概率论与数理统计03-第三节-条件概率与全概率公式
- 格式:doc
- 大小:647.00 KB
- 文档页数:7
概率论与数理统计计算公式概率论和数理统计是数学中的两个重要分支,广泛应用于自然科学、社会科学和工程技术等领域。
在实际中,我们经常需要计算各种概率和统计量,因此理解和掌握概率论和数理统计中的计算公式是十分重要的。
接下来,我将给出概率论和数理统计中一些常用的计算公式。
一、概率计算公式:1.加法原理:如果A和B是两个事件,那么它们的和事件(A∪B)的概率可以由如下公式计算:P(A∪B)=P(A)+P(B)-P(A∩B)2.条件概率:如果A和B是两个事件,且P(A)>0,那么事件B在已知事件A发生的条件下发生的概率可以由如下公式计算:P(B,A)=P(A∩B)/P(A)3.全概率公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A,我们有:P(A)=ΣP(A,Bi)P(Bi),其中i取1到n。
4.贝叶斯公式:如果{B1,B2,...,Bn}是一个对样本空间Ω的一个划分,那么对于任意事件A和i取1到n,我们有:P(Bi,A)=P(A,Bi)P(Bi)/ΣP(A,Bj)P(Bj),其中j取1到n。
5.乘法定理:如果A和B是两个事件,那么它们的交事件的概率可以由如下公式计算:P(A∩B)=P(A)P(B,A)=P(B)P(A,B)二、统计量计算公式:1.样本均值:对于由n个观测值组成的样本,样本的均值可以由如下公式计算:\(\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n x_i\)2.样本方差:对于由n个观测值组成的样本,样本的方差可以由如下公式计算:\(S^2 = \frac{1}{n-1} \sum\limits_{i=1}^n (x_i - \bar{X})^2\) 3.标准差:样本的标准差是样本方差的平方根\(S = \sqrt{S^2}\)4.相关系数:对于两个随机变量X和Y,它们的相关系数可以由如下公式计算:\(\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}\)5.协方差:样本的协方差可以由如下公式计算:\(Cov(X,Y) = \frac{1}{n-1} \sum\limits_{i=1}^n (X_i-\bar{X})(Y_i-\bar{Y})\)以上只是概率论和数理统计中的一些常用计算公式,实际应用中还有很多其他的公式和方法。
1、排列组合:)1)...(1()(!1)...1()1)...(1(m!m n m n +--=-=⨯-+--==m n n n m n n A m m m n n n A C m n 性质!10n A C C C C n n m n n m n n n n ====-2、事件运算律:①AB=BA ②A ∪B=B ∪A③ABC=A(BC)④A ∪B ∪C=A ∪(B ∪C)④A(B ∪C)=(A ∪B)(B ∪C)=(BC)∪A ⑤德摩根率:____________A ∪B =__A ∩__B ____AB=__A ∪__B⑥加法公式:P(A ∪B)=P(A)+P(B)-P(AB)P(A ∪B ∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC)⑦减法公式:P(A-B)=P(A ___B)=P(A)-P(BA)⑧独立事件:P(AB)=P(A)*P(B)P(AB)=P(B)*P(AlB)=P(A)P(B)☆P(AlB)=P(A)↔A,B 独立⑨三个事件两两独立:P(AB)=P(A)P(B)P(AC)=P(A)P(C)P(BC)=P(B)P(C)P(ABC)=P(A)P(B)P(C)四个条件缺一不可,少了第四个就只有两两互相独立了3、条件概率:)()()(A P AB P A B P =乘法公式:)()()()()(B A P B P A B P A P AB P ==,P(A)>0)()()()(AB C P A B P A P ABC P =4、全概率公式:∑==ni Bi A P Bi P A P 1)()()((B1,B2,......Bn ,是完备事件组)5、贝叶斯公式:)()()()i ()()i ()i (1A P ABi P Bi A P B P Bi A P B P A B P n i ==∑-6、切比雪夫不等式:[][][]εεεεε≥--=<->≤≥-)(1)()0()()(2X E X P X E X P X D X E X P 7、多项独立同分布,求总和怎样的概率。
概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。
2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。
第三节 条件概率与全概率公式先由一个简单的例子引入条件概率的概念.内容分布图示★ 概念引入★ 条件概率的定义 ★ 例1 ★ 例2★ 乘法公式★ 例3 ★ 例4 ★ 例5 ★ 例6★ 全概率公式 ★ 例7 ★ 例8 ★ 例9★ 贝叶斯公式 ★ 例10 ★ 例11 ★ 例12★ 例13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-4内容要点:一、 条件概率的概念在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率. 如在事件A 发生的条件下,求事件B 发生的条件概率,记作)|(A B P .定义1 设B A ,是两个事件, 且0)(>A P , 则称)()()|(A P AB P A B P = (1) 为在事件A 发生的条件下,事件B 的条件概率.相应地,把)(B P 称为无条件概率。
一般地,)|(A B P )(B P ≠.注: 1. 用维恩图表达(1)式.若事件A 已发生,则为使B 也发生,试验结果必须是既在A 中又在B 中的样本点,即此点必属于AB .因已知A 已发生,故A 成为计算条件概率)|(A B P 新的样本空间.2. 计算条件概率有两种方法:a) 在缩减的样本空间A 中求事件B 的概率,就得到)|(A B P ;b) 在样本空间S 中,先求事件)(AB P 和)(A P ,再按定义计算)|(A B P 。
二、乘法公式由条件概率的定义立即得到:)0)(()|()()(>=A P A B P A P AB P (2)注意到BA AB =, 及B A ,的对称性可得到:)0)(()|()()(>=B P B A P B P AB P (3)(2)和(3)式都称为乘法公式, 利用它们可计算两个事件同时发生的概率.三、全概率公式全概率公式是概率论中的一个基本公式。
它使一个复杂事件的概率计算问题,可化为在不同情况或不同原因或不同途径下发生的简单事件的概率的求和问题。
第三节事件的条件概率和三个基本公式在概率论中,事件的条件概率是指在给定另一个事件发生的前提下,其中一事件发生的概率。
条件概率可以用来描述两个事件之间的相关性和依赖关系。
而条件概率的计算可以通过使用三个基本公式:乘法规则、加法规则和全概率公式。
1.乘法规则:乘法规则是最基本的计算条件概率的方法,它描述了两个事件同时发生的概率。
设A和B是两个事件,则A与B的交集(同时发生)的概率可以表示为P(A∩B)。
而A与B同时发生的概率可以表示为事件A发生的概率P(A)乘以事件B在前提A发生的条件下发生的概率P(B,A),可以表示为:P(A∩B)=P(A)*P(B,A)2.加法规则:加法规则用于计算两个事件中至少一个事件发生的概率。
设A和B是两个事件,则A与B的并集(至少一个事件发生)的概率可以表示为P(A∪B)。
而A与B同时发生的概率可以表示为事件A发生的概率P(A)加上事件B发生的概率P(B),再减去事件A与B同时发生的概率P(A∩B),可以表示为:P(A∪B)=P(A)+P(B)-P(A∩B)3.全概率公式:全概率公式用于计算一个事件在多个互斥事件发生情况下的总概率。
设A是一个事件,B1、B2、B3...是事件的一个划分(互斥且完备),则事件A发生的概率可以表示为每个事件Bi发生的概率P(Bi)与事件A在条件Bi下发生的概率P(A,Bi)的乘积之和,可以表示为:P(A)=P(B1)*P(A,B1)+P(B2)*P(A,B2)+P(B3)*P(A,B3)+...通过以上三个基本公式,可以在给定条件下计算事件发生的概率,进而用于推断和分析各种实际问题。
例如,假设有一批产品中有10%的次品,其中80%的次品是由机器A 生产的,20%的次品是由机器B生产的。
现在从产品中随机选择了一个并发现是次品,问这个次品是由机器A生产的概率是多少?解答:设事件A表示选择次品,事件B1表示次品由机器A生产,事件B2表示次品由机器B生产。
概率论中的条件概率与全概率公式概率论是数学中一门重要的学科,它研究的是随机事件的发生概率和规律。
在概率论中,条件概率与全概率公式是基础且常用的概念和公式。
本文将详细介绍条件概率和全概率公式,并探讨它们的应用。
一、条件概率的概念条件概率是指在已知某一事件B发生的前提下,事件A发生的概率。
用符号表示为P(A|B),读作“A在B发生的条件下发生的概率”。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
二、全概率公式的概念全概率公式是一种通过已知的一些事件得到其他相关事件概率的方法。
假设{B1, B2, ..., Bn}是一组互斥且完备的事件,即它们两两不相交且并起来等于整个样本空间。
那么对于任意一个事件A,可以通过全概率公式计算出A的概率:P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)三、条件概率与全概率公式的应用1. 贝叶斯定理条件概率和全概率公式是贝叶斯定理的基础。
贝叶斯定理用于计算在已知后验概率的情况下,推导出先验概率。
公式表达为:P(A|B) = P(B|A) * P(A) / P(B)其中,P(A)为先验概率,P(B|A)为看到B发生的情况下A发生的概率,P(B)为全概率。
2. 假设检验在统计学中,条件概率和全概率公式被广泛应用于假设检验。
假设检验是一种用于通过观察数据来对某个假设进行验证或推翻的方法。
通过计算条件概率和全概率,可以得到在不同假设下的概率值,从而进行假设检验。
3. 事件的独立性判断条件概率与全概率公式也可以用于判断两个事件是否独立。
如果事件A与事件B独立,那么条件概率P(A|B)应该等于先验概率P(A)。
通过计算条件概率和全概率,可以判断两个事件是否独立。
四、总结条件概率与全概率公式是概率论中的基础概念和重要工具。
1963.3条件概率及全概率公式教学要求本节要求学生正确理解条件概率的概念及其运算公式, 学会运用概率的乘法定理. 对于全概率公式不但要求能深刻理解其内在含义,而且要求学生会熟练运用此公式去解决实际问题. 要求学生掌握两个事件独立的概念,了解多个事件相互独立的条件.知识点1. 条件概率2. 概率的乘法定理3. 全概率公式4. 两个事件的独立性5. 多个事件的独立性 *6.贝叶斯(Bayes )公式 *7.贝努里(Bernoulli )概型3.3.1 条件概率在实际问题中, 除了要知道事件A 的概率P (A )外, 有时还需要知道在事件B 已发生的条件下,事件A 发生的概率, 这就是我们所要讲的条件概率, 将它记为P (A |B ).我们先通过一个例子来引入条件概率的概念. 掷一颗骰子, 观察其出现点数, 令事件A 表示“出现点数小于4”, 则P (A )=1/2, 如果已知事件B 表示“出现偶数点”, 且B 已发生, 这时只剩下三种可能, 即“2点”,“4点”或“6点”. 从而在B 已发生的条件下, A 发生的概率为P (A |B )=1/3, 注意P (B )=1/2, P (AB )=1/6, 此时有)()()()|(A P B P AB P B A P ≠=. 定义.设A ﹑B 是随机试验E 的二个事件, 且P (B )>0, 则称 )()()|(B P AB P B A P =为事件B 发生条件下事件A 发生的条件概率.不难验证, 条件概率P (A |B )也是一种概率, 它符合概率的三个条件. 由前面的条件概率的定义, 我们可以知道, 计算条件P (A |B )有两种方法: (1)在样本空间Ω的缩减后的样本空间ΩB (事件B 发生时的样本空间)上计算A 发生的(无条件)概率, 就可以得到P (A |B ).(2)样本空间Ω中, 先计算P (AB ) ﹑P (B ), 然后由定义公式求得P (A |B ).197例3.3.1 全年级100名学生中, 有男生(以事件A 表示)80人, 女生20人; 来自北京的(以事件B 表示)有20人, 其中男生12人, 女生8人; 免修英语的(用事件C 表示)40人中有32名男生, 8名女生. 试写出P (A )、P (B )、P (B |A )、 P (A |B ) 、P (AB )、P (C )、P (C |A )、)|(B A P 、P (AC ).解.根据题意有P (A )=80/100=0.8; P (B )=20/100=0.2; P (B |A )=P (AB )/P (A )=12/80=0.15; P (A |B )=P (AB )/P (B )=12/20=0.6 ;P (AB )=12/100=0.12; P (C )=40/100=0.4; P (C |A )=P (AC )/P (A )=32/80=0.4; )|(B A P )()(B P B A P ==15.08012=;P (AC )=32/100=0.32.例3.3.2 8个乒乓球中有5个新的,3个旧的. 第一次比赛时, 同时取出2个, 用完后放回去; 第二次比赛时又取出2个球, 求第一次取到1个新球的条件下, 第二次取到2个新球的概率.解. 设事件A =“第一次取到1个新球”;事件B =“第二次取到2个新球”.由于第一次比赛后, 球被放回去, 因此在A 已发生的条件下, 再取2个球时, 总球数仍为8. 但是, 因第一次比赛所用的一个新球已变成旧球,其新旧比例已变化为: 新球4个, 旧球4个, 所以所求的概率为: 143)|(2824==C C A B P . 由条件概率,我们可以得到概率的乘法定理及两个事件的独立性.3.3.2 概率的乘法定理由前面的条件概率的定义公式,可得到下面的定理.概率的乘法定理. 设A ﹑B 为随机试验E 中的两个事件,且P (B )>0,则有 P (AB )=P (A |B )P (B ).198这个公式称为概率的乘法公式. 同样地,概率的乘法公式还有另一种形式:若P (A )>0, P (AB )=P (B |A )P (A ).例3.3.3. 设在一盒子中装有4个蓝色球和6个红色球, 取球两次, 一次取1个, 取后不放回, 问两次都取到红球的概率是多少? 解. 设事件A =“第一次取到红球”, 事件B =“第二次取到红球” ∵ P (A )=6/10, P (B |A )=5/9,因此 P (AB )=P (B |A )P (A )=1/3.我们还可以将概率的乘法公式推广到3个事件的情形: P (A 1A 2A 3)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2).我们已经学习了条件概率和概率的乘法定理,由此我们可以得到下面的全概率公式.3.3.3 全概率公式前面我们学习了条件概率和概率乘法定理,下面我们介绍一个重要的公式--全概率公式.定理(全概率定理). 如果事件A 1, A 2, …, A n 构成一个完备事件组, 且P (A i )>0,(i =1,2,…,n ). 则对任一事件B , 有 ∑==ni i i A A B P P B P 1)|()()(这个公式称为全概率公式.证明. A 1, A 2,…,A n 是一个完备事件组, 从而A i (i =1,2,…,n )是两两互斥的, 且P (A i )>0, 由于B 被分成n 个部分A i B (i =1,2,…,n )之和, 且A i B (i =1,2,…,n )也是两两互斥的, 于是 B A A B B ni i ni i ∑∑====11.由概率的可加性及概率乘法定理得到:∑∑====ni i ni i B A P B A P B P 11)()()(=∑=ni i i A A P B P 1)()|(.全概率公式应用较广, 它的基本思路是将一个比较复杂的事件分解成若干个较简单且199两两互斥事件的和, 即要找一个完备事件组, 然后利用概率的可加性及概率乘法定理来计算.例3.3.4 设袋中装有5件同样的产品, 其中3件正品, 2件次品, 每次从袋中取1件,无放回地连续取2次, 求第2次取到正品的概率.解. 设事件A 表示“第1次取到正品”, 则A 表示“第1次取到次品”;事件B 表示“第2次取到正品”.事件A A ,构成一个完备事件组, A B BA B +=(即第2次取正品的可能性是与第1次取到正品或次品有关).因A B BA , 互不相容, 则有)()()()(A B P BA P A B BA P B P +=+= )|()()|()(A B P A P A B P A P += =(3/5)×(2/4)+(2/5)×(3/4)=3/5.例3.3.5 某厂有甲﹑乙﹑丙三个车间生产同一种产品,其产量分别占总产量的25%﹑35%﹑40%. 各自的废品率为5%﹑4%﹑2%, 今从总产品中任取一件, 求所取出的产品为废品的概率.解.设A 1=“所取产品为甲车间生产的”; A 2=“所取产品为乙车间生产的”; A 3=“所取产品为丙车间生产的”; B =“所取产品为废品”. 则A i (i =1,2,3)构成一个完备事件组, 且P (A 1)=0.25, P (A 2)=0.35, P (A 3)=0.4, P (B |A 1)=0.05, P (B |A 2)=0.04, P (B |A 3)=0.02, 由全概率公式有∑==31)|()()(i i i A A B P P B P=0.25×0.05+0.35×0.04+0.4×0.02=0.0345.由全概率公式我们可以求出,从总产品中任取一件,其为废品的概率是0.0345;反之,若已知从总产品取出一件,其为废品,反过来求它是甲车间(或乙车间﹑丙车间)生产的可能有多大,即为我们后面要讲的贝叶斯公式.3.3.4 两个事件的独立性前面我们讨论了条件概率P(A|B), 一般说来P(A|B)≠P(A)即事件B的发生对事件A发生的概率是有影响. 但当P(A|B)=P(A), 即B的发生对A发生的概率没有影响,此时即说事件A独立于事件B, 此时由概率乘法定理得到P(AB)=P(A|B)P(B)=P(A)P(B). 由此我们可给出两个事件独立的定义.定义. 设A﹑B是试验E的两个事件, 若有P(AB)=P(A)P(B)则称事件A﹑B为相互独立的事件.由概率乘法定理, 容易得出: 当事件A独立于事件B时, 事件B也独立于事件A, 即独立是一个对称性概念.例如, 从具有次品的一批产品中,有放回的连抽取二次, 每次抽取一件. 这样,事件A(第一次抽得正品)的出现并不影响事件B(第二次抽得正品)的概率, 即事件A与事件B是相互独立的两个事件.定理. 设A﹑B是试验E的两个事件, 且有P(B) >0, 则A与B相互独立的充分必要条件为:P(A|B)=P(A).证明. 必要性. 若A﹑B相互独立,则当P(B)>0时,由概率乘法公 式有:P(B)P(A|B)=P(AB)=P(A)P(B)从而 P(A|B)=P(A).充分性. 若P(A|B)=P(A),由概率乘法公式有:P(AB)=P(B)P(A|B)=P(B)P(A)即A﹑B相互独立.在实际问题中, 往往是通过对问题性质的分析来判断事件间是否独立.例3.3.6 甲﹑乙两人同时射击某一目标.设甲击中目标的概率为0.8,乙击中目标的概率为0.5,求目标被击中的概率.解.设事件A=“甲击中目标”,事件B=“乙击中目标”,事件C=“目标被击中”.从题意可知: C=A+B,且200201P (C )=P (A +B )=P (A )+P (B )-P (AB ).由于甲﹑乙射击是相互独立的, 因此可以认为甲﹑乙互不干扰, 从而A 与B 是相互独立的.P (AB )=P (A )P (B )=0.8×0.5=0.4,所以 P (C )=0.8+0.5-0.4=0.9. 例3.3.7 试证A ﹑B 相互独立与以下每一条件等价:(1)事件A 与B 独立;(2)事件A 与B 独立;(3) 事件A 与B 独立.证明.我们在这里只证由A 和B 相互独立,推出A 与B 独立,对于其它情形,由两个事件独立的对称性,同样可以推出.若A 与B 相互独立,则P (AB )=P (A )P (B ).由概率的性质,得到: )(B A P =P (A -AB )=P (A )-P (AB )=P (A )-P (A )P (B )=P (A )(1-P (B )) =)()(B P A P . 故A 与B 相互独立. 此例的结论,我们可用下表来表示: 表3.3.1表中任意一种情形成立, 都可以推出其它情形成立.由两个事件的独立性的概念,我们可以推出多个事件的独立性.3.3.5 多个事件的独立性前面我们学习了两个事件的独立性的概念﹑定理, 由此我们可以给出三个事件的独立性的概念.定义. 若A ﹑B ﹑C 是随机试验E 中的三个事件, 满足下列条件:(1) P (AB )=P (A )P (B ); (2)P (BC )=P (B )P (C );202(3) P (AC )=P (A )P (C ); (4)P (ABC )=P (A )P (B )P (C )。
一、随机事件与概率公式名称 公式表达式德摩根公式B A B A =,B A B A =古典概型()m A P A n ==包含的基本事件数基本事件总数几何概型()()()A P A μμ=Ω,其中μ为几何度量(长度、面积、体积)求逆公式)(1)(A P A P -=加法公式P(A ∪B)= P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0(A 、B 互斥)时,P(A ∪B)=P(A)+P(B) 减法公式P(A-B)=P(A)-P(AB),B A ⊂时P(A-B)=P(A)-P(B)条件概率公式乘法公式)()()(A P AB P A B P =()()()()()P AB P A P B A P B P A B == ()()()()P ABC P A P B A P C AB =全概率公式1()()()ni i i P A P B P A B ==∑ 从原因计算结果贝叶斯公式 (逆概率公式)1()()()()()i i i niii P B P A B P B A P B P A B ==∑ 从结果找原因两个事件 相互独立()()()P AB P A P B =;()()P B A P B =;)()(A B P A B P =;二、随机变量及其分布1、分布函数()()(),()()()()k k x xx P X x F x P X x P a X b F b F a f t dt≤-∞⎧=⎪=≤=<≤=-⎨⎪⎩∑⎰ 概率密度函数计算概率:2、离散型随机变量及其分布分布名称 分布律0-1分布 X ~b(1,p) 1,0,)1()(1=-==-k p p k X P k k二项分布(贝努利分布)X ~B(n,p) n k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布 X ~p(λ) (),0,1,2,!kP X k e k k λλ-===3、续型型随机变量及其分布分布名称密度函数分布函数均匀分布x ~U(a,b)⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f0,(),1,<⎧⎪-⎪=≤<⎨-⎪≥⎪⎩x a x a F x a x b b ax b指数分布X ~E(λ)⎪⎩⎪⎨⎧≤>=-0,00,)(x x e x f x λλ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F x λ 正态分布 x ~N(2,σμ)22()21()2μσπσ--=-∞<<+∞x f x ex22()21()d 2μσπσ---∞=⎰t xF x et标准正态分布x ~N(0,1)221()2ϕπ-=-∞<<+∞x x ex2121()2t xx edtπ--∞Φ=⎰1)(=⎰+∞∞-dx x f ⎰=≤≤badxx f b X a P )()(一般正态分布的概率计算公式分布函数对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:4、随机变量函数Y=g(X)的分布离散型:()(),1,2,j ii j g x y P Y y p i ====∑,连续型: ①分布函数法,②公式法()(())()(())Y X f y f h y h y x h y '=⋅=单调 h(y)是g(x)的反函数三、多维随机变量及其分布1、离散型二维随机变量及其分布分布律:(,),,1,2,i j ij P X x Y y p i j ==== 联合分布函数(,)i i ijx x y yF X Y p≤≤=∑∑边缘分布律:()i i ij jp P X x p ⋅===∑ ()j j ij ip P Y y p ⋅===∑条件分布律:(),1,2,ij i j jp P X x Y y i p ⋅====,(),1,2,ij j i i p P Y y X x j p ⋅====联合密度函数2、连续型二维随机变量及其分布 ①分布函数及性质 分布函数:⎰⎰∞-∞-=x ydudv v u f y x F ),(),(性质:2(,)(,)1,(,),F x y F f x y x y∂+∞+∞==∂∂((,))(,)GP x y G f x y dxdy ∈=⎰⎰②边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(⎰∞-=≤=x dtt f x X P x F )()()(∑≤==≤=xk k X P x X P x F )()()()()('x f x F =⎰∞-=≤=xdtt f x X P x F )()()(1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=),(y x f 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P③条件概率密度+∞<<-∞=y x f y x f x y f X X Y ,)(),()(,+∞<<-∞=x y f y x f y x f Y Y X ,)(),()( 3、随机变量的独立性随机变量X 、Y 相互独立(,)()()X Y F x y F x F y ⇔=,连续型:(,)()()X Y f x y f x f y = 离散型:..ij i j p p p = ,4、二维随机变量和函数的分布(卷积公式)离散型:()(,)i j kk i j x y z P Z z P X x Y y +=====∑注意部分可加性连续型:()(,)(,)Z f z f x z x dx f z y y dy +∞+∞-∞-∞=-=-⎰⎰四、随机变量的数字特征1、数学期望①定义:离散型∑+∞==1)(k k k p x X E ,连续型⎰+∞∞-=dxx xf X E )()(②性质:(),E C C = )()]([X E X E E =,)()(X CE CX E =,)()()(Y E X E Y X E ±=±b X aE b aX E ±=±)()( ,当X 、Y 相互独立时:)()()(Y E X E XY E =(正对逆错)随机变量g(X)的数学期望2、方差 ①定义:②性质:0)(=C D ,)()(2X D a b aX D =±,),(2)()()(Y X Cov Y D X D Y X D ±+=± 当X 、Y 相互独立时:)()()(Y D X D Y X D +=±3、协方差与相关系数①协方差:(,)()()()Cov X Y E XY E X E Y =-,当X 、Y 相互独立时:0),(=Y X Cov②相关系数: (,)()()XY Cov X Y D X D Y ρ=,当X 、Y 相互独立时:0=XY ρ(X,Y 不相关)③协方差和相关系数的性质:)(),(X D X X Cov =,),(),(X Y Cov Y X Cov =),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+,),(),(Y X abCov d bY c aX Cov =++Cov(x,a)=0(a 为常数),),(2)()()(22Y X abCov Y D b X D a bY aX D ±+=±4、常见随机变量分布的数学期望和方差分布数学期望E (X )方差D (X )0-1分布 ),1(p b pp(1-p) 二项分布 ),(p n b np np(1-p)泊松分布 )(λPλ λ}{}{},{j Y P i X P j Y i X P =====∑=kkk p x g X g E )())((均匀分布 ),(b a U2ba + 12)(2a b - 正态分布 ),(2σμNμ2σ指数分布 )(λeλ121λ五、大数定律与中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ε有2)(})({εεX D X E X P ≤≥-2、大数定律:①切比雪夫大数定律:若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且C i≤2σ,则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11②伯努利大数定律:设n A 是n 次独立试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则0ε∀>,有:lim 1A n n P p n ε→∞⎛⎫-<= ⎪⎝⎭③辛钦大数定律:若1,,n X X 独立同分布,且μ=)(i X E ,则μ∞→=−→−∑n Pni i X n113、★中心极限定理①列维—林德伯格中心极限定理:独立同分布的随机变量(1,2,)i X i =,均值为μ,方差为02>σ,当n 充分大时有:1()(0,1)~nn k k Y X n n N μσ==-−−→∑ ②棣莫弗—拉普拉斯中心极限定理:随机变量),(~p n B X ,则对任意x 有:221lim {}()(1)2t xn X np P x e dt x np p π--∞→∞-≤==Φ-⎰③近似计算:1()()()nk k b n a n P a X b n n μμσσ=--≤≤≈Φ-Φ∑ 六、数理统计的基本概念1、总体和样本的分布函数设总体X ~F(x),则样本的联合分布函数)(),(121k nk n x F x x x F =∏=2、统计量样本均值:∑==ni i X nX 11,样本方差:∑∑==--=--=ni ini i X n X n X X n S 122122)(11)(11 样本标准差:∑=--=ni i X X n S 12)(11,样本k 阶原点距: 2,1,11==∑=k X n A ni k i k样本k 阶中心距:11(),1,2,3nk k i i B X X k n ==-=∑3、三大抽样分布(1)2χ分布(卡方分布):设随机变量X ~B(0,1)(1,2,,)i n =且相互独立,则称统计量222212n X X X ++=χ服从自由度为n 的2χ分布,记为)(~22n χχ 性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ(2)t分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则称统计量:nY X T =服从自由度为n 的t 分布,记为)(~n t T 。
第三节 条件概率与全概率公式先由一个简单的例子引入条件概率的概念.内容分布图示★ 概念引入★ 条件概率的定义 ★ 例1 ★ 例2★ 乘法公式★ 例3 ★ 例4 ★ 例5 ★ 例6★ 全概率公式 ★ 例7 ★ 例8 ★ 例9★ 贝叶斯公式 ★ 例10 ★ 例11 ★ 例12★ 例13 ★ 例14★ 内容小结 ★ 课堂练习★ 习题1-4内容要点:一、 条件概率的概念在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率. 如在事件A 发生的条件下,求事件B 发生的条件概率,记作)|(A B P .定义1 设B A ,是两个事件, 且0)(>A P , 则称)()()|(A P AB P A B P = (1) 为在事件A 发生的条件下,事件B 的条件概率.相应地,把)(B P 称为无条件概率。
一般地,)|(A B P )(B P ≠.注: 1. 用维恩图表达(1)式.若事件A 已发生,则为使B 也发生,试验结果必须是既在A 中又在B 中的样本点,即此点必属于AB .因已知A 已发生,故A 成为计算条件概率)|(A B P 新的样本空间.2. 计算条件概率有两种方法:a) 在缩减的样本空间A 中求事件B 的概率,就得到)|(A B P ;b) 在样本空间S 中,先求事件)(AB P 和)(A P ,再按定义计算)|(A B P 。
二、乘法公式由条件概率的定义立即得到:)0)(()|()()(>=A P A B P A P AB P (2)注意到BA AB =, 及B A ,的对称性可得到:)0)(()|()()(>=B P B A P B P AB P (3)(2)和(3)式都称为乘法公式, 利用它们可计算两个事件同时发生的概率.三、全概率公式全概率公式是概率论中的一个基本公式。
它使一个复杂事件的概率计算问题,可化为在不同情况或不同原因或不同途径下发生的简单事件的概率的求和问题。
定理1 设 ,,,,21n A A A 是一个完备事件组,且,0)(>i A P ,,2,1 =i 则对任一事件B ,有+++=)|()()|()()(11n n A B P A P A B P A P B P注: 全概率公式可用于计算较复杂事件的概率, 公式指出: 在复杂情况下直接计算)(B P 不易时,可根据具体情况构造一组完备事件}{i A , 使事件B 发生的概率是各事件),2,1( =i A i 发生条件下引起事件B 发生的概率的总和.四、贝叶斯公式利用全概率公式,可通过综合分析一事件发生的不同原因、情况或途径及其可能性来求得该事件发生的概率.下面给出的贝叶斯公式则考虑与之完全相反的问题,即,一事件已经发生,要考察该事件发生的各种原因、情况或途径的可能性. 例如,有三个放有不同数量和颜色的球的箱子,现从任一箱中任意摸出一球,发现是红球,求该球是取自1号箱的概率.或问:该球取自哪号箱的可能性最大?定理2 设 ,,,,21n A A A 是一完备事件组,则对任一事件B ,0)(>B P ,有,,2,1,)|()()|()()()()|( ===∑i A B P A P A B P A P B P B A P B A P j jj i i i i 贝叶斯公式注: 公式中,)(i A P 和)|(B A P i 分别称为原因的验前概率和验后概率.),2,1)(( =i A P i 是在没有进一步信息(不知道事件B 是否发生)的情况下诸事件发生的概率.当获得新的信息(知道B 发生),人们对诸事件发生的概率)|(B A P i 有了新的估计. 贝叶斯公式从数量上刻划了这种变化. 特别地,若取2=n ,并记A A =1, 则A A =2,于是公式成为.)|()()|()()|()()()()|(A B P A P A B P A P A B P A P B P AB P B A P +==例题选讲:条件概率例1 (讲义例1) 一袋中装有10个球, 其中3个黑球, 7个白球, 先后两次从袋中各取一球(不放回)(1) 已知第一次取出的是黑球, 求第二次取出的仍是黑球的概率;(2) 已知第二次取出的是黑球, 求第一次取出的也是黑球的概率.解 记i A 为事件“第i 次取到的是黑球” ).2,1(=i(1) 在已知1A 发生, 即第一次取到的是黑球的条件下, 第二次取球就在剩下的2个黑球、7个白球共9个球中任取一个, 根据古典概率计算, 取到黑球的概率为2/9, 即有.9/2)|(12=A A P(2) 在已知2A 发生, 即第二次取到的是黑球的条件下, 求第一次取到黑球的概率. 但第一次取球发生在第二次取球之前, 故问题的结构不像(1)那么直观.我们可按定义计算)|(21A A P 更方便一些.由)(21A A P 21023P P =,151=103)(2=A P)|(21A A P )()(221A P A A P =.92=例2 (讲义例2) 袋中有5个球, 其中3个红球2个白球. 现从袋中不放回地连取两个. 已知第一次取得红球时, 求第二次取得白球的概率.解法1 设A 表示“第一次取得红球”, B 表示“第二次取得白球”, 依题意要求).|(A B P 缩减样本空间A 中的样本点数, 即第一次取得红球的取法为,1413P P 其中, 第二次取得白球的取法有1213P P 种, 所以)|(A B P 14131213P P P P =.21= 也可以直接用公式(1)计算, 因为第一次取走了一个红球, 袋中只剩下4个球, 其中有两个白球, 再从中任取一个, 取得白球的概率为2/4, 所以)|(A B P 4/2=.2/1=解法2 设A 表示“第一次取得红球”, B 表示 “第二次取得白球”, 求).|(A B P在5个球中不放回连取两球的取法有25P 种, 其中, 第一次取得红球的取法有1413P P 种, 第一次取得红球第二次取得白球的取法有1213P P 种, 所以)(A P 251413P P P =,53=)(AB P 251213P P P =.103= 由定义得)|(A B P )()(A P AB P =5/310/3=.21=乘法公式例3 (讲义例3) 一袋中装10个球, 其中3个黑球、7个白球, 先后两次从中随意各取一球(不放回), 求两次取到的均为黑球的概率.分析:这一概率, 我们曾用古典概型方法计算过, 这里我们使用乘法公式来计算. 在本例中, 问题本身提供了两步完成一个试验的结构, 这恰恰与乘法公式的形式相应, 合理地利用问题本身的结构来使用乘法公式往往是使问题得到简化的关键.解 设i A 表示事件“第i 次取到的是黑球” ),2,1(=i 则21A A 表示事件“两次取到的均为黑球”. 由题设知,103)(1=A P 92)|(12=A A P 于是根据乘法公式, 有)(21A A P )|()(121A A P A P =92103⨯=.151=例4设袋中装有r 只红球, t 只白球.每次自袋中任取一只球, 观察其颜色然后放回, 并再放入a 只与所取出的那只球同色的球. 若在袋中连续取球四次, 试求第一, 二次取到红球且第三, 四次取到白球的概率.解 以)4,3,2,1(=i A i 表示事件 “第i 次取到红球”, 则43,A A 分别表示事件第三、四次取到白球. 所求概率为)(4321A A A A P )(1A P =)|(12A A P )|(213A A A P )|(3214A A A A P.32at r a t a t r t a t r a r t r r +++⋅++⋅+++⋅+=例5 (讲义例4) 设某光学仪器厂制造的透镜, 第一次落下时打破的概率为1/2, 若第一次落下未打破, 第二次落下打破的概率为7/10, 若前两次落下未打破, 第三次落下打破的概率为9/10. 试求透镜落下三次而未打破的概率.解 以)3,2,1(=i A i 表示事件“透镜第i 次落下打破”, B 表示事件“透镜落下三次而未打破”. 为,321A A A B = 故有)(B P )(321A A A P =)|()|()(213121A A A P A A P A P =⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=10911071211.2003=例6 已知,3.0)(=A P 4.0)(=B P ,,5.0)|(=B A P 试求).|(),|(B A B A P B A B P 解 由乘法公式, )(AB P )()|(B P B A P =4.05.0⨯=,2.0=因此)|(A B P )()(A P AB P =3.02.0=,32= 又因为,B A B ⊂ 所以,)(B B A B = 从而 )|(B A B P )())((B A P B A B P =)()()()(AB P B P A P B P -+=2.04.03.04.0-+=,54= )|(B A B A P )|(B A AB P =)|(1B A AB P -=)()(1B A P AB P -=5.02.01-=.53=例7一袋中装有10个球, 其中3个黑球、7个白球,从中先后随意各取一球(不放回),求第二次取到的是黑球的概率.解 这一概率, 我们前面在古典概型中已计算过, 这里我们用一种新的方法来计算.将事件 “第二次取到的是黑球” 根据第一次取球的情况分解成两个互不相容的部分, 分别计算其概率, 再求和. 记,A B 为事件 “第一、二次取到的是黑球”, 则有)(B P )()(B A P AB P +=)|()()|()(A B P A P A B P A P += 由题设易知,103)(=A P ,107)(=A P ,92)|(=AB P ,93)|(=A B P 于是)(B P 9310792103⨯+⨯=.103=全概率公式例8 (讲义例5)人们为了解一支股票未来一定时期内价格的变化, 往往会去分析影响股票价格的基本因素, 比如利率的变化. 现假设人们经分析估计利率下调的概率为60%, 利率不变的概率为40%. 根据经验, 人们估计, 在利率下调的情况下, 该支股票价格上涨的概率为80%,而在利率不变的情况下, 其价格上涨的概率为40%, 求该支股票将上涨的概率.解 记A 为事件“利率下调”, 那么A 即为 “利率不变”, 记B 为事件“股票价格上涨”. 依题设知%,60)(=A P %,40)(=A P %,80)|(=A B P %,40)|(=A B P于是)(B P )()(B A P AB P +=)|()()|()(A B P A P A B P A P +=%40%40%80%60⨯+⨯=%.64=例9 某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂每箱装100个,废品率为0.06, 乙厂每箱装120个, 废品率为0.05, 求:(1)任取一箱,从中任取一个为废品的概率;(2)若将所有产品开箱混放,求任取一个为废品的概率.解 记事件、A B 分别为甲、乙两厂的产品, C 为废品, 则(1) )(A P 5030=,53=)(B P 5020=,52=,06.0)|(=A C P 05.0)|(=B C P 由全概率公式, 得 )(C P )|()()|()(B C P B P A C P A P +=056.0= (2) )(A P 120201003010030⨯+⨯⨯=,95=)(B P 120201003012020⨯+⨯⨯=,94= ,06.0)|(=A C P 05.0)|(=B C P由全概率公式, 得 )(C P )|()()|()(B C P B P A C P A P +=.056.0≈例10 一袋中有10个球, 其中3个黑球,7个白球, 从中先后随意各取一球 (不放回),假设已知二次取到的球为黑球, 求 “第一次取到的也是黑球” 的概率.解 设 “第一次取到的是黑球” 这一事件为,A “第二次取到的是黑球”这一事件为,B 则问题归结为求条件概率).|(B A P 根据贝叶斯公式, 有)|(B A P .)|()()|()()|()(A B P A P A B P A P A B P A P += 据题涉及例7的结果易知,10/3)(=A P ,9/2)|(=A B P ,10/7)(=A P ,9/2)|(=A B P从而 )|(B A P )9/3()10/7()9/2()10/3()9/2()10/3(⨯+⨯⨯=.92= 例11 (讲义例6)对以往数据分析结果表明, 当机器调整得良好时, 产品的合格率为98%, 而当机器发生某种故障时, 其合格率为55%. 每天早上机器开动时, 机器调整良好的概率为95%. 试求已知某日早上第一件产品是合格时, 机器调整得良好的概率是多少?解 设A 为事件“产品合格”, B 为事件“机器调整良好”.,98.0)|(=B A P ,55.0)|(=B A P ,95.0)(=B P ,05.0)(=B P所求的概率为)|(A B P )()|()()|()()|(B P B A P B P B A P B P B A P +=.97.0=这就是说, 当生产出第一件产品是合格时, 此时机器调整良好的概率为0.97. 这里, 概率0.95是由以往的数据分析得到的, 叫做先验概率.而在得到信息(即生产的第一件产品是合格品)之后再重新加以修正的概率(即0.97)叫做叫做后验概率.例12 设某批产品中, 甲, 乙, 丙三厂生产的产品分别占45%, 35%, 20%, 各厂的产品的次品率分别为4%, 2%, 5%, 现从中任取一件,(1) 求取到的是次品的概率;(2) 经检验发现取到的产品为次品, 求该产品是甲厂生产的概率.解 记事件:1A “该产品是次品”, 事件:2A “该产品为乙厂生产的”, 事件:3A “该产品为丙厂生产的”, 事件:B “该产品是次品”. 由题设, 知%,45)(1=A P %,35)(2=A P %,20)(3=A P %,4)|(1=A B P %,2)|(2=A B P %,5)|(3=A B P(1) 由全概率公式得)(B P )|()(31ii i A B P A P ∑==%.5.3= (2) 由贝叶斯公式(或条件概率定义), 得)|(1B A P )()(1B P B A P =)()|()(11B P A B P A P =%.4.51=例13 根据以上的临床记录,某种诊断癌症的是眼睛有如下的效果:若以A 表示事件“试验反应为阳性”,以C 表示事件“被诊断者患有癌症”,则有95.0)|(,95.0)|(==C A P C A P 现在对自然人群进行普查, 设备试验的人患有癌症的概率为0.005, 即005.0)(=C P , 试求 ).|(A C P解 由题设, 有,995.0)(1)(=-=C P C P ,05.0)|(1)|(=-=C A P C A P由贝叶斯公式, 得.087.0)()|()()|()()|()|(=+=C P C A P C P C A P C P C A P A C P 注:本题表明,虽然,95.0)|(=C A P ,95.0)|(=C A P 这两个概率都比较高,但,087.0)|(=A C P 即平均1000个具有阳性反应的人中大约只有87人确患癌症.例14 8支步枪中有5支已校准过,3支未校准. 一名射手用校准过的枪射击时, 中靶的概率为 0.8; 用未校准的枪射击时, 中靶的概率为0.3.现从8支枪中任取一支用于射击, 结果中靶, 求所用的枪是校准过的概率.解 设=1B {使用的枪校准过}, =2B {使用的枪未校准}, =A {射击时中靶},则21,B B 是Ω的一个划分, 且,85)(1=B P ,83)(2=B P ,8.0)|(1=B A P .3.0)|(2=B A P 由贝叶斯公式, 得.4940)()|()()|()()|()|(2211111=+=B P B A P B P B A P B P B A P A B P40这样, 所用的枪是校准过的概率为.49课堂练习设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?。