坐标正反算定义及公式
- 格式:docx
- 大小:37.30 KB
- 文档页数:3
坐标正反算计算公式坐标的正反算是指根据点的经纬度坐标计算出该点所对应的位置,或者根据位置信息计算出该位置的经纬度坐标。
在地理信息系统中,正反算是非常重要的基本操作。
下面将分别介绍坐标的正算和反算的计算公式。
坐标正算即通过经纬度坐标计算出该点所对应的位置。
设经度为L,纬度为B,L0为中央经度(通常取地理区域中心点的经度),E为横轴坐标,N为纵轴坐标,M0为中央经线的投影,f为椭球扁率。
(1)将地球视为一个椭球体,对于小范围的区域,可以采用球面近似。
此时可以使用平面直角坐标系进行计算,并忽略地球的扁率和曲率。
具体计算公式如下:E=L-L0N=B-B0其中,B0为中央纬度。
(2)在地表为曲面的情况下,需要考虑地球的扁率和曲率。
此时可以使用高斯平面直角坐标系进行计算,公式如下:K = (a / √(1 - e^2 * sin^2B)) * √(1 + t^2)L = (L - L0) * cosBX=K*[L+(1-t^2+q^2)*L^3/6+(5-18*t^2+t^4+14*q^2-58*t^2*q^2)*L^5/120]Y=K*(M-M0+(1-t^2+q^2)*L^2/2+(5-14*t^2+3*t^4+14*q^2-28*t^2*q^2)*L^4/24)其中,a为椭球长半轴,e为椭球第一偏心率,M为曲面子午线弧长,t = tanB,q = (ωL)^2 * cosB,ω为地球自转角速度。
坐标反算即通过位置信息计算出该位置的经纬度坐标。
(1)对于小范围的区域,可以近似为平面直角坐标系,使用直角坐标系的计算公式即可反算出经纬度坐标。
具体计算公式如下:L=L0+EB=B0+N(2)对于地球曲面的情况,使用高斯平面直角坐标系进行反算时,可以采用交迭算法(迭代计算)。
迭代计算公式如下:L1 = [(X / K) - (1 - t^2 + q^2)(L1^3) / 6 - (5 - 18 * t^2 +t^4 + 14 * q^2 - 58 * t^2 * q^2)(L1^5) / 120] / cosBB1 = [(Y / K) - M - (1 - t^2 + q^2)(L1^2) / 2 - (5 - 14 *t^2 + 3 * t^4 + 14 * q^2 - 28 * t^2 * q^2)(L1^4) / 24] / (a /√(1 - e^2 * sin^2B))其中,L1、B1为迭代计算的经纬度坐标,X、Y为已知的平面坐标,K为局部坐标系绘图比例尺系数,t、q的计算和上述正算公式相同。
一、坐标正算与坐标反算 1、坐标正算 已知 点的坐标、 边的方位角、 两点间的水平距离,计算待 定点 的坐标,称为坐标正算。
如图 6-6 所示,点的坐标可由下式计 算:式中 、 为两导线点坐标之差,称为坐标增量,即:【例题 6-1】已知点 A 坐标, =1000 、 =1000 、方位角 =35°17'36.5", 两点水平距离 =200.416 ,计算 点的坐标?35o17'36.5"=1163.580 35o17'36.5"=1115.793 2、坐标反算 已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。
如图 6-6 可知,由下式计算水平距离与坐标方位角。
(6-3) (6-4) 式中反正切函数的值域是-90°~+90°,而坐标方位角为 0°~ 360°,因此坐标方位角的值,可根据 、 的正负号所在象限,将反 正切角值换算为坐标方位角。
【例题 6-2】 =3712232.528 、 =523620.436 、 =3712227.860 、 =523611.598 ,计算坐标方位角计算坐标方位角、水平距离 。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过 A 点坐标纵轴至直线 的坐标方位角,若所求坐标方位角为,则应是 A 点坐标减 点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题 6-3】坐标反算,已知 =2365.16 、 =1181.77 、=1771.03 、 =1719.24 ,试计算坐标方位角 、水平距离 。
键入 1771.03-2365.16 按等号键[=]等于纵坐标增量,按储存键[ ],键入 1719.24-1181.77 按等号键[=]等于横坐标增量,按[ ]键输入,按[ ]显示横坐标增量,按[ ]键输入,按第二功能键[2ndF],再按[ ]键,屏显为距离,再按[ ]键,屏显为方位角。
计算器坐标正算和坐标反算引言计算器坐标正算和坐标反算是地理相关领域经常使用的两个概念。
计算器坐标正算指的是通过已知的坐标信息来计算目标点的位置,而坐标反算则恰恰相反,是通过已知的目标点位置来计算其坐标信息。
这两个概念在测绘、导航、地理信息系统等领域都有着广泛的应用,十分重要和实用。
计算器坐标正算计算器坐标正算是根据已知的坐标信息,通过数学计算来确定目标点的位置。
具体而言,计算器坐标正算所使用的算法主要有以下几种:1. 平面直角坐标正算平面直角坐标正算是在平面直角坐标系中进行的计算方式。
该方法常用于短距离范围内的点位计算。
其基本流程如下:1.将起始点设为坐标原点,确定起始点的坐标;2.根据起始点坐标和给定的角度、距离信息,使用三角函数来计算目标点的坐标。
2. 大地坐标正算大地坐标正算是在三维球面坐标系中进行的计算方式。
该方法常用于大范围距离的点位计算。
其基本流程如下:1.将起始点设为坐标原点,在球面上进行计算;2.根据起始点的纬度、经度和给定的方位角、距离信息,使用球面三角学公式(如正弦余弦定理)来计算目标点的纬度和经度;3.最终通过转换,将目标点的纬度和经度转换为相应的大地坐标。
坐标反算坐标反算是根据已知的目标点位置,通过数学计算来确定其坐标信息。
具体而言,坐标反算所使用的算法主要有以下几种:1. 平面直角坐标反算平面直角坐标反算是根据已知的起始点坐标和目标点坐标来计算方位角和距离的算法。
其基本流程如下:1.根据已知的起始点坐标和目标点坐标,计算两点间的水平和垂直距离;2.根据两点间的水平和垂直距离,使用三角函数计算方位角和距离。
2. 大地坐标反算大地坐标反算是根据已知的起始点的大地坐标和目标点的大地坐标来计算方位角和距离的算法。
其基本流程如下:1.根据已知的起始点的大地坐标和目标点的大地坐标,使用球面三角学公式(如正弦余弦定理)来计算两点间的角度差;2.根据角度差和已知的起始点的大地坐标,计算方位角和距离。
坐标反算正算计算公式坐标反算和正算是地理测量学中常见的问题,用于计算地球表面上两点之间的距离、方位角和坐标。
坐标反算是根据已知的两个地点的经纬度和距离,来计算出另一个点的经纬度坐标。
坐标正算则是根据已知的一个地点的经纬度和另一个地点的方位角和距离,来计算出第二个地点的经纬度坐标。
下面简单介绍一下坐标反算和正算的计算公式。
坐标反算坐标反算通常用于计算两点间的距离和方位角。
1.距离计算两点间的距离可以通过公式:D = 2 * R * asin(sqrt(sin((lat2-lat1)/2)^2 + cos(lat1) * cos(lat2) * sin((lon2-lon1)/2)^2))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度,R为地球平均半径。
2.方位角计算两点间的方位角可以通过公式:brng = atan2(sin(lon2-lon1) * cos(lat2), cos(lat1) * sin(lat2) - sin(lat1) * cos(lat2) *cos(lon2-lon1))其中,lat1和lon1为第一个点的经纬度,lat2和lon2为第二个点的经纬度。
坐标正算坐标正算通常用于根据已知一个点的经纬度和另一个点的方位角和距离,计算出第二个点的经纬度。
1.纬度计算第二个点的纬度可以通过公式:lat2 = asin(sin(lat1) * cos(d/R) + cos(lat1) * sin(d/R) * cos(brng))其中,lat1为第一个点的纬度,d为距离,R为地球平均半径,brng 为方位角。
2.经度计算第二个点的经度可以通过公式:lon2 = lon1 + atan2(sin(brng) * sin(d/R) * cos(lat1), cos(d/R) - sin(lat1) * sin(lat2))其中,lon1为第一个点的经度,d为距离,R为地球平均半径,brng 为方位角。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
坐标正反算计算程序在进行坐标正反算计算之前,需要先了解一些基本概念和公式:1.大地坐标系:大地坐标系是用经纬度表示地球表面上的点的坐标系统,其中经度表示东西方向的位置,纬度表示南北方向的位置。
2.平面坐标系:平面坐标系是用平面直角坐标系表示地球上的点的坐标系统,其中X轴表示东西方向的位置,Y轴表示南北方向的位置。
3.椭球坐标参数:椭球坐标参数包括椭球体长半轴a、短半轴b和偏心率e等参数,用来描述地球表面的形状。
4.大地坐标与平面坐标的转换公式:-大地坐标转平面坐标:平面X坐标 = N * (cosB * (L - L0))平面Y坐标 = M + N * sinB * tan(B - B0)-平面坐标转大地坐标:B=B0+(Y-M)/NL = L0 + X / (N * cosB)H = (N / cosB) - N其中,N、M、B0、L0分别代表椭球的参数计算中的一些辅助数值,H 代表大地高。
下面是一个示例的坐标正反算计算程序:```pythonimport mathclass CoordinateConverter:def __init__(self, a, b, e, lon_origin, lat_origin):self.a = aself.b = bself.e = eself.lon_origin = lon_origint_origin = lat_origindef geodetic_to_plane(self, lon, lat):lon_diff = lon - self.lon_originM = self.a * (1 - self.e ** 2) / (1 - self.e ** 2 * math.sin(t_origin) ** 2) ** 1.5N = self.a / math.sqrt(1 - self.e ** 2 *math.sin(t_origin) ** 2)X = N * math.cos(t_origin) * lon_diffY = M + N * math.sin(t_origin) * math.tan(lat - t_origin)return X, Ydef plane_to_geodetic(self, X, Y):M = self.a * (1 - self.e ** 2) / (1 - self.e ** 2 *math.sin(t_origin) ** 2) ** 1.5N = self.a / math.sqrt(1 - self.e ** 2 *math.sin(t_origin) ** 2)lat = t_origin + (Y - M) / Nlon = self.lon_origin + X / (N * math.cos(lat))H = (N / math.cos(lat)) - Nreturn lon, lat, H#示例用法#大地坐标转平面坐标X, Y = converter.geodetic_to_plane(lon=121, lat=41)print("平面坐标:", X, Y)#平面坐标转大地坐标print("大地坐标:", lon, lat, H)```注意:在实际使用时,需要根据具体的椭球参数和坐标系定义进行适当修改,以满足实际需求。
第五节、坐标正、返算及应用实例1、基本概念所谓坐标正算,即已知一点的坐标和至另一已知点的起始方位,以及起始点至待定点的转角和边长,推求待定点坐标的计算称之为坐标正算。
所谓坐标返算,即已知两点的坐标,进行两点间的边长及边长方位角的计算,称之为坐标返算。
所谓点的坐标是指该点在某一坐标系统中相对纵、横坐标轴线的垂距。
在测量坐标系统中,纵、横轴分别以x、y表示。
坐标增量是指一点的坐标相对另一点坐标的增值。
在测量坐标系统中分别用△x、△y表示纵、横坐标增量。
所谓边的方位角是指该边与坐标纵轴的夹角。
方位角有正、反方位之分,正方位角即为以坐标纵轴正方向为零,顺时方向转至边起止方向的夹角。
相反方向的则为反向方位角,正、反方位角相差180°。
在坐标系统中,四个象限的划分是以东北方向开始按顺时方向规定为Ⅰ、Ⅱ、Ⅲ、Ⅳ象限,如图9所示。
轴线方向规定纵轴往北为正,反之为负,横轴往东为正,反之为负。
xⅣⅠyⅢⅡ图9由此可见:在Ⅰ象限中,X、Y均正值,在Ⅱ象限中,X为负Y为正,在Ⅲ象限中,X、Y均为负,在Ⅳ象限中,X为正Y为负。
弄清以上概念以后,便可进行坐标的正、返算运算。
如图10所示:正算公式:已知A、B两点坐标和转角β,及BP的边长S,推算P点坐标。
P =XB+ScosαBPx . P= X B+Scos(αBA+β)YP =YB+SsinαBPA βS= YB +Ssin(αBA+β) B注意:在进行坐标推算 Y 时,推算方位角所用的转折 (0,0) 图10 角为左角时则应加转角,所用的转折角为右角时,则应减转角。
返算公式:已知A、B两点坐标,计算AB的边长和方位角。
SAB =((XB-XA)2+(YB-YA)2)1/2=(ΔX2BA +ΔY2BA) 1/2αBA =tg-1((YA-YB)/ (XA-XB))2、坐标正、返算实例。
如图11所示:已知中山路上m、n两测量控制点的坐标为:Xm =76.11Ym=179.51Xn =137.00 Yn=182.84设计给定拟建建筑物角点A、D两点(设计图纸中的)坐标为:X A =117.82YA=134.20X D =148.50 YD=120.04根据以上已知资料,对拟建建筑物进行定位。
坐标正反算计算公式.doc x
坐标正反算计算公式是用来计算地理坐标系统中的正反转换。
一、正算:
正算是指从地球表面的某个点出发,经过一定的路径返回到原点的过程。
该过程由三步组成:
1. 地心坐标系(ECEF)转换:将地球表面上某点的地心坐标系(X,Y,Z)转换为地心坐标系(X',Y',Z')。
2. 椭球投影:将地心坐标系(X',Y',Z')转换为WGS84空间直角坐标系(X0,Y0,Z0)。
3. 相对坐标:将空间直角坐标系(X0,Y0,Z0)转换为Geodetic坐标系(latitude,longitude,altitude)。
二、反算:
反算是指从地球表面的某个点出发,经过一定的路径返回到另一个点的过程,也就是从某个点的经纬度坐标(latitude,longitude)转换为另一个点的地心坐标(X,Y,Z)。
该过程由三步组成:
1. 相对坐标:将Geodetic坐标系
(latitude,longitude,altitude)转换为空间直角坐标系(X0,Y0,Z0)。
2. 椭球投影:将空间直角坐标系(X0,Y0,Z0)转换为地心坐标系(X',Y',Z')。
3. 地心坐标系(ECEF)转换:将地心坐标系
(X',Y',Z')转换为另一个点的地心坐标系(X,Y,Z)。
坐标正算反算公式讲解坐标正算和反算是地理信息系统(GIS)中两个常用的操作,用于将地理坐标转换为平面坐标(正算)或将平面坐标转换为地理坐标(反算)。
这两个操作在测量、绘图、导航、定位等领域都有广泛的应用。
下面是对坐标正算和反算公式的详细讲解。
一、坐标正算公式坐标正算是将地理坐标(经纬度)转换为平面坐标(XY坐标)。
在坐标正算中,我们需要用到投影坐标系和大地坐标系之间的转换公式。
1.地理坐标系地理坐标系使用经度和纬度来表示地球上的点。
经度是指从地球圆心到其中一点的经线弧度长度与赤道弧度长度的比值,范围为-180到180度;纬度是指从地球赤道到其中一点的纬线弧度长度与半径的比值,范围为-90到90度。
2.投影坐标系投影坐标系是将地理坐标投影到平面坐标系上的一种方法。
根据需要,可以选择不同的投影方式,例如等角、等面积、等距、等分四类等。
每个投影方式都有其特点,选用不同的投影方式可以满足不同的需求。
3.原理坐标正算的原理是根据地理坐标系中点的经纬度和投影坐标系中原点的经纬度之间的差异,通过一定的计算公式将地理坐标系中的点坐标转换为投影坐标系中的点坐标。
4.具体步骤(1)选择合适的投影坐标系,确定原点和偏移量。
(2)计算地理坐标系中点的经纬度与原点经纬度的差值。
(3)利用投影坐标系的转换公式,将差值转换为平面坐标。
5.常用坐标正算公式常用的坐标正算公式包括高程改正公式、大地坐标系转换公式、高斯投影正算公式等。
二、坐标反算公式坐标反算是将平面坐标(XY坐标)转换为地理坐标(经纬度)。
在坐标反算中,我们需要用到投影坐标系和大地坐标系之间的反转换公式。
1.原理坐标反算的原理是根据投影坐标系中点的坐标和大地坐标系中原点的经纬度之间的差异,通过一定的计算公式将平面坐标系中的点坐标转换为地理坐标系中的点坐标。
2.具体步骤(1)选择合适的投影坐标系,确定原点和偏移量。
(2)计算平面坐标系中点的坐标与原点坐标的差值。
(3)利用投影坐标系的反转换公式,将差值转换为地理坐标。
坐标正反算定义及公式
坐标正算和反算是地图投影中的重要概念,用于将地球表面上的经纬
度坐标转换为平面坐标(正算),或将平面坐标转换为经纬度坐标(反算)。
这种转换是为了方便地图上的测量和计算。
坐标正算是指根据地球表面上的经纬度坐标,计算出对应的平面坐标。
在这个过程中,需要考虑地球的形状、椭球体模型以及地图投影方法等因素。
不同的投影方法会导致不同的坐标正算公式,下面简单介绍两种常用
的投影方法及其公式。
1.经纬度-平面直角坐标投影(简称平面直角投影)
平面直角投影是将地球表面上的经纬度坐标转换为平面直角坐标的一
种常用方法。
在平面直角投影中,地球被近似为一个大椭球体,通过将经
纬度坐标映射到一个平面上完成转换。
公式如下:
X = N * (L - L0) * cosφ0
Y=N*(φ-φ0)
其中,X和Y为平面直角坐标,L和φ分别为经纬度坐标,L0和φ0
分别为中央经线和标准纬线,N为椭球的半径。
2.地心正投影(简称球面正投影或者高斯正算)
地心正投影是一种在地心球面上进行的坐标正算方法,适用于小范围
的地图投影。
在地心正投影中,将地球看作一个球体,并通过一个中央经
线来进行投影。
公式如下:
X = A * (L - L0) * cosφ
Y=A*(φ-φ0)
其中,X和Y为平面直角坐标,L和φ分别为经纬度坐标,L0和φ0
分别为中央经线和标准纬线,A为一个与椭球参数相关的常数。
坐标反算是指根据平面坐标计算出对应的经纬度坐标。
在坐标反算中,需要将平面坐标反映射回地球表面,恢复为经纬度坐标。
与坐标正算类似,不同的投影方法会导致不同的坐标反算公式,下面介绍两种常用的投影方
法及其公式。
1.平面直角坐标-经纬度投影(平面直角反算)
平面直角反算是将平面直角坐标转换为地球表面上的经纬度坐标的一
种方法。
利用与坐标正算相反的操作,将平面直角坐标通过逆转换还原为
经纬度坐标。
公式如下:
φ=φ0+Y/N
L = L0 + X / (N * cosφ0)
其中,φ和L分别为经纬度坐标,φ0和L0分别为标准纬线和中央
经线,X和Y为平面直角坐标,N为椭球的半径。
2.地心正投影-经纬度反算(高斯反算)
高斯反算是将平面直角坐标转换为地球表面上的经纬度坐标的一种方法。
通过将平面直角坐标转换为球面正投影坐标,再根据反算公式计算出
经纬度坐标。
公式如下:
φ=φ0+Y/A
L = L0 + X / (A * cosφ)
其中,φ和L分别为经纬度坐标,φ0和L0分别为标准纬线和中央
经线,X和Y为平面直角坐标,A为一个与椭球参数相关的常数。
需要注意的是,坐标正反算的精度受到地球模型的影响,经纬度数据
的准确性以及计算方法的精度都会对结果产生影响。
此外,对于大范围的
地理数据转换,一般会采用更加复杂的转换方法,如多点反算、格网反算等。
总结起来,坐标正算和反算是在地图投影过程中常用的两种转换方法。
通过坐标正算,可以将经纬度坐标转换为平面坐标,便于地图上的测量和
计算。
而坐标反算则是将平面坐标转换为经纬度坐标,方便进行地理数据
的表示和分析。
不同的投影方法会导致不同的公式,需要根据实际需求选
择合适的方法进行转换,以达到预期的准确度和精度。