标点的坐标。
已知起点坐标和观测距离的情况下,可以通过以下公式求解目标点的坐标:X = X0 + L * sinαY = Y0 + L * cosα其中,X0和Y0是起点的坐标,L为观测点到起点的距离,α为起点和观测点之间的方位角。
3.观测角度和距离求目标点坐标:在一些情况下,需要同时使用观测角度和观测距离来确定目标点的坐标。
已知起点坐标、观测角度和观测距离的情况下,可以通过以下公式求解目标点的坐标:X = X0 + (L * sinθ)/ sinαY = Y0 + (L * cosθ)/ cosα其中,X0和Y0是起点的坐标,L为观测点到起点的距离,α为起点和观测点之间的方位角,θ为观测角度。
二、坐标反算(前方交汇计算):已知起点坐标和目标点坐标或两点坐标之间的距离和角度的情况下,求观测角度和距离。
1.目标点坐标求观测角度和距离:当已知起点坐标和目标点坐标时,可以通过以下公式求解观测角度和距离:L=√((X-X0)^2+(Y-Y0)^2)tanα = (X - X0) / (Y - Y0)θ = atan((X - X0) / (Y - Y0)) - α其中,X0和Y0是起点的坐标,X和Y是目标点的坐标,L为目标点到起点的距离,α为起点和观测点之间的方位角,θ为观测角度。
2.两点坐标之间的距离和角度求观测角度和距离:当已知起点坐标、目标点坐标和两点之间的距离时,可以通过以下公式求解观测角度和距离:L=√(a^2+b^2)sinθ = a / Lcosθ = b / Ltanα = a / b其中,a和b分别为起点和目标点之间的ΔX和ΔY坐标差,L为目标点到起点的距离,α为起点和观测点之间的方位角,θ为观测角度。
坐标正反算计算公式引言在数学和计算机科学领域中,坐标转换是一种常见的操作。
坐标正反算是指从一个坐标系中的点转换到另一个坐标系中的点,并且可以从目标坐标系中的点转换回原始坐标系中的点。
这种计算在许多应用中都非常有用,例如地理信息系统、计算机图形学和机器人学。
坐标正算坐标正算是将一个坐标点从原始坐标系转换到目标坐标系的过程。
在二维平面中,我们可以使用以下公式将点(x, y)从原始坐标系转换到目标坐标系:x' = x * cos(θ) - y * sin(θ) + dxy' = x * sin(θ) + y * cos(θ) + dy其中,(x, y)是原始坐标系中的点,(x’, y’)是目标坐标系中的点,θ是旋转角度,dx和dy是平移量。
这些参数确定了坐标转换的方式。
坐标反算坐标反算是将一个坐标点从目标坐标系转换回原始坐标系的过程。
在二维平面中,我们可以使用以下公式将点(x’, y’)从目标坐标系转换回原始坐标系:x = (x' - dx) * cos(-θ) - (y' - dy) * sin(-θ)y = (x' - dx) * sin(-θ) + (y' - dy) * cos(-θ)同样地,(x’, y’)是目标坐标系中的点,(x, y)是原始坐标系中的点,θ是旋转角度,dx和dy是平移量。
应用举例坐标正反算的计算公式在各种应用中都有广泛的应用。
•地理信息系统(GIS)中,坐标转换用于将地球表面的经纬度坐标转换为平面坐标系(如投影坐标系)。
这种转换对于地图制图和空间数据分析非常重要。
•在计算机图形学中,坐标转换用于将三维物体的顶点坐标从模型空间转换到世界空间,然后转换到相机空间或屏幕空间。
通过坐标转换,我们可以实现物体的旋转、缩放和平移等操作。
•在机器人学中,坐标转换用于描述机器人的位置和姿态,以及机器人在不同坐标系中的运动。
这对于路径规划、目标追踪和运动控制非常重要。
坐标正反算计算公式
坐标的正反算是指根据点的经纬度坐标计算出该点所对应的位置,或者根据位置信息计算出该位置的经纬度坐标。
在地理信息系统中,正反算是非常重要的基本操作。
下面将分别介绍坐标的正算和反算的计算公式。
坐标正算即通过经纬度坐标计算出该点所对应的位置。
设经度为L,纬度为B,L0为中央经度(通常取地理区域中心点的经度),E为横轴坐标,N为纵轴坐标,M0为中央经线的投影,f为椭球扁率。
(1)将地球视为一个椭球体,对于小范围的区域,可以采用球面近似。
此时可以使用平面直角坐标系进行计算,并忽略地球的扁率和曲率。
具体计算公式如下:
E=L-L0
N=B-B0
其中,B0为中央纬度。
(2)在地表为曲面的情况下,需要考虑地球的扁率和曲率。
此时可以使用高斯平面直角坐标系进行计算,公式如下:
K = (a / √(1 - e^2 * sin^2B)) * √(1 + t^2)
L = (L - L0) * cosB
X=K*[L+(1-t^2+q^2)*L^3/6+(5-18*t^2+t^4+14*q^2-
58*t^2*q^2)*L^5/120]
Y=K*(M-M0+(1-t^2+q^2)*L^2/2+(5-14*t^2+3*t^4+14*q^2-
28*t^2*q^2)*L^4/24)
其中,a为椭球长半轴,e为椭球第一偏心率,M为曲面子午线弧长,t = tanB,q = (ωL)^2 * cosB,ω为地球自转角速度。
坐标反算即通过位置信息计算出该位置的经纬度坐标。
(1)对于小范围的区域,可以近似为平面直角坐标系,使用直角坐
标系的计算公式即可反算出经纬度坐标。
具体计算公式如下:
L=L0+E
B=B0+N
(2)对于地球曲面的情况,使用高斯平面直角坐标系进行反算时,
可以采用交迭算法(迭代计算)。
迭代计算公式如下:
L1 = [(X / K) - (1 - t^2 + q^2)(L1^3) / 6 - (5 - 18 * t^2 +
t^4 + 14 * q^2 - 58 * t^2 * q^2)(L1^5) / 120] / cosB
B1 = [(Y / K) - M - (1 - t^2 + q^2)(L1^2) / 2 - (5 - 14 *
t^2 + 3 * t^4 + 14 * q^2 - 28 * t^2 * q^2)(L1^4) / 24] / (a /
√(1 - e^2 * sin^2B))
其中,L1、B1为迭代计算的经纬度坐标,X、Y为已知的平面坐标,K
为局部坐标系绘图比例尺系数,t、q的计算和上述正算公式相同。
以上是坐标的正反算的计算公式,通过正反算,可以实现经纬度坐标与位置信息的相互转换。
这些公式是地理信息系统中常用的计算方法,能够为地理数据的处理和分析提供基础支持。