第五章 信号的抽取与插值
- 格式:doc
- 大小:1.13 MB
- 文档页数:26
第5章信号的抽取与插值5.1前言至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率f视为恒定值,即在一个数字系统中只有一个抽样率。
但是,在实际工作中,我们经常会s遇到抽样率转换的问题。
一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。
例如:1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。
因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换;2. 如在音频世界,就存在着多种抽样频率。
得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。
3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换;4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的;5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。
以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。
近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。
“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。
减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。
抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。
多速率信号处理及抽取和内插一:多速率信号处理1、在信号处理系统中有时需要不同的抽样率,这样做的目的有时是为了适应不同系统之间的级联,以利于信号的处理、编码、传输和存储,有时则是为了节省计算工作量。
数据速率的转换两种途径:1)数字信号数模转换模拟信号模数转换另一抽样率抽样2)数字信号处理数字信号处理基本方法抽样率转换目的:改变原有数字信号的频率方法:抽取和内插,低通滤波。
低通滤波:抽取和内插的前提条件是信号频带内没有频谱混叠,实现这一点需要用到低通滤波。
2、多速率滤波器-->具有线性相位的FIR滤波器。
常用的多速率滤波器:多速率FIR滤波器,积分梳状滤波器(CIC)和半带滤波器(HB);3、常用多速率信号处理结构第一级:CIC滤波器。
用于实现抽取和低通滤波第二级:fir实现的半带滤波器优点:工作在较低频率下,且滤波器参数得到优化,更容易以较低阶数实现,达到节省资源,降低功耗的目的。
二:抽取概念:使抽样率降低的转换。
1、整数倍抽取当信号的抽取数据量太大时,为了减少数据量以便于处理和计算,我们把抽样数据每隔(D-1)个取一个,这里D是一个整数。
这样的抽取称为整数抽取,D称为抽取因子。
2、抽取后结果:信号的频谱:信号的频谱周期降低1/D;信号的时域:信号的时域每D个少了(D-1)信号。
3、抗混叠滤波:在抽取前,对信号进行低通滤波,把信号的频带限制在抽样后频率的一半以下,这样,整数倍抽取的的问题就变成了一个低通滤波的问题。
信号时域图信号频域图程序运行后所得到的滤波前后信号的时域图,滤波器的频率响应图如上图。
从图中可以看出,经半带滤波器滤波后的信号,与原信号相比,波形没有改变,但抽样速率降低了一半;半带滤波器通阻带容限相同,具有严格线性相位。
三:内插概念:使抽样率升高的转换。
1、整数倍内插:在已知的相邻抽样点之间等间隔插入(I-1)个零值点。
然后进行低通滤波,即可求得I倍内插的结果。
2、内插后结果:信号的时域:已知抽样序列的两相邻抽样点之间等间隔多了I-1个值信号的频谱:信号的频谱周期增加了I倍。
设计性实验1 图像信号的抽取与插值一、实验目的1、熟悉图像处理常用函数和方法;2、培养通过查阅文献解决问题的能力。
二、实验要求给出一个二维灰度图像,3、编程实现对该图像的任意比例的放大及缩小;4、编程实现对该图像的任意角度旋转;5、解决缩放及旋转时产生的锯齿等图像不平滑问题。
实验提示6、利用上采样、下采样等方法对信号进行缩放变换;7、观察对图像进行缩放或旋转时,图像是否会出现锯齿等不平滑现象?8、分析产生锯齿现象的原因;9、查阅文献了解解决锯齿现象的方法。
(例如平滑滤波、双线性插值、双立方插值等处理)三、实验细节1、实现图像的放大算法:为了实现图像的放大,首先将原图按照x1=a*x,y1=b*x将原图的像素点(x,y)映射为新的画布上的(x1,y1)点,如上图左一到左二。
然后,以行或列为一个处理单位,采用一种图像插值算法,在两红点之间的空白点插入一些值,使图像充满整个画布。
具体顺序如上图所示,先按行插值,再按列插值。
本实验采用的插值算法要达到的目标是,使插入点的斜率与原图保持一致 具体插值方法如下(以宽度放大三倍为例):取出一行像素点,使时域坐标变为原来的三倍。
假设两相邻像素点坐标分别为a[n]和a[m],则在a[n+1]、a[n+2]、a[n+i]…a[m -1]处填入的灰度值为:][n-m ia[n])-(a[m]i]a[n n a +⨯=+过程如下:图①原图像的一行像素点图②使时域坐标变为原来的三倍插入的点图③在两点间插值,使新插入的点与原先的两点以同一斜率变化。
2.实现图像的缩小:若要实现缩小,则同样按照x1=ax,y1=by的坐标转换关系将原画布上的点映射到新画布上,那么新画布上的一点将成为原画布上多点的映射,此时,新画布的点只需取其中一个映射点即可。
过程如下:运行结果:(以行列均放大三倍为例)①放大前的图像:②将图像的行列上的时域变为原来的三倍。
③行插值:④列插值后(完成):颗粒(锯齿)不明显使用线性插值法假如使用临近插值法,将得到如下图片,可见,在图中眼部的位置,临近插值法的锯齿更为明显,而使用本实验插值算法得到的图像边缘更为平滑。
信号的抽样与插值目前,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率视为恒定值,即在一个数字系统中只有一个抽样率。
但是,在实际工作中,我们经常会遇到抽样率转换的问题。
一方面,要求一个数字系统能工作在“多抽样率(multirate )”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。
建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。
减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim )”,增加抽样率以增加数据的过程称为信号的“插值(interpolation )。
抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。
例如:⑴ 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。
因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换;⑵ 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换;⑶ 对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的;⑷ 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。
1 信号的抽取设()()|t nTs x n x t ==,欲使s f 减少M 倍,最简单的方法是将()x n 中的每M 个点中抽取 一个,依次组成一个新的序列()y n ,即()()y n x Mn = ~n =-∞+∞ (1.1)现在我们证明,()y n 和()x n 的DTFT 有如下关系:1(2)01()()M j j k Mk Y e X eMωωπ--==∑ (1.2)证明:由式2.1,()y n 的Z 变换为()()()nnn n Y z y n zx Mn z∞∞--=-∞=-∞==∑∑ (1.3)为了导出()Y z 和()X z 之间的关系,我们定义一个中间序列1()x n :1()()0x n x n ⎧=⎨⎩ 0,,2,,n M M =±±其他 (1.4)注意,1()x n 的抽样率仍示s f ,而()y n 的抽样率是s f M 。
大学教学实验报告电子信息学院电子信息工程专业 2016 年 * 月 ** 日实验名称信号的抽样与插指导教师 ** *** 年级大三学号 20143012***** 成绩(3)主要实验仪器设备:工具软件:MATLAB使用到的函数:1.simulink仿真利用Simulink完成信号的抽样与插实验仿真设计。
2.fft函数功能:离散傅里叶变换。
(1)实验容及方法:1、MATLAB命令窗口中输入“simulink”,启动Simulink LibraryBrowser;2、Simulink Library Browser中,新建一个模型文件,编辑模型文件,建立如下图所示的抽样与插的仿真模型,并保存为sample.mdl;3、分别在欠采样与过采样条件下,配置各模块的参数(如信号源的频率,抽样脉冲的间隔,低通滤波器的截止频率等)。
4、在模型文件的菜单中选择Simulation->Start,运行在欠采样、与过采样条件下的仿真模型;5、仿真结束后,打开示波器,观察在欠采样与过采样条件下的仿真结果。
6、画出各信号的频谱图(2)实验现象及数据记录:1、信号为正弦波:x(t)=sin(2πft), f=1Hz:信号源的波形欠采样的情况下:抽样后的波形恢复后的波形欠采样的情况下的各个频谱图:过采样的情况下:抽样后的波形恢复后的波形过采样的情况下的各个频谱图:1、信号为方波: f=1Hz:信号源波形欠采样的情况下:抽样后的波形恢复后的波形欠采样的情况下的各个频谱图:过采样的情况下:抽样后的波形恢复后的波形过采样的情况下的各个频谱图:3、信号为三角波: f=1Hz:信号源的波形欠采样的情况下:抽样后的波形恢复后的波形欠采样的情况下的各个频谱图:过采样的情况下:抽样后的波形恢复后的波形过采样的情况下的各个频谱图:(3)实验现象分析及结论:1、在信号的抽样过程中,不同的抽样频率将影响信号的还原。
2、信号在时域被冲激函数抽样后,其频谱是原信号的频谱以抽样频率为间隔周期重复而得到的。
数字信号处理中的多速率信号处理理论数字信号处理是数字信号处理理论及其在实践中的应用领域之一。
多速率信号处理又是数字信号处理中的一个重要领域,它广泛应用于数字通信、图像处理、音频处理、雷达信号处理等领域。
多速率信号处理(Multirate Signal Processing)指的是在数字信号处理中,采用不同的采样速率和插值方法对信号进行处理的技术。
一、多速率信号处理基础知识在数字信号处理中,多速率信号处理是一种重要的信号处理技术,该技术的核心思想是对于同一信号可以采用不同的采样频率和升降采样技术进行处理,从而得到更加复杂和精细的信号。
多速率信号处理的主要内容包括:抽取(Interpolation)、插值(Decimation),以及滤波器设计等方面内容。
其中,抽取(Interpolation)可以将输入的低采样率信号(Low-Sampling-Rate Signal)提高到高采样率信号(High-Sampling-Rate Signal);插值(Decimation)可以将输入的高采样率信号(High-Sampling-Rate Signal)降低到低采样率信号(Low-Sampling-Rate Signal);滤波器设计则是根据信号的特点和需要,设计出适合需求的低通、高通、带通、带阻滤波器。
多速率信号处理中的关键问题是如何处理采样率不一致的信号及其相应的傅里叶变换。
在这方面,z 变换和多项式插值方法是常用的处理手段。
二、多速率信号处理的应用多速率信号处理技术具有广泛的应用领域。
在数字通信中,多速率信号处理技术可以用来提高传输速率和传输质量,增强抗干扰能力,从而使通信更加稳定和可靠;在图像处理和视频编码中,多速率信号处理技术可以用来降低数据传输量,减少存储空间,实现更加高效的图像处理和压缩编码;在雷达信号和语音信号处理中,多速率信号处理技术可以用来提高信号分辨率,提高自适应性能,提高抗干扰能力等。
现代信号处理基础课程报告信号的抽取与插值姓名:闫庆焕学号:2013022238专业:电子与通信工程一、引言为简单起见,很多时候我们在讨论信号处理的各种理论、算法及实现这些算法的系统时,都把抽样频率视为恒定值,即在一个数字系统中只有一个抽样率。
但是,在实际工作中,我们经常会遇到抽样率转换的问题。
一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。
例如:•多种媒体(语音、图片、视频、数据)• 减少数据冗余——降采样• 两系统时钟频率不同• 子带编码• 同步• 软件无线电⇒要求转换抽样率,或要求系统工作在多抽样率状态。
⇒多率信号处理以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。
近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理” 已成为现代信号处理的重要内容。
其核心内容是信号抽样率的转换及滤波器组。
减少抽样率以去掉过多数据的过程称为信号的抽取(decimatim),增加抽样率以增加数据的过程称为信号的插值(interpolation)。
抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。
实现抽样率转换的一种方法:离散时间信号变换为模拟信号;模拟信号以新的抽样频率抽样,得到另一个离散时间序列。
这种方法的缺点:失真和量化误差⇒影响精度这种方法如下图所示。
现在主要研究直接在数字域对抽样序列x(n)做抽样率转换,得到新的抽样信号。
二、信号的抽取1、从连续时域改变抽样率,从原信号)(txa中每D个点抽取一个,依次组成一个新的序列)(nxd,即) (n xd =)(Dtxa,),(∞-∞∈n(1)图2-1 连续信号抽取过程图2-2 连续信号抽取后频谱变化2、直接在序列域用整数D的抽取2.1抽取器的时域、频域分析时域:对原信号每D点抽1点。
第5章信号的抽取与插值5.1前言至今,我们讨论的信号处理的各种理论、算法及实现这些算法的系统都是把抽样频率f视为恒定值,即在一个数字系统中只有一个抽样率。
但是,在实际工作中,我们经常会s遇到抽样率转换的问题。
一方面,要求一个数字系统能工作在“多抽样率(multirate)”状态,以适应不同抽样信号的需要;另一方面,对一个数字信号,要视对其处理的需要及其自身的特征,能在一个系统中以不同的抽样频率出现。
例如:1. 一个数字传输系统,即可传输一般的语音信号,也可传输播视频信号,这些信号的频率成份相差甚远,因此,相应的抽样频率也相差甚远。
因此,该系统应具有传输多种抽样率信号的能力,并自动地完成抽样率的转换;2. 如在音频世界,就存在着多种抽样频率。
得到立体声声音信号(Studio work)所用的抽样频率是48kHz,CD产品用的抽样率是44.1kHz,而数字音频广播用的是32kHz[15]。
3. 当需要将数字信号在两个具有独立时钟的数字系统之间传递时,则要求该数字信号的抽样率要能根据时钟的不同而转换;4.对信号(如语音,图象)作谱分析或编码时,可用具有不同频带的低通、带通及高通滤波器对该信号作“子带”分解,对分解后的信号再作抽样率转换及特征提取,以实现最大限度减少数据量,也即数据压缩的目的;5. 对一个信号抽样时,若抽样率过高,必然会造成数据的冗余,这时,希望能在该数字信号的基础上将抽样率减下来。
以上几个方面都是希望能对抽样率进行转换,或要求数字系统能工作在多抽样率状态。
近20年来,建立在抽样率转换理论及其系统实现基础上的“多抽样率数字信号处理”已成为现代信号处理的重要内容。
“多抽样率数字信号处理”的核心内容是信号抽样率的转换及滤波器组。
减少抽样率以去掉过多数据的过程称为信号的“抽取(decimatim)”,增加抽样率以增加数据的过程称为信号的“插值(interpolation)。
抽取、插值及其二者相结合的使用便可实现信号抽样率的转换。
滤波器组,因名思义,它是一组滤波器,它用以实现对信号频率分量的分解,然后根124125据需要对其各个“子带”信号进行多种多样的处理(如编码)或传输,在另一端再用一组滤波器将处理后的“子带”信号相综合。
前者称为分析滤波器组,后者称为综合滤波器组。
我们将在本章详细讨论抽样率转换的方法,在第6、第7及第8三章讨论滤波器组问题。
5.2信号的抽取设nTs t t x n x ==|)()(,欲使s f 减少M 倍,最简单的方法是将)(n x 中每M 个点中抽取一个,依次组成一个新的序列)(n y ,即)()(Mn x n y =n =-∞~+∞ (5.2.1)现在我们证明,)(n y 和)(n x 的DTFT 有如下关系:∑-=-=10/)2()(1)(M k Mk j j eX Me Y πωω(5.2.2)证明: 由(5.2.1)式,)(n y 的z 变换为∑∑∞-∞=∞-∞=--==n n nnzMn x zn y z Y )()()( (5.2.3)为了导出)(z Y 和)(z X 之间的关系,我们定义一个中间序列)(1n x :⎩⎨⎧=0)()(1n x n x 其它,,2,,0 M M n ±±= (5.2.4) 注意,)(1n x 的抽样率仍示s f ,而)(n y 的抽样率是M f s /。
)(n x 、)(1n x 及)(n y 如图5.2.1(a ),(b )和(c )所示,抽取的框图如图(d )所示。
图中符号M 倍抽取。
由该图,显然 )()()(1Mn x Mn x n y ==,这样,有∑∑∞-∞=∞-∞=--==n n Mn nzn x zMn x z Y /11)()()( 即 )()(/11Mzx z Y =(5.2.5)现在的任务是要找到)(1z x 和)(z x 之间的关系。
令∑∞-∞=-=i Mi n n p )()(δ为一脉冲序列,它在M 的整数倍处的值为1,其余皆为零,其抽样频率也为s f 。
由1.8节的Possion 和公式及DFS 的理论,)(n p 又可表示为:∑-=-=101)(M k kn MWMn p , Mj M eW /2π-= (5.2.6)126因为)()()(1n p n x n x =,所以:∑∑∞-∞=∞-∞=--==n n n k MnzWn x Mzn p n x z X ))((1)()()(1即:∑-==101)(1)(M k k MzWX Mz X(5.2.7)将该式代入(5.2.5)式,有∑-==101)(1)(M k k MW zX Mz Y(5.2.8)令ωj ez =代入此式,即得(5.2.2)式,证毕。
(5.2.8)式又常写成如下形式∑-==10)(1)(M k k MMzWX Mz Y(5.2.9)图5.2.1信号抽取示意图,M =3, 横坐标为抽样点数()a 原信号()x n ,1()()b x n ,()c 抽取后的信号()y n ,(d )抽取的框图127(5.2.2)式的含意是,将信号)(n x 作M 倍的抽取后,所得信号)(n y 的频谱等于原信号)(n x 的频谱先作M 倍的扩展,再在ω轴上作k Mπ2(1,,2,1-=M k )的移位后再迭加。
如图5.2.2的(a ),(b ),(c ),(d )及(e )所示。
图5.2.2 信号抽取后频谱的变化, 图中3M =由抽样定理,在由)(t x 抽样变成)(n x 时,若保证c s f f 2≥,那么抽样的结果不会发生频谱的混迭。
对)(n x 作M 倍抽取得到)(n y ,若保证由)(n y 重建出)(t x ,那么,)(ωj e Y 的一个周期(,M M ππ-)也应等于)(t x 的频谱)(Ωj X 。
这就要求抽样频率s f 必须满足c s Mf f 2≥。
图5.2.2正是这种情况。
图中()j X e ω的频谱限制在33ππ-内,而又正好作M =3的抽取,因此)(ωj eY 中没有发生频谱的混迭,如图(e )所示。
但是,如果c s Mf f 2≥的条件不能得到满足,那么)(ωj eY 中将发生混迭,因此也就无128法重建出)(t x 。
如图5.2.3(a )所示,()j X e ω的频谱在2ωπ≥的范围内仍有值,因此,即使作M =2倍的抽取,也必然发生混迭,如图(b )所示。
由于M 是可变的,所以很难要求在不同的M 下都能保证c s Mf f 2≥。
为此,防止抽取后在)(ωj e Y 中出现混迭的方法是在对)(n x 抽取前先作低通滤波,压缩其频带,如图(c )所示。
令)(n h 为一理想低通滤波器,即⎩⎨⎧=01)(ωj e H其它M πω2||≤ (5.2.10)如图(d )所示,令滤波后的输出为)(n υ,则∑∞-∞=-=k k n x k h n )()()(υ令对)(n υ抽取后的序列为)(n y ,则∑∞-∞=-==k k Mn x k h Mn n y )()()()(υ∑∞-∞=-=k k Mn h k x )()( (5.2.11)由前面的推导不难得出:∑-==1011)()(1)(M k k M Mk MMW zH W zX Mz Y(5.2.12a)及∑-=--=10)2()2()()(1)(M k Mk j Mk j j eH eX Me Y πωπωω(5.2.12b))(n υ的频谱()j V e ω如图(e )所示,)(ωj e Y 如图(f )所示。
由该图可以看出,加上频带为(M M ππ,-)的低通滤波器后,可以避免抽取后频谱的混迭。
因此,在对信号抽取时,抽取前的低通滤波一般是不可缺少的。
在图5.2.3(f )中使用了变量“y ω”,现对此稍作解释。
在一个多抽样率系统中,不同位置处的信号往往工作在不同的抽样频率下,因此,标注该信号频率的变量“ω” 也就具有不同的含义。
例如,在图5.2.1(d )中,若令相对)(ωj e Y 的圆周频率为y ω,相对对()j X e ω的圆周频率为x ω,则y ω和x ω有如下关系:12922()2y y s s x f f f f M Mf f M ωπππω==== (5.2.13)若要求y ωπ≤,则必须有x M ωπ≤,这正是(5.2.10)式对()j H e ω频带所提要求的原因。
同时使用y ω和x ω两个变量固然能指出抽取前后信号频率的内涵,但使用起来非常不方便。
故在本书中,除非特别说明,在抽取前后及下一节要讨论的插值前后,信号的圆周频率统一用ω表示之。
只要搞清了抽取和插值前后的频率关系,一般是不会混淆的。
图5.2.3先滤波再抽取后的频谱的变化,图中M =2(a )()j X e ω,(b )没滤波就抽取得到的()j Y e ω,(c ) 信号抽取框图,(d ))(ωj eH ,(e ))(ωj eV ,(d )滤波后再抽取得到的)(ωj e Y5.3信号的插值如果希望将)(n x 的抽样频率s f 增加L 倍,即变成s Lf ,那么,最简单的方法是将)(n x130每两个点之间补L -1个零。
设补零后的信号为)(n υ,则⎩⎨⎧=0)()(L n x n υ其它,2,,0L L n ±±=(5.3.1)如图5.3.1(a )和(b )所示。
图5.3.1信号的插值(a )原信号)(n x ,(b )插入1-L 个零后的)(n υ,3=L 。
现在来分析)(n x 、)(n υ各自DTFT 之间的关系。
由于∑∑∞-∞=∞-∞=--==n n nj nj eL n x en e V j ωωυω)()()(∑∞-∞=-=k kLj ek x ω)(即)()(L j j e X e V ωω=(5.3.2) 同理)()(L z X z V =(5.3.3)式中,)(ωj e V 和)(ωj e X 都是周期的,)(ωj e X 的周期是π2,但)(L j e X ω的周期是L π2。
这样,)(ωj e V 的周期也是L π2。
(5.3.2)式的含意是:在ππ~-的范围内,)(ωj e X 的带宽被压缩了L 倍,因此,)(ωj eV 在ππ~-内包含了L 个)(ωj e X 的压缩样本,如图5.3.2所示。
131图5.3.2 插值后对频域的影响,2=L (a )插值前的频谱,(b )插值后的频谱由该图可以看出,插值以后,在原来的一个周期(ππ~-)内,)(ωj e V 出现了L 个周期,多余的L -1个周期称为)(ωj eX 的映像,我们应当设法去除这些映像。
实际上,图5.3.1用塞进零的方法实现插值是毫无意义的,因为补零不可能增加信息。
自然,我们需要用)(n x 中的点对这些为零的点作出插值。