人教版七年级上册数学4.3.3 余角和补角人教版七年级上册数学4.3.3 余角和补角教案1
- 格式:doc
- 大小:411.51 KB
- 文档页数:3
人教版数学七年级上册4.3.3《余角和补角》教学设计一. 教材分析《余角和补角》是人教版数学七年级上册第4.3.3节的内容,本节主要介绍余角和补角的概念、性质及其应用。
通过本节的学习,使学生掌握余角和补角的概念,了解它们之间的关系,能运用余角和补角解决一些实际问题。
二. 学情分析七年级的学生已经学习了角的初步知识,对角的概念有一定的了解。
但是,对于余角和补角这样的概念性知识,还需要通过实例来加深理解。
此外,学生的空间想象能力和逻辑思维能力仍在发展阶段,需要通过大量的练习来巩固所学知识。
三. 教学目标1.了解余角和补角的概念,掌握它们的性质。
2.能够运用余角和补角解决一些实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.余角和补角的概念。
2.余角和补角的性质。
3.运用余角和补角解决实际问题。
五. 教学方法采用讲授法、实例分析法、小组讨论法、练习法等多种教学方法,引导学生通过观察、思考、讨论、练习,从而掌握余角和补角的知识。
六. 教学准备1.PPT课件。
2.相关练习题。
3.黑板、粉笔。
七. 教学过程导入(5分钟)利用PPT展示一些生活中的图片,如一副画、一座建筑等,让学生观察其中的角,并提出问题:“这些角之间有什么关系?”引导学生思考,引出余角和补角的概念。
呈现(10分钟)1.讲解余角和补角的概念。
2.通过实例展示余角和补角的性质。
操练(10分钟)学生在课堂上完成PPT上的练习题,教师巡回指导。
巩固(10分钟)学生分组讨论,总结余角和补角的性质,并用它们解决实际问题。
拓展(10分钟)引导学生思考:在实际生活中,除了余角和补角,还有哪些角的概念?它们有什么作用?小结(5分钟)教师总结本节课的主要内容,强调余角和补角的概念和性质。
家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。
板书(5分钟)教师在黑板上板书本节课的主要内容,包括余角和补角的概念、性质等。
教学过程总结:本节课通过导入、呈现、操练、巩固、拓展、小结、家庭作业和板书等环节,使学生掌握了余角和补角的知识。
4.3.3 余角和补角
1.在具体情境中认识余角和补角,掌握余角和补角的性质;(重点)
2.能利用余角和补角的性质进行计算和简单的推理.(重点)
一、情境导入
让学生观察意大利著名建筑比萨斜塔. 比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工.设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜.
二、合作探究
探究点一:余角和补角及其性质 【类型一】 余角和补角的概念
如果α与β互为余角,则( ) A .α+β=180° B .α-β=180° C .α-β=90° D .α+β=90° 解析:如果α与β互为余角,则α+β=90°.故选D.
方法总结:正确记忆互为余角的定义是
解决问题的关键.
【类型二】
利用余角和补角计算求值
已知∠A 与∠B 互余,且∠A 的度
数比∠B 度数的3倍还多30°,求∠B 的度数.
解析:根据∠A 与∠B 互余,得出∠A +
∠B =90°,再由∠A 的度数比∠B 度数的3倍还多30°,从而得到∠A =3∠B +30°,再把两个算式联立即可求出∠2的值. 解:∵∠A 与∠B 互余,∴∠A +∠B =
90°,又∵∠
A 的度数比∠
B 度数的3倍还多30°,∴∠A =3∠B +30°,∴3∠B +30°+∠B =90°,解得∠B =15°.故∠B 的度数为15°.
方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程组来解决.
【类型三】 余角、补角和角平分线的
综合计算
如图,已知∠AOB 在∠AOC 内部,
∠BOC =90°,OM 、ON 分别是∠AOB ,∠AOC 的平分线,∠AOB 与∠COM
互补,求∠BON 的度数.
解析:根据补角的性质,可得∠AOB +∠COM =180°,根据角的和差,可得∠AOB +
∠BOM =90°,根据角平分线的性质,可得
∠BOM =1
2∠AOB ,根据解方程,可得∠AOB 的
度数,根据角的和差,可得答案. 解:由∠AOB 与∠COM 互补,得∠AOB +∠COM =180°.
由角的和差,得∠AOB +∠BOM +∠COB =180°,∠AOB +∠BOM =90°.
由OM 是∠AOB 的平分线,得∠BOM =1
2
∠
AOB ,
即∠AOB +1
2∠AOB =90°.解得∠AOB =
60°.
由角的和差,得∠AOC =∠BOC +∠AOB =90°+60°=150°.
由ON 平分∠AOC 得∠AON =1
2∠AOC =
错误!×150°=75°.由角的和差,得∠BON =∠AON -∠AOB =75°-60°=15°.
方法总结:本题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.
探究点二:方位角
【类型一】
利用方位角确定方向
M 地是海上观测站,从M 地发现两
艘船A 、B 的方位如图所示,下列说法中正确的是( )
A .船A 在M 的南偏东30°方向
B .船A 在M 的南偏西30°方向
C .船B 在M 的北偏东40°方向
D .船B 在M
的北偏东50°方向
解析:船A 在M 的南偏西90°-30°=60°方向,故A 、B 选项错误;船B 在M 的
北偏东90°-50°=40°方向,故C 正确,D 错误.故选C.
方法总结:用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方位角时,一般先叙述北或南,再叙述偏东或偏西.
【类型二】
方位角的有关计算
如图所示,甲、乙、丙三艘轮船
从港口O 出发,当分别行驶到A 、B 、C 处时,经测量得甲船位于港口的北偏东44°方向,乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向.
(1)求∠BOC 的度数; (2)
求∠AOB 的度数.
解析:(1)根据方向角的表示方法,可得∠EOB ,∠EOC 的度数,根据角的和差,可得答案;
(2)根据方向角的表示方法,可得∠EOB ,∠EOA 的度数,根据角的和差,可得答案.
解:如图,(1)由乙船位于港口的北偏东76°方向,丙船位于港口的北偏西45°方向,得∠EOB =76°,∠EOC =45°.由角的和差,得∠BOC =∠EOB +∠EOC =76°+45°=121°;
(2)由甲船位于港口的北偏东44°方
向,乙船位于港口的北偏东76°方向,得∠EOB=76°,∠EOA=44°.由角的和差,得∠AOB=∠EOB-∠EOA=76°-44°=32°.
方法总结:解决本题主要是理解方向角的表示方法,结合图形找到相应的角,然后进行计算.
三、板书设计
1.互余、互补
(1)和为90°的两个角互余;
(2)和为180°的两个角互补.
2.方位角
通过比萨斜塔这一学生熟知的著名建筑激发学生的学习兴趣,再运用现代化的教学手段,把图形的“静”变成“动”,在动态课件演示中引出概念,增强了趣味性,并且可以充分调动学生的学习兴趣,一下子把学生吸引到课堂上来.这样也把书本上原本呆板的概念激活了,使数学知识充满新鲜感,实现了书本知识和学生发现的一种沟通,增强学生对几何图形的敏感性.。