福建省厦门第五中学2013-2014学年八年级数学上学期阶段性自测卷(整式的乘除)(无答案)(新版)新人教版
- 格式:doc
- 大小:236.06 KB
- 文档页数:4
第14章 整式的乘除 班级: 座号: 姓名:一、选择题1.下列计算中,正确..的是 ( ) A .623x x x =⋅ B .633x x x =+ C .()632x x = D .326x x x =÷2.下列计算中,正确的是 ( ) A .523x x x =+ B .2333=-x x C .623x x x x =⋅⋅ D .428x x x =÷3.下列计算中,不.正确..的是 ( ) A . 523632x x x =⋅ B . 35232532y x y x y x =⋅C . ()3382x x -=-D . y x y x y x 2224224=÷ 4.下列各式计算正确的是 ( )A .()()2222-=-+m m mB .()()4323232-=+-x x x C .6)2)(3(2-=-+x x x D .()()1112-=--+-x x x 5.已知:a m =2,b n =2,则n m 322+可以表示成则 ( ) A .ab 6 B .32b a C .b a 32+ D .32b a +6.下列从左到右的变形是因式分解的是 ( )A .22))((y x y x y x -=+-B .4)4(442+-=+-x x x xC .x x x x x 3)2)(2(432--+=--D .22)2(44+-=---x x x7.多项式229)2(y xy k x +-+是完全平方式,则k 的值是 ( )A . 5B . 8或-4C . 8-或4D . 8±二、填空题8.计算:(1)=⋅44x x ;( 2)=÷36x x ;(3)()=2310 ; (4)=+⋅223)(a a a ; (5) ()=-223a ;(6)()32x - = ;(7) =÷-ab b a 263 ;(8)=÷-xy xy y x 5)1015(22 .9. 把下列各式因式分解:(直接写出结果)(1)=+xy x 2; (2)=+2262mn n m ; (3)=-942x ; (4)=-2249b a ;(5)=++122x x ; (6)=+-2244b ab a ;(7)=-y y x 42 ;(8)=++-+36)(12)(2b a b a; (9)=-22312b a ;(10)=++22363ay axy ax ; 10.一张数码照片的文件大小是82K ,一个存储量为92M (1M =102K )的移动存储器能存储这样的数码照片 张.(用幂的形式表示)11.已知:03622=+-a a ,则代数式2)32(2--a 的值是 .12.已知:y x -=6,xy z -=92,y z -≠3,则=-+z y x 2 .三、解下列各题13.计算:(1))4(2)13(222----a a a a a (2))2)(2()(32y z z y z y +-+--(3)))(2()3(2y x y x y x ---- (4)[)(4)2)(2(y x x y x y x ---+])2(y -÷14.解方程:42)5)(1()5)(7(=++-++x x x x15.(1)已知:9)(2=-y x ,25)(2=+y x ,求xy 和22y x +的值; (2)若实数y x ≠,且022=+-y x x ,022=+-x y y ,求y x +的值.16.(1)一个正方形的边长增加3cm ,面积就增加812cm ,求原正方形的边长;(2)若一个长方形的长减少8cm ,宽增加4cm ,得到一个与长方形面积相等的正方形,求正方形的边长;b a17.选用适当的方法将下列多项式因式分解:(1)x x 163+- (2)8022--x x (3)x x x 1812223-+-(4)1164-x (5)229)(c b a -+(6)1)6)(4(+++x x (7)))(())((y x a b y x b a +----(8)ab b a 8)2(2-+ (9))()(22m n n n m m -+-18.已知:2=-b a , ab b a <+-)2)(1(.(1)求a 的取值范围.( 2)若38222=-+++b b a ab a ,求b a +的值.19.如图,一块矩形空地的一组邻边分别为a ,b (单位:米),现准备在空地上修一条宽为2米的人行道(图中阴影部分),人行道都与边平行或垂直;其余部分种植草坪.(1)试用含a ,b 代数式表示出草坪的面积;(2)若矩形空地的周长为72米,矩形空地的面积为320平方米,求出草坪的面积.20.如图①所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法① ;方法② .(3)观察图②,你能写出2)(n m +,2)(n m -,mn mn 这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若6=+b a ,4=ab ,求2)(b a -的值.。
1 八年级(上)分式阶段测试题 班级: 座号: 姓名: 分数:_ ___ (满分:100分 ) 一、选择题(每小题3分,共24分) 1.下列各式中,不是分式的是:( ) A . 121x -, B . 23x, C .2x y x y -+, D . 2x2.下列分式是最简分式的是( )A.y x -1B.22a b a b --C.ab 84D.a ab a -23.化简2224x xx --的结果是( )A. 2xx + B. 2xx - C . 2xD. 2x-4.根据分式的基本性质,分式b a a--可变形为( )A .b a a-- B .b a a+ C .b a a -- D .b a a+-5.一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是( )元A .pm n - B .pm n + C .m n p - D .m np +6.若把分式y x xy+5中x 、y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.分式13a 、34b 与56c 的最简公分母是( ).A .6abcB .12abcC .24abcD .48abc8.若a -b =2ab ,则b a 11-的值为( )A .21B .-21C .-2D .2二、填空题( 每空2分,共18分)9.若分式32x x +-无意义,则x=________________.10.约分:①=b a ab2205__________;②=+--96922x x x __________. 11.分式x 1,422-x x ,x y+23的最简公分母是________.12.()b a ab b a 2=+ ;()()1=-y x x x .13.计算:=+-+3932a a a __________. 14.已知31=-a a ,则221aa +=_________. 15.若=a 3b 4=c 5,则分式222c b a ac bc ab +++-=____________.三、计算:(每题6分,共36分)16. 1124ab ab -17. 222a a a +--18. 112---x x x19.111212+-÷⎪⎭⎫ ⎝⎛+-x x x20.a a a a a a a 8416842222-++⋅+-21.22()a b a b a b b a a b ++÷---22.化简求值:21(1)11xx x +÷--,其中2x =-;(7分)323.化简:x 2x 1x 2x 1x x x 22-÷----+再选取一个使...原式有意义,而你又喜爱的数代入求值. (7分)24.下面一列单项式:x ,-2x 2,4x 3,-8x 4,16x 5,…(8分)(1)计算一下这里任一个单项式与它前面的单项式的商.(2)根据你发现的规律写出第10个单项式.。
八年级数学阶段性自测卷 完成时间:45分钟 总分:120分 班级 座号 姓名 成绩: 一、选择题(每小题3分,共18分)1.下列计算中,正确的是( )A .633x x x =⋅B .633x x x =+ C.923)(x x = D.326x x x =÷2.计算:224)(x x ÷的结果是( )A .3xB .4x C.5x D.6x3.下列因式分解中,正确的是( )A .)13(2262223---=-+-x x x x x xB .2)3(232+-=+-x x x xC .22)32(94-=-x xD .222)2(44y x y xy x --=-+-4.下列因式分解中,正确的是( )A .22)3(9-=-x xB . )(3333b a b a -=+-C .222)(2y x y xy x --=-+-D . a a a a a 3)2)(2(432--+=--5.把多项式1872-+a a 因式分解的结果是( )A .)9)(2(+-a aB .)2)(9(+-a aC .)3)(6(-+a aD .)6)(3(-+a a 6. 已知正方形的边长为a 厘米,如果它的一边长增加3厘米,另一边减少3厘米,那么它的面积( )A.不变B.减少9平方厘米C.增加9平方厘米D.不能确定二、填空题(每空2分,共34分)7.计算:(1)()=3210 ;(2)()=322b ,(3) a 7÷a 4 = 8.计算:(1)=⋅332ab b ;(2)=÷+-x x x )(29.把下列多项式分解因式:(1)=+62a ;(2)=+x x 2 ;(3)=-+m bm am ;(4)=-42a ;(5)=++2244b ab a ;(6)=-229y x ; (7)=-+1242x x .10.一个长方形的面积为12x 2y -10x 3,宽为2x 2,则这个长方形的长为 .11.多项式224y xy x ++加上单项式 后,可以分解成某个多项式的平方.(只要填上一个你认为合适的单项式)12.已知:5=+b a ,6-=ab ,则代数式的值:(1)=+22b a ;(2)=-b a .13.已知41=+xx ,10<<x ,则x x 1-= . 三、解答题(共68分)14.将下列各式因式分解: (每题4分,共24分)(1) b a ab 22128- (2) )(4)(2b c c b a --- (3)a a 93-(4) x x x 4423++ (5) 962622--x x (6) 2)6)(4(y y x y x +--15.计算:(每题5分,共15分)(1) )6()3(2---x x x (2)()()()y x y x y x +--+22(3) )2)(2(z y x z y x +--+16.先化简,再求值:(共6分)(1) [)8()2)(2()(2b a b b a b a b a -+-+-+]b 3÷,其中2-=a ,3-=b .17.( 6分)如图,(1)用含a 、b 的代数式表示图中阴影部分的面积;(2)当21=a ,2=b 时,求阴影部分的面积.18.(8分)已知:4=+b a ,ab b a <+-)2)(1(,(1)求a 的取值范围;(2)若5622222=--+-b a b ab a ,求b a -的值.19.已知a ,b ,c 是△ABC 的三边长,若满足0222222=--++bc ab c b a ,试判断此三角形的形状.(共4分)20.(共5分)如下图(1),(2)都是用四个相同的直角三角形(两条直角边分别为a ,b ,斜边为c )和一个小正方形拼成一个大正方形.①根据上图(1)、(2)按不同方法求大正方形面积可以得到a 、b 、c 三边有什么关系?请写出说明过程;(3分)②若右图(2)中,大正方形的边长为13,每个直角三角形两直角边的和是17,求中间小正方形的面积.(2分)。
一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)22.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 3.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 4.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+ ⎪⎝⎭5.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( )A .2-B .2C .1-D .16.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如左图可以用来解释(a+b )2-(a -b )2=4ab .那么通过右图面积的计算,验证了一个恒等式,此等式是( )A .22()()a b a b a b -=+-B .22()(2)a b a b a ab b -+=+-C .222()2a b a ab b -=-+D .222()2a b a ab b +=++7.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==8.已3,2x y a a ==,那么23x y a +=( )A .10B .15C .72D .与x ,y 有关 9.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=10.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab11.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ 12.已知17x x +=1x x -的值为( ) A 3B .2± C .3D 313.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .3214.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24 B .48C .96D .192 15.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .54二、填空题16.若2,3x y a a ==,则22x y a +=_______________________.17.已知18m x =,16n x =,则2m n x +的值为________. 18.若23x =,25y =,则22x y +=____________.19.计算:248(21)(21)(21)(21)1+++++=___________.20.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对(23,2)+放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)21.分解因式:32520=x xy -________________.22.对于2(34)x y --的计算,追风学习小组进行了激烈的讨论,①小杰说只能用公式()2222a b a ab b -=-+;②小聪说可以看成普通的多项式乘以多项式即(34)(34)x y x y ----;③小懿说可以用公式222()2a b a ab b +=++但要看准谁是a 谁是b ;④小王说口算就是22916x y +;⑤小亮说可以转化计算2(34)x y +,你认为谁的说法正确请写出序号____.23.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.24.计算:32(2)a b -=________.25.因式分解:24ay a -=_______.26.若6x y +=,3xy =-,则2222x y xy +=_____.三、解答题27.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-.28.(1)23235ab a b ab (2)23233x x x x 29.所谓完全平方式,就是对一个整式M ,如果存在另一个整式N ,使2M N =,则称M 是完全平方式,如:422()x x =、222)2(x xy y x y =+++,则称4x 、222x xy y++是完全平方式.(1)下列各式中是完全平方式的编号有 .①2244a a b ++;②24x ;③22x xy y -+; ④21025y y --;⑤21236x x ++;⑥2124949a a -+ (2)已知a 、b 、c 是ABC ∆的三边长,满足22222()a b c c a b ++=+,判定ABC ∆的形状.(3)证明:多项式2(4)(8)64x x x +++是一个完全平方式.30.计算433-⋅-a a(1)()()(2)(ab2)2 •(﹣a3b)3÷(﹣5ab)。
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.2.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0B .2-C .0或2-D .以上答案都不对A解析:A【分析】 由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-.3.计算()201920180.52-⨯的值( ) A .2B .2-C .12D .12- D 解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.4.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == D解析:D【分析】 根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;故选:D .【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.5.下列运算正确..的是( ) A .246x x x ⋅=B .246()x x =C .3362x x x +=D .33(2)6x x -=- A 解析:A【分析】根据同底数幂的乘法、幂的乘方、积的乘方以及合并同类项进行判断即可.【详解】A 选项246x x x ⋅=,选项正确,故符合题意;B 选项248()x x =,选项错误,故不符合题意;C 选项3332x x x +=,选项错误,故不符合题意;D 选项33(2)8x x -=-,选项错误,故不符合题意. 故选:A .【点睛】本题考查同底数幂的乘法、幂的乘方、积的乘方以及合并同类项,属于基础题,熟练掌握这些计算公式和方法是解决本题的关键.6.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .98D 解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算. 7.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ C 解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题. 8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.下列计算正确的是( )A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 5B 解析:B直接利用合并同类项法则、同底数幂的乘除运算法则以及幂的乘方运算法则、积的乘方运算法则分别化简得出答案.【详解】A 、3332a a a +=,故此选项错误;B 、34·a a a =,故此选项正确;C 、32a a a ÷=,故此选项错误;D 、236(2)8a a =,故此选项错误;故选:B .【点睛】本题主要考查了同底数幂的乘除运算以及幂的乘方运算、积的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.10.若y 2+4y 0,则xy 的值为( )A .﹣6B .﹣2C .2D .6A解析:A【分析】根据2440y y ++=,即(y +2)20,根据任何数的偶次方以及二次根式都是非负数,两个非负数的和是0,则每个非负数都等于0,据此即可求解.【详解】解:∵2440y y ++=∴(y +2)20∴y +2=0且x +y ﹣1=0解得:y =﹣2,x =3∴xy =﹣6.故选:A .【点睛】本题主要考查了非负数的性质,两个非负数的和是0,则两个非负数都等于0. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.已知a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,则2021a b x cd cd+-+的值为_______.0或-2【分析】根据ab 互为相反数cd 互为倒数x 是数轴上到原点的距离为1的点表示的数可以得到a+b=0cd=1x=±1从而可以求得所求式子的值【详解】解:∵ab 互为相反数cd 互为倒数x 是数轴上到原点解析:0或-2【分析】根据a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数,可以得到a+b=0,cd=1,x=±1,从而可以求得所求式子的值.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 是数轴上到原点的距离为1的点表示的数, ∴a+b=0,cd=1,x=±1,∴x 2021=±1,∴2021a b x cd cd+-+ =1-1+0=0;或2021a b x cd cd+-+ =-1-1+0=-2.故答案为:0或-2.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 13.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式【详解】解:从左到右三个小长方形的面积分别为:mambmc 大长方形的面积为:m (a+b+c )三个小长方形的面积和等解析:()m a b c ma mb c ++=++(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式.【详解】解:从左到右三个小长方形的面积分别为:ma 、mb 、mc ,大长方形的面积为:m (a+b+c ),三个小长方形的面积和等于大长方形的面积,m (a+b+c )= ma+mb+mc ,故答案为:()m a b c ma mb c ++=++.【点睛】本题考查了单项式乘以多项式的几何意义,分别表示出各个长方形的面积,找到等量关系是解题关键.14.若2211392781n n ++⨯÷=,则n =____.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 15.分解因式:32520=x xy -________________.【分析】原式提取公因式再利用平方差公式分解即可【详解】解:原式=5x (x2-4y2)=故答案为:【点睛】本题考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解题的关键 解析:()()5 +2 -2x x y x y【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=5x (x 2-4y 2)=5(+2)(-2)x x y x y ,故答案为:5(+2)(-2)x x y x y【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键. 16.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.17.如图所示的四边形均为长方形,请写出一个可以用图中图形的面积关系说明的正确等式______.(a+b )(2a+b )=【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可【详解】由题意得:(a+b )(2a+b )=故答案为:(a+b )(2a+b )=【点睛】解析:(a+b )(2a+b )=2223a ab b ++【分析】根据长方形的面积=2个大正方形的面积+3个长方形的面积+1个小正方形的面积列式即可.【详解】由题意得:(a+b )(2a+b )=2223a ab b ++,故答案为:(a+b )(2a+b )=2223a ab b ++.【点睛】此题考查多项式乘多项式与图形面积,正确理解图形面积的构成是解题的关键. 18.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案.【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.19.若2x y a +=,2x y b -=,则22x y -的值为____________.【分析】应用平方差把多项式因式分解再整体代入即可【详解】解:把代入原式=故答案为:【点睛】本题考查了运用平方差公式因式分解和整体代入求值能够熟练运用平方差把多项式因式分解并整体代入求值是解题的关键解析:4ab .【分析】应用平方差把多项式22x y -因式分解,再整体代入即可.【详解】解:22()()x y x y x y -=+-,把2x y a +=,2x y b -=代入,原式=224a b ab ⨯=,故答案为:4ab .【点睛】本题考查了运用平方差公式因式分解和整体代入求值,能够熟练运用平方差把多项式因式分解并整体代入求值,是解题的关键.20.因式分解()2228ac bc abc -+=______.【分析】先利用完全平方公式把原式写成再根据完全平方公式得出结果【详解】解:原式故答案是:【点睛】本题考查因式分解解题的关键是掌握利用乘法公式进行因式分解的方法解析:()22ac bc +【分析】先利用完全平方公式把原式写成2222244a c abc b c ++,再根据完全平方公式得出结果.【详解】解:原式222222448a c abc b c abc =-++ 2222244a c abc b c =++()22ac bc =+.故答案是:()22ac bc +.【点睛】本题考查因式分解,解题的关键是掌握利用乘法公式进行因式分解的方法. 三、解答题21.计算下列各题:(1(2)()(3)(2解析:(1)0;(2)【分析】(1)根据平方根、立方根的意义进行计算即可;(2)利用平方差公式和实数的计算方法进行计算即可.【详解】解:(1=2+(﹣5)+3=0;(2)(3+7)(3﹣7)+2(2﹣2)=32﹣(7)2+22﹣2=9﹣7+22﹣2=22.【点睛】本题考查了包含算术平方根、立方根、平方差公式的实数计算,熟练运用法则和公式是解决问题关键.22.先化简,再求值:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦,其中1x =-,2y =. 解析:25x y -;-12【分析】整式的混合运算,中括号内利用完全平方公式和平方差公式展开,合并,再计算多项式除以单项式,然后代入求值.【详解】解:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦=22222(4)()x xy y x y y ⎡⎤-+--÷-⎣⎦=2222(2+4)()x xy y x y y -+-÷-=2(25)()xy y y -+÷-=25x y -当1x =-,2y =时,原式=2(1)5221012⨯--⨯=--=-【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.小王购买了一套一居室,他准备将房子的地面全部铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m ,n 的代数式表示地面的总面积S ;(2)已知 1.5n =,且客厅面积是卫生间面积的6倍与厨房面积的和,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?解析:(1)S =6m +2n +18;(2)4500元.【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m 的值,把m ,n 的值代入计算即可.【详解】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,m=4,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.【点睛】本题考查了列代数式,准确表示出各部分矩形的长和宽是解题的关键.24.先化简,再求值:()()()()()2442225x y x y x y x y x y x ⎡⎤+--+-+-÷⎣⎦,其中x ,y 满足()230x +=.解析:22x y -+,10【分析】首先利用平方差公式、完全平方公式、多项式乘以多项式计算中括号里面的式子,再合并同类项,化简后,计算括号外的除法,最后代入x 、y 的值即可.【详解】解:原式()()222222164425210x y x xy y x xy xy y x ⎡⎤=--++--+-÷⎣⎦()2222221644210420x y x xy y x xy xy y x =-----+-+÷()222x xy x =-+÷22x y =-+.∵()230x +=,∴30x +=,20y -=,∴3x =-,2y =.∴原式()23226410=-⨯-+⨯=+=.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘、除、加、减的各种运算法则. 25.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.26.计算:(1)x 2·x (2)(x 3)5(3)(-2x 3)2解析:(1)3x ,(2)15x ,(3)64x .【分析】(1)按照同底数幂相乘法则计算即可;(2)按照幂的乘方法则计算即可;(3)先按照积的乘方运算,再计算幂的乘方即可.【详解】解:(1)2213x x x x +⋅==,(2)353515()x x x ⨯==,(3)322326(2)(2)()4x x x -=-⨯=.【点睛】本题考查了同底数幂相乘、幂的乘方、积的乘方运算,熟练掌握这些幂的运算法则是解题关键.27.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯解析:①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.28.计算(1)()()433a a -⋅- (2)(ab 2)2 •(﹣a 3b )3÷(﹣5ab )解析:(1)15a -;(2)10615a b 【分析】(1)先算乘方,再算同底数幂的乘法即可;(2)先算乘方,再算乘法,后算除法.【详解】(1)()()433a a -⋅- =()123a a ⋅- =15a -;(2)(ab 2)2 •(﹣a 3b)3÷(﹣5ab)=a 2b 4.(-a 9b 3) ÷(﹣5ab)= -a 11b 7÷(﹣5ab) =10615a b . 【点睛】 本题考查了整式的混合运算,熟练掌握运算顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.。
一、选择题1.下列计算正确的是( )A .248a a a •=B .352()a a =C .236()ab ab =D .624a a a ÷= 2.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解 3.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 4.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8 5.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-5 6.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7 7.下列因式分解正确的是( ) A .24414(1)1m m m m -+=-+ B .a 2+b 2=(a +b )2C .x 2-16y 2=(x +8y )(x -8y )D .-16x 2+1=(1+4x )(1-4x ) 8.下列运算正确的是( ).A .()2326ab a b =B .()325a a =C .236a a a ⋅=D .347a a a += 9.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2 10.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( )A .A 5<A 6B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <10082015 11.下列各式中,正确的是( )A .2222x y yx x y -+=B .22445a a a +=C .()2424m m --=-+D .33a b ab += 12.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x 13.下列运算中错误的是( ).A .-(-3a n b)4=-81a 4n b 4B .(a n+1+b n )4 = a 4n+4b 4nC .(-2a n )2.(3a 2)3 = -54a 2n+6D .(3x n+1-2x n )5x=15x n+2-10x n+1 14.下列运算中,正确的是( )A .()23294x yx y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=- 15.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7 二、填空题16.如图是一个简单的数值运算程序,当输入n 的值为3时,则输出的结果为______.17.已知2a -b +2=0,则1-4a +2b 的值为______.18.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.19.10的整数部分是a .小数部分是b ,则2a b -=______.20.数学家发明了一个魔术盒,当任意数对(,)a b 放入其中时,会得到一个新的数:(1)(2)a b --.例如:将数对(2,1)放入其中时,最后得到的数是________;(1)将数对22)放入其中,最后得到的数________;(2)现将数对(,0)m 放入其中,得到数n ,再将数对(,)n m 放入其中后,最后得到的数是________.(结果要化简)21.如图是一块长方形ABCD 的场地,长AB a 米,宽AD b 米,从A 、B 两处入口的小路宽都为1米,两小路汇合处的路宽是2米,其余部分种植草坪,则草坪面积为________2m .22.若(2x +1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a ,则a 2+a 4=____23.因式分解:316m m -=________.24.若2x y a +=,2x y b -=,则22x y -的值为____________.25.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________26.已知22m mn -=,25mn n -=,则22325m mn n +-=________. 三、解答题27.计算下列各题:(12(2)-3125-9(2)(7)(37)2(2228.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下:()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.29.给出下列算式:2231842-==⨯;22531644-==⨯;22752446-==⨯;22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔()3计算2220212019-=_ _,此时n =_ .30.阅读材料:把形2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.请根据阅读材料解决下列问题:(1)填空:244a a -+=__________.(2)先化简,再求值:()()()33242a b a b a b ab ab +-+-÷,其中a b 、满足2226100a a b b ++-+=.(3)若a b c 、、分别是ABC ∆的三边,且222426240a b c ab b c ++---+=,试判断ABC ∆的形状,并说明理由.。
一、选择题1.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+-B .()2211a a a a --=--C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭2.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n ==3.已知A 为多项式,且2221241A x y x y =--+++,则A 有( ) A .最大值23B .最小值23C .最大值23-D .最小值23-4.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个 5.2a =1,b 是2的相反数,则a+b 的值是( )A .1B .-3C .-1或-3D .1或-3 6.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( ) A .7 B .9C .-63D .127.下列运算正确是( )A .b 5÷b 3=b 2B .(b 5)3=b 8C .b 3b 4=b 12D .a (a ﹣2b )=a 2+2ab8.下列计算一定正确的是( ) A .235a b ab += B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+9.已知17x x+=1x x -的值为( )A 3B .2±C .3D 310.长和宽分别为a ,b 的长方形的周长为16,面积为12,则22 a b ab +的值为( ) A .24B .48C .96D .19211.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x12.下列运算中,正确的是( ) A .()23294x y x y = B .3362x x x += C .34x x x ⋅=D .22(3)(3)3x y x y x y +-=-二、填空题13.已知2320x y -+=,则()2235x y -+的值为______.14.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 15.若已知x +y =﹣3,xy =4,则3x +3y ﹣4xy 的值为_____.16.已知正实数a ,满足17a a-=,则1a a +=________.17.因式分解:24ay a -=_______.18.已知,a b 满足1,2a b ab -==,则a b +=____________19.若代数式23y y +-的值为0,则代数式3242020y y ++的值为___________. 20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.三、解答题21.在日历上,我们可以发现其中某些数满足一定的规律,如下图是2021年1月份的日历,我们任意用一个22⨯的方框框出4个数,将其中4个位置上的数两两交叉相乘,再用较大的数减去较小的数,你发现了什么规律?(1)图中方框框出的四个数,按照题目所说的计算规律,结果为______.(2)换一个位置试一下,是否有同样的规律?如果有,请你利用整式的运算对你发现的规律加以证明;如果没有,请说明理由.22.计算:(1)23262x y x y -÷ (2)()233221688x y z x y z xy +÷ (3)运用乘法公式计算:2123124122-⨯23.若一个三位或三位以上的整数A 分成左、中、右三个数后满足:①中间数=左边数2-右边数2,则称中间数是A 的“吉祥数”.如231的“吉祥数”是3,4122的“吉样数”是12;②中间数=(左边数-右边数)2,则称中间数是A 的“如意数”.如143的“如意数”是4,5161和1165的“如意数”是16.(1)若一个三位数的“吉祥数”是5,则这个数是_________,若一个四位数的“如意数”是81,则这个数是____,(2)一个“吉祥数”与一个“如意数”的左边数均为m ,右边数均为n ,且这个“吉祥数”比这个“如意数”大12,求满足条件的“吉样数”.24.在通常的日历牌上,可以看到一些数所满足的规律,表①是2020年12月份的日历牌.星期一 星期二 星期三 星期四 星期五 星期六 星期日1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728 293031(1)在表①中,我们选择用如表②那样22⨯的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.如:用正方形框圈出3,4,10,11四个数,然后将它们交叉相乘,再相减,即3114107⨯-⨯=-或4103117⨯-⨯=.请你用表②的正方形框任意圈出22⨯个数,将它们先交叉相乘,再相减.列出算式并算出结果(选择其中一个算式即可). (2)在用表②的正方形框任意圈出的22⨯个数中,将它们先交叉相乘,再相减.若设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字,列出算式并算出结果(选择其中一个算式即可).(3)若选择用表③那样33⨯的正方形方框任意圈出33⨯个数,将正方形方框四角....位置上的4个数先交叉相乘,再相减,你发现了什么.选择一种情况说明理由. 25.计算: (1)2a (4a 2-2a +1)(2)(2x -1)(2x +2)-(-2x )2 (3)(-x -2y )(x -2y )-(2y -x )2 (4)119910022⨯(用简便方法计算) 26.把下列多项式因式分解(要写出必要的过程): (1)﹣x 2y +6xy ﹣9y ; (2)9(x +2y )2﹣4(x ﹣y )2; (3)1﹣x 2﹣y 2+2xy .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x不是整式,故该项不符合题意; 故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.2.D解析:D 【分析】根据题意逐一计算即可判断. 【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意; 故选:D .本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.3.A解析:A 【分析】利用分组分解法,变为完全平方式解答即可. 【详解】2221241A x y x y =--+++=2221218441184x x y y -+--+-+++ =()()222694423x x y y --+--++ =()()2223223x y ----+ ∵()2230x --≤,()220y --≤,∴()()2223223x y ----+≤23,∴多项式的最大值是23, 故选A . 【点睛】本题考查了因式分解的应用,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.4.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.5.C解析:C根据平方及相反数定义求出a 、b 的值,代入a+b 计算即可. 【详解】∵2a =1,b 是2的相反数, ∴1a =±,b=-2, 当a=1时,a+b=1-2=-1, 当a=-1时,a+b=-1-2=-3, 故选:C . 【点睛】此题考查求代数式的值,根据平方及相反数定义求出a 、b 的值是解题的关键.6.C解析:C 【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可. 【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-; 故选C . 【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.7.A解析:A 【分析】根据幂的乘方,同底数幂乘法和除法,单项式乘多项式运算法则判断即可. 【详解】A 、b 5÷b 3=b 2,故这个选项正确;B 、(b 5)3=b 15,故这个选项错误;C 、b 3•b 4=b 7,故这个选项错误;D 、a (a ﹣2b )=a 2﹣2ab ,故这个选项错误; 故选:A . 【点睛】本题考查了幂的乘方,同底数幂乘法和除法,以及单项式乘多项式,重点是掌握相关的运算法则.8.B解析:B 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可. 【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意. 故选B . 【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.9.C解析:C 【分析】将1x x +=两边平方得出22x 15x +=,再求得21-⎛⎫ ⎪⎝⎭x x 即可得答案.【详解】解:∵1x x+= ∴217⎛⎫+= ⎪⎝⎭x x ∴22127x x ++= ∴22x 15x += ∴22211-=x -2+=5-2=3x ⎛⎫ ⎪⎝⎭x x∴1=-±x x 故选:C 【点睛】本题主要考查了利用完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键10.C解析:C 【分析】根据已知条件长方形的长与宽之和为8,长与宽之积为12,然后分解因式代入即可. 【详解】∵长方形的周长为16,∴8a b +=, ∵面积为12, ∴12ab =,∴()2212896a b ab ab a b +=+=⨯=,故选:C . 【点睛】本题考查的是因式分解的应用,以及长方形周长和面积的计算,熟练掌握长方形的周长和面积的计算公式是解答本题的关键.11.D解析:D 【分析】根据整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式分别计算进行判断. 【详解】A 、2222x x x +=,故该项错误;B 、222()2x y x xy y -=-+,故该项错误;C 、2363()x y x y =,故该项错误;D 、235x x x ,故该项正确;故选:D . 【点睛】此题考查整式的计算,正确掌握整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式是解题的关键.12.C解析:C 【分析】根据积的乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式分别计算各项,然后再进行判断即可. 【详解】 解:A. ()23264x y x y =,所以原选项计算错误,故不符合题意;B.3332x x x +=,所以原选项计算错误,故不符合题意;C.34x x x ⋅=,计算正确,符合题意;D.22(3)(3)9x y x y x y +-=-,所以原选项计算错误,故不符合题意. 故选:C . 【点睛】此题主要考查了乘方与幂的乘方运算法则,合并同类项法则,同底数幂的乘法以及平方差公式,要熟练掌握.二、填空题13.1【分析】根据求出代入计算即可【详解】∵∴∴=故答案为:1【点睛】此题考查已知式子的值求代数式的值掌握有理数混合运算法则是解题的关键解析:1 【分析】根据2320x y -+=求出232x y -=-,代入计算即可. 【详解】∵2320x y -+=, ∴232x y -=-,∴()2235x y -+=2(2)51⨯-+=, 故答案为:1. 【点睛】此题考查已知式子的值求代数式的值,掌握有理数混合运算法则是解题的关键.14.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算. 【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭, ∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222xy⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.15.﹣25【分析】将3x+3y ﹣4xy 变形为3(x+y )﹣4xy 再整体代入求值即可【详解】解:∵x+y =﹣3xy =4∴3x+3y ﹣4xy =3(x+y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25故解析:﹣25 【分析】将3x +3y ﹣4xy 变形为3(x +y )﹣4xy ,再整体代入求值即可.【详解】解:∵x +y =﹣3,xy =4,∴3x +3y ﹣4xy =3(x +y )﹣4xy =3×(﹣3)﹣4×4=﹣9﹣16=﹣25, 故答案为:﹣25. 【点睛】此题考查已知式子的值求代数式的值,将代数式变形为已知式子的形式是解题的关键.16.【分析】根据应用完全平方公式求出的值即可求出的值【详解】解:=9=9+2=11故答案为:【点睛】本题考查完全平方公式的应用需要对已知式子平方灵活运用完全平方公式是解决本题的关键【分析】根据1a a -=221a a+的值,即可求出1a a +的值. 【详解】解:1a a -=217a a ⎛⎫∴-= ⎪⎝⎭, ∴22127a a +-=, ∴221a a +=9, 222112a a a a ⎛⎫∴+=++ ⎪⎝⎭=9+2=11,0a >,10a a∴+>, 1a a∴+=【点睛】本题考查完全平方公式的应用,需要对已知式子平方,灵活运用完全平方公式是解决本题的关键.17.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键 解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式. 【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.18.【分析】利用完全平方公式的两个关系式得到即可得到答案【详解】∵∴∴故答案为:【点睛】此题考查完全平方公式熟记完全平方公式及两个完全平方公式的关系是解题的关键解析:3±【分析】利用完全平方公式的两个关系式得到22()()41429a b a b ab +=-+=+⨯=,即可得到答案.【详解】∵1,2a b ab -==,∴22()()41429a b a b ab +=-+=+⨯=,∴3a b +=±,故答案为:3±.【点睛】此题考查完全平方公式,熟记完全平方公式及两个完全平方公式的关系是解题的关键. 19.2029【分析】由题意得将原式变形成整体代入得再一次整体代入即可求出结果【详解】解:∵∴原式故答案为:【点睛】本题考查代数式求值解题的关键是掌握整体代入的思想进行求解解析:2029【分析】由题意得23y y +=,将原式变形成()2232020y y y y +++,整体代入得2332020y y ++,再一次整体代入即可求出结果.【详解】解:∵23y y +-,∴23y y +=,原式()2232020y y y y =+++ 2332020y y =++()232020y y =++92020=+2029=.故答案为:2029.【点睛】本题考查代数式求值,解题的关键是掌握整体代入的思想进行求解.20.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)7;(2)有同样的规律,(a+1)(a+7)-a(a+8)=7,理由见解析【分析】(1)根据题意列出算式11×5-4×12,再进一步计算即可;(2)如换为3,4,10,11,按要求计算即可;设方框框出的四个数分别为a ,a+1,a+7,a+8,列出算式(a+1)(a+7)-a(a+8),再进一步计算即可得.【详解】(1)11×5-4×12=55-48=7,故答案为:7;(2)换为3,4,10,11,则10×4-3×11=40-33=7;设方框框出的四个数分别为a ,a+1,a+7,a+8,则(a+1)(a+7)-a(a+8)=a 2+7a+a+7-a 2-8a=7.【点睛】本题主要考查整式的混合运算,解题的关键是根据题意列出算式,并熟练掌握整式的混合运算顺序和运算法则.22.(1)23y -;(2)22xyz x z +;(3)1【分析】(1)利用单项式除以单项式法则计算;(2)运用多项式除以单项式法则计算;(3)先将124122⨯化为(1231)(1231)+⨯-,利用平方差公式计算,再计算加减法.【详解】解:(1)23262x y x y -÷=23y -;(2)()233221688x y z x y z xy +÷=22xyz x z +;(3)2123124122-⨯=222123(1231)(1231)123(1231)1-+⨯-=--=.【点睛】此题考查整式的计算法则:单项式除以单项式、多项式除以单项式、平方差公式,熟记法则是解题的关键.23.(1)这个数是352,这个数是9810;(2)满足条件的“吉样数”是7481,5212,5163,7136.【分析】 (1)设左边数为m ,右边数为n ,由题意225m n -=,分解为51m n m n +=⎧⎨-=⎩解方程组=32m n ⎧⎨=⎩即可求出,设左边数为m ,右边数为n ,由题意()281m n -=,直接开平方得9m n -=,直接确定m=9,n=0,即可写出这个数;(2)由题意得()22212m n m n -=-+化简得26mn n -=,因式分解()6n m n -=分别讨论n 与m-n 都是6的因式组成方程组,解之即可.【详解】(1)一个三位数的“吉祥数”是5,,设左边数为m ,右边数为n ,m 、n 均为正整数, 225m n -=,51m n m n +=⎧⎨-=⎩, =32m n ⎧⎨=⎩, 则这个数是352,一个四位数的“如意数”是81,设左边数为m ,右边数为n ,()281m n -=,9m n -=,m=9,n=0,则这个数是9810,故答案为:352;9810;(2)由题意得()22212m n m n -=-+, 26mn n -=,()6n m n -=,1=6n m n =⎧⎨-⎩,2=3n m n =⎧⎨-⎩,3=2n m n =⎧⎨-⎩,6=1n m n =⎧⎨-⎩, 17n m =⎧⎨=⎩,2=5n m =⎧⎨⎩,3=5n m =⎧⎨⎩,6=7n m =⎧⎨⎩, 求满足条件的“吉样数”是7481,5212,5163,7136.【点睛】本题考查是三位或三位以上的整数A 的新定义问题,认真学习题中的定义,掌握如意数与吉祥数的约定,会根据题中的要求列出等式,会解不定方程或方程组是解题关键. 24.(1)91710167⨯-⨯=-或10169177⨯-⨯=,(2)+1n ,n+7,n+8,()()()+178n n n n +-+,7,或()()()8+17n n n n +-+,-7;(3)1×17-3×15=-28或3×15-1×17=28,发现:它们最后得结果是28或-28,n ,+2n ,n+14,n+16,()()()+21416n n n n +-+,28,()()()16+214n n n n +-+,-28,它们的结果与n 的值无关,最终结果保持不变,值是28或-28.【分析】(1)先画出选出的各数,再计算即可;(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+1n+7n+8n ,,,列出算式()()()+178n n n n +-+或()()()8+17n n n n +-+,求出即可;(3)先圈出各个数,列出算式,设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为+2n+14n+16n ,,,列出算式,求出即可.【详解】(1)圈出的数如图,9,10;16,17,91710161531607⨯-⨯=-=-或10169171601537⨯-⨯=-=,(2)设左上角的数字为n ,用含n 的代数式表示其它三个位置的数字分别为,+1n+7n+8n ,,,()()()+178n n n n +-+,=22878n n n n ++--,=7,或()()()8+17n n n n +-+,=22887n n n n +---,=-7;(3)圈出的数为1,2,3;8,9,10;15,16,17四角数位1,3,15,171×17-3×15=17-45=-28或3×15-1×17=35-17=28,发现:它们最后得结果是28或-28,理由是:设设左上角的数字为n,用含n的代数式表示其它三个位置的数字分别为+2n+14n+16n,,,()()()+21416n n n n+-+,=22162816n n n n++--,=28,()()()16+214n n n n+-+,=22161628n n n n+---,=-28.结论:它们的结果与n的值无关,最终结果保持不变,值是28或-28.【点睛】本题考查整式的混合运算的应用,掌握整式的混合运算法则,能理解题意,会按要求列式是解题关键,培养阅读能力和计算能力.25.(1)8a3-4a2+2a;(2)2x-2;(3)-2x2+4xy;(4)3 99994.【分析】(1)利用单项式乘多项式法则计算即可;(2)根据多项式乘多项式和积的乘方展开,再合并同类项即可;(3)根据平方差公式和完全平方公式展开,再合并同类项即可;(4)原式先变形,再利用平方差公式计算即可.【详解】(1)2a(4a2-2a+1)= 2a⋅4a2-2a⋅2a +2a⋅1=8a3-4a2+2a;(2)(2x -1)(2x+2)-(-2x)2=4x2+4x-2x-2-4x2=2x-2;(3)(-x-2y)(x-2y)-(2y-x)2= (-2y-x)( -2y+x) -(2y-x)2=4y2-x2-4y2-x2+4xy=-2x2+4xy;(4)119910022⨯=2211113 (100)(100)100()10000999922244-⨯+=-=-=.【点睛】此题考查了整式的混合运算,熟练掌握相应的运算法则是解答此题的关键.26.(1)﹣y(x﹣3)2;(2)(5x+4y)(x+8y);(3)(1+x﹣y)(1﹣x+y)【分析】(1)先提取公因式,再按照完全平方公式分解;(2)分别把前后两项看成某项的平方并根据平方差分解因式,然后对每个因式去括号及合并同类项进行化简;(3)首先把后面三项看成一组并化成完全平方式,然后与第一项组合并利用平方差公式分解后对每个因式去括号化简即可.【详解】解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).【点睛】本题考查了因式分解,熟练掌握因式分解的各种方法并灵活运用是解题关键.。
12013-2014学年度八年级上数学期中考试试题卷Ⅰ(选择题,共 30分)一、 选择题 (每题3分,共30分)1、一定能确定△ABC ≌△DEF 的条件是 ( )A 、∠A=∠D ,∠B=∠E ,∠C=∠FB 、∠A=∠E ,AB=EF ,∠B=∠DC 、∠A =∠D ,AB = DE ,∠B =∠E D 、AB=DE , BC=EF ,∠A=∠D 2、已知M (0,2)关于x 轴对称的点为N , 则N 点坐标是( ) A .(0,-2) B .(0,0) C .(-2,0) D .(0,4)3、等腰三角形的周长是18cm ,其中一边长为4cm ,其它两边长分别为( )A .4cm ,10cmB .7cm ,7cmC .4cm ,10cm 或7cm ,7cmD .无法确定 4、下列平面图形中,不是..轴对称图形的是( )5、如图 ,正方形ABCD 的边长为4,将一个足够大的直角三角板的直角顶点放于点A 处,该三角形板的两条直角边与CD 交于点F ,与CB 延长线交于点E ,四边形AECF 的面积是( ) A 、16 B 、12 C 、8 D 、4 7、使两个直角三角形全等的条件是 ( )A .一锐角对应相等B .两锐角对应相等C .一条边对应相等D .两条直角边对应相等 8、如图,小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3) 然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是( )ED CBA9题图A B C D2A B C D9、如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A 、5cm B 、10cm C 、15cm D 、17.5cm 10、.在数学活动课上,小明提出这样一个问题:如图, ∠B =∠C = 90︒, E 是BC 的中点, DE 平分∠ADC, ∠CED = 35︒, 则∠EAB 的度数是 ( ) A .35︒ B .45︒ C .55︒ D .65︒ 11、如图5是小亮在某时从镜子里看到镜子对面电子钟的像,则这个时刻是( ) A.10:21 B. 21:10 C. 10:51 D.12:01卷Ⅱ(非选择题,共 分)二、填空题(每题3分,共24分)12、点A(-2,3)关于x 轴的对称点的坐标是______13、如13题图,在△ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB ,AB=6.则BC=___ _ ∠BCD=____ 14、等腰三角形一个角为50°,则此等腰三角形顶角为_________________15、如图,在△ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB ,BD =1.则BC=___ _ ∠BCD=____16、如图,在中,,平分,BC=9cm ,BD=6cm ,那么点到直线的距离是 cm 17、等腰△ABC 纸片(AB=AC )可按图中所示方法折成一个四边形,点A 与点B 重合,点C 与点D 重合,请问原等腰△ABC 中∠B= °ABC △90C ∠=AD CAB ∠DAB318、等腰三角形一腰上的中线把这个三角形的周长分成15㎝和12㎝,则这个三角形的底边长为 19、在直角坐标系中,已知A (-3,3),在轴上确定一点P ,使△AOP 为等腰三角形,符合条件的点P 共有_________个。
八年级上数学周末自测班级 姓名 座号 成绩一、选择题(每题3分,共15分)1. 如图1,△AB C ≌△BAD ,点A 和点B ,点C 和点D 是对应点,如果AB=6㎝,BD=5㎝,AD=4㎝,那么BC 的长是( ) A. 4㎝ B. 5㎝ C. 6㎝ D.无法确定.2. 如图2,ABE ∆≌ACD ∆,,AC AB =︒=∠︒=∠=120,50,AEC B CD BE , 则DAC ∠的度数等于( )A. ︒120B. ︒70C. ︒60D. ︒503. 如图3,D 在AB 上,E 在AC 上且AC=AB ,那么要使△ABE≌△ACD, 下列补充一个条件仍无法判定的是( )A. AD=AEB.∠A EB=∠ADCC. BE=CDD.∠B=∠C 4. 如图4,已知点P 到BE ,BD ,AC 的距离恰好相等,则点P 的位置: ①在∠B 的平分线上;②在∠DAC 的平分线上;③在∠ECA 的平分线上; ④恰是∠B ,∠DAC ,∠ECA 三条角平分线的交点. 上述结论中,正确结论有( )A. ①②③B. ①②④C. ②③④D. ①②③④5. 如图5,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E ,已知PE =3, 则点P 到AB 上任意一点的距离不可能是( ) A.2.5 B.3 C.3.5 D. 4 二、填空题(每题3分,共24分)6.已知△ABC ≌△DEF ,∠A=∠D,∠B=∠E,∠C=70°,AB=15cm ,则∠F=_____, DE=________ cm.7.如图6,ABC ∆中,BC AD ⊥于D ,要使△ABD ≌△ACD ,若根据“HL ”判定, 还需加条件 = .8.如图7,已知∠B=∠E ,∠A=∠D ,请你添加一个直接条件 = , 使△ABC ≌△DEF .9.如图8的方格中,连接AB 、AC ,则∠1+∠2=________度. 10.如图9,△ABC 中,∠C=90°,AD 是∠BAC 的平分线,BC=80cm , BD∶DC=5∶3,则点D 到AB 的距离为 cm .11.如图10,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是352cm ,AB =8cm ,ACABC DE A CD B图2图3图6图7图8A DC BABCDFAED CB图1图4图5=6cm ,则DE 的长为 cm .12.如图11,AB =DC ,AD =BC ,BE =DF ,∠A EB =100°,∠A DB =30°,则∠BCF 的度数为 °. 13.如图12,在R t △ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于E ,且DE =DC .若∠A =20°,则∠DBC 的度数为 .三、解答题(共81分)14.(6分)尺规作图(请保留作图痕迹,不写作法).(1)作∠A OB 的平分线. (2)画△ABC,使其两边为已知线段a 、b ,夹角为 .15.(7分)如图,△ABC 与△ABD 中, AD 与BC 相交于O 点,∠1=∠2,请你添加一个条件使△ABC ≌△ABD (不再添加其它线段,不再标注或使用其他字母),并给出证明. 你添加的条件是: . 证明:16.(8分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .17.(8分)如图,ΔABC≌ΔEFC ,B 、C 、E 在同一条直线上,且BC =5cm ,CE =7cm ,∠EFC =64°. 求AF 的长和∠A 的度数.图11BCD EF AOB AAEB F图10图12abβ18.(7分)如图在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:∠B=∠C.19.(8分)如图,AD平分∠BAC.BF⊥AC,CE⊥AB,求证:(1)DE=DF (2)BD=CD.20.(10分)如图,在四边形ABCD中,∠A=∠B=90°,EC平分∠BCD交AB于E,且DE平分∠CDA,求证:AE =BE.21.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB,垂足为E,若BC=12cm, BE=8cm,求△DBE的周长.FGCDAEB22.(8分)如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点A 的垂线BC 、CE ,垂足分别为D 、E ,若BD=3,CE=2,求DE 的长.23.(10分)如图,△ADE, △ABC 为正三角形(即三边相等,三个角都为90°), AB 与CE 交于点G ,BD 与AE交于点F , ⑴ 求证:AE =AD ;⑵ 求证:△ABF≌△ACG ; ⑶ 连结GF, 求证:GF//CD.。
2013-2014学年重点中学上学期八年级期中水平测试数学试卷参考答案一.选择题(每题3分,共24分)二.填空题(每题3分,共21分)提示:15.本题为易错题,学生容易得到一个结果,而忽视了另外一种情况---互补.(1)相等,如图(1)所示,∠B=∠E; (2)互补,如图(2)所示.图(1)B'图(2)题后记:同学们应该对此类题目引起足够的重视,通过加强对此类题目的训练,使自己初步具备分类讨论的思想,从而使自己的思维变得更加严密、严谨!三.解答题(共75分)16.解:(1)原式()()y x y x 23232---=()()1223---=y x y x (2)原式229124y xy x +-= ()232y x -=(3)原式242436223++--+=a a a a a 22623++-=a a a(注意:本题的结果应按字母a 的降幂顺序排列) (4)原式[]()b a b a a b a b -÷---=2)2(2)2(4 a b 24-=17.(1)解: []x xy y y x 224)2(22÷+--()()y x xxy x xxy y y xy x -=÷-=÷+-+-=2122224442222当2,1==y x 时原式232121-=-⨯=(2)()()()()221311714x x x x -++--+()()()1423637748421317124222222+=+-++-++=+-+--++=x x x x x x x x x x x当21-=x 时原式1314221=+⨯-=18.解:()()212=---y x x x()()()()2222222222222222222=-=-=-+-=-+-=-+∴-=-=+-=+--y x xy xy y x xy xyy x xy y x y x y x y x x x19.在平地任找一点O,连OA 、OB,延长AO 至C 使CO=AO,延BO 至D,使DO=BO,则CD=AB,依据是△AOB ≌△COD (SAS ),图形略. 20.证明:在△ABC 和△BAD 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BA AB D C 12 ∴△ABC ≌△BAD (AAS )∴AC=BD. 21.答案不唯一,略. 22.解:(1)∵∠C=90° ∴DC ⊥AC∵AD 平分∠BAC,DE ⊥AB ∴DC=DE在Rt △CDF 和Rt △EDB 中∵⎩⎨⎧==DEDC DB DF ∴Rt △CDF ≌Rt △EDB (HL );(2)在△BDE 中,由三角形三边之间的关系得 BE+DE>DB ∵DB=DF ∴BE+DE>DF.23.提示:(1)又因为AB =A 1B 1,∠ADB =∠A 1D 1B 1=90°.所以△ADB ≌△A 1D 1B 1,所以∠A =∠A 1,又∠C =∠C 1,BC =B 1C 1,所以△ABC ≌△A 1B 1C 1.(2)由题设和(1)我们可以得到下列结论:若△ABC 、△A 1B 1C 1均为锐角三角形或均为直角三角形或均为钝角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1,则△ABC ≌△A 1B 1C 1.。
八年级上数学周末自测班级 姓名 座号 成绩一、选择题:(每题3分,共21分) 1.下列计算中,不正确...的是( ) A .623x x x =⋅ B .3332x x x =+ C .()632x x = D .426x x x =÷2.下列计算中,正确..的是( ) A .523x x x =+ B .33323x x x =- C .523x x x x =⋅⋅ D .428x x x =÷ 3.下列计算中,不正确...的是( ) A .523632x x x =⋅ B .36232632y x y x y x =⋅C .()3382x x -=- D .6234)2(a a =-4.计算:324)(x x ⋅-的结果是( )A .9xB .11xC .18xD .24x 5.计算:232)(x x ÷-的结果是( )A .7xB .5xC .4xD .4x - 6.计算)2)(3(--x x 的结果是( )A .62-+x xB .652--x xC .62-xD .652+-x x7.计算)4)(2(-+x x 的结果为多项式n mx x ++2,则( )A . 2=m ,8-=nB .2-=m ,8-=nC . 6-=m ,8-=nD .6-=m ,8=n 二、填空题:(每空2分,共46分)8.计算:=⋅23a a ;=23)(a ;=+⋅223)(a a a ;=÷-523)(a a ;=÷+⋅2833a a a a .9.计算:=÷⋅643a a a ;=-÷-)2()6(23b a bc a ;=÷-234)2(ab ab ;=÷-223279143b a c b a . 10.用幂的形式表示:=÷⨯3216)2(24.11.一种数码照片的文件大小是82K ,一个存储量为62M (1M =102K )的移动存储器能存储 张这样的数码照片.12.计算:⑴=-⋅)2(322xy y x xy ; ⑵ =+-)2)(2(x y y x ;⑶=--⋅-)2()3(2x x x ; ⑷ =÷+-a a a )(2;⑸=+-)3)(5(x x ;⑹=-÷+-)2()486(2234x x x x .13.填空: 32126) () (64==ba14.计算: =⨯÷⨯)105()103(26(用科学记数法表示).15.小明的步长为a cm ,他量得一间屋子长15步,宽14步,这间屋子的面积有 2cm . 16.若012=--a a ,则代数式)12)(32(++-a a 的值等于 . 17.已知:4=+b a ,ab b a <+-)2)(1(, 则a 的取值范围是 . 三、解下列各题(共53分): 18.计算:(每题3分,共12分)⑴ ()()()xy xy x y x -÷+-÷22333 ⑵)5()51530(23n n n n -÷-+⑶ )12()3)(2(22-+-+-x x x x x ⑷ )(22)264(2234x x x x x x x --÷+-19. 计算:(每题6分,共12分)⑴ []x x y x y y x y x 28)23()2)((÷-+-++(2) 已知:m b a =+,4-=ab , 计算()()22--b a .(结果用含m 的代数式表示)20.(6分)先化简,再求值:)3)(()2)(2(y x y x y x y x +---+,其中3-=x ,2=y .21.(6分)先化简,再求值:[2)2()3)((y y x x y x y x +--+-])2(y -÷,其中3-=x ,2=y .22.(7分)一个长方形面积是)42(2ab a +(0>a ,0>b ),它的一边长是a 2. (1)求它的另一边长; (2)求这个长方形的周长.23.(5分)先化简式子)2)(3()7(---+n n n n ,并说明对于任意自然数n ,这个式子的值都能被6整除.22.(5分)如图所示,计算图中阴影所示的绿地面积.(单位:cm )附加题:20分24.如图,点O 是等边△ABC 内一点,以OC 为边向外作等边三角形△COD. (1)求证:OB=AD (2)若∠AOB=110°, ① 求∠OAD 的大小;② 当∠BOC 等于多少度时,△OAD 是等腰三角形?。
第14章 整式的乘除 班级: 座号: 姓名: 一、 本章知识要点: 幂的综合运算: 1. n m n m a a a +=⋅(m 、n 为正整数),这是 法则;2. ()n m n m a a ⋅=(m 、n 为正整数),这是 法则;3. ()n n n b a b a ⋅=⋅(n 为正整数),这是 法则;4. n m n m a a a -=÷(其中m 、n 为正整数,n m >,0≠a ),这是 法则;5.规定:=0a ,=-n a .(0≠a ,n 为正整数)6.可以将上述法则逆用,这样可以简化某些运算.即=+n m a __ ____, =⋅n m a __, =n n b a ___ ____,=-n m a _ _____.乘法公式1.平方差公式: ()()=-+b a b a ______ __.2.完全平方公式:()22a b a =±___ ____2b +.3.完全平方公式的变形:()2222b ab a b a ++=+ =+22b a()2222b ab a b a +-=- =+22b a()()=-++22b a b a ()()=--+22b a b a因式分解1.例:下列从左到右的变形是因式分解的是 ( )A. 22))((y x y x y x -=+-B. 4)4(442+-=+-x x x xC. x x x x x 3)2)(2(432--+=--D. 22)2(44+-=---x x x2.因式分解的一般步骤:①考虑各项有没有公因式,若有,先 ;②观察多项式的项数选择因式分解的方法;二项:运用 公式三项:运用 公式 或 法③因式分解一定要分解到不能再分解为止.(分解要彻底)【巩固练习】一、选择题:1.下列四个小题的计算中,小明同学做错一道题,这道题是( )A . 632a a a a =⋅⋅B . 3332a a a =+C . 523)(a a = D .642a a a =⋅ 2.下列计算中,正确的是( )A . 532a a a =+B . 033=÷a aC . 623a a a =⋅D . 336a a a =÷3.下列计算中,正确的是( )A . 632)(ab ab -=-B . 2224)2(b a ab -=-C . 6234)2(a a =-D . 2432)(b a a ab =⋅4.下列计算中,正确的是( )A . 222))(2(b a b a b a +=++B . 2232))(2(b ab a b a a b -+-=--C . 222))(2(b a b a b a --=-+-D .2232))(2(b ab a b a b a --=-+5.下列多项式相乘结果为1832--a a 的是( )A . )9)(2(+-a aB . )2)(9(+-a aC .)3)(6(-+a aD .)6)(3(-+a a6.计算)4)(2(-+x x 的结果为多项式n mx x ++2,则( )A . 2=m ,8-=nB . 2-=m ,8-=nC . 6-=m ,8-=nD . 6-=m ,8=n7.下列因式分解中,正确的是 ( )A . )4)(4(422y x y x y x +-=-B .)(y x a a ay ax +=++C . ))(()()(b a y x x y b y x a --=-+-D . 22)32(94+=+x x8.如图,矩形内有两个相邻的正方形,面积分别是2x (0>x )和4,那么阴影部分的面积为( )A .42+xB .42-xC .42-xD .22-x9.如果1212++ax x 是两个数的和的平方形式,那么a 的值是( )A .22B .11C .±22 D.±11二、填空题10.计算:=⋅32m m , =⋅⋅43x x x ,()=3210 ,()=-2310 . ()=322b ,()23x - = ,()()=+÷+26y x y x .=⋅332ab b ; =-⋅-)()(223a abc ,202)1(---=______,=--3132)(y x y x (写成分式形式).11.计算:=+-⋅-)123()2(2x x x =-÷-+)2)264(23x x x x ( ; 12.计算:(用科学记数法表示)=⨯⨯⨯)103()105(26 .13.一个长方形的长和宽分别为12+x 和23+x ()0>x ,则它的面积为 .14.计算()()932+-mx x 的结果不含一次项,则=m .15.已知:m b a =+,4-=ab , 计算()()22--b a = ;(用含m 的代数式表示)16.若032=--a a ,则代数式)12)(32(++-a a 的值等于 .17.若2=-y x ,1022=-y x ,则=+y x ________.18.已知4822=-b a ,4=-b a ,则=a ,=b .19.(1)+-x x 62 =(-x )2; (2)+-xy x 1292=(-x 3 )2;(3)22y x +=2)(y x +- ; (4)+-2)(y x =2)(y x +; 20.计算:2011200920102⨯-= .21.把下列各式因式分解:(直接写出结果)(1)=-xy x 2; (2)=+2262mn n m ; (3)=-+-)(2)(b c c b a ;(4)=-2732a ; (5)=-22916b a ;(6)=+-122x x ; (7)=+-1442x x ;22.多项式224y xy x ++加上单项式 或 后可以分解成某个多项式的平方.(填入你认为合适的单项式即可)三、解答题23.计算:(1)()223323b a ab b a -+-⋅)( (2)a a a a 3)3612(23÷+-(3))52)(52()1(42-+-+x x x (4)[]x x y x y y x 28)2()(2÷-+-+24. 选用适当的方法将下列各式因式分解:(1)x x 93+- (2)x x x 88223++ (3)2)6)(4(y y x y x +-- (4))2()2(22m n m m -+-25.先化简,再求值:(1))12()3)(2(22-+-+-x x x x x 其中3-=x(2)))(()(y x y x y x 2222-+-- 其中1,2-==y x26. 已知12=+)(y x ,492=-)(y x ,求22y x +与xy 的值.。
2013~2014学年度第一学期期中质量检测八年级数学试题【友情提醒】全卷共三大题,23小题,满分150分,考试时间120分钟。
一、选择题(每小题4分,共40分)1.点A (5-,4)在第 象限。
( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各曲线中,能够表示y 是x 的函数的是( )3.函数3x y +=中自变量x 的取值范围是( ) A .x ≥3- B .x ≥3-且1x ≠ C .1x ≠ D .3x ≠-且1x ≠ 4.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 5.一个三角形的两边长分别为3和8,则第三边长可能是( )A .5B .6C .3D .116.点1P (1x ,1y )、2P (2x ,2y )是一次函数b kx y +=(0<k )图象上的两个点,且21x x <,则1y 与2y 的大小关系是( )A .21y y >B .21y y =C .21y y <D .无法确定 7.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形8.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A .125°B .120°C .140°D .130°9.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(1-,2-),“象”位于点(4,1-),则“炮”位于点( )A .(2,1-)B .(1-,2)C .(2-,1)D .(2-,2) 10.下列四组点中,可以在同一个正比例函数图象上的一组点是( )A .(2,3-)、(4-,6)B .(2-,3)、(4,6)C .(2-,3-)、(4,6-)D .(2,3)、(4-,6) 二、填空题(每小题5分,共20分)11.在直角坐标系中,把点A (3-,2)先向右平移3个单位,再向下平移2个单位,得到的点的坐标是 。
教育(一)2013-2014八年级上数学周末自测班级 姓名 座号 成绩一、选择题(每小题2分,共16分)1.下列运算不正确的是( )A .226)3)(2(y xy x y x y x --=-+B .22244)2(y xy x y x --=-C .224)2)(2(y x y x y x -=--+-D .22244)2(y xy x y x ++=+2.下列变形属因式分解的是( )A .a a a a a a 2)1(2223++=++B .()()9332-=+-x x x C .()2212144-=+-x x x D .()()x x x x x 422442+-+=+- 3.下列因式分解中,不正确...的是( ) A .)3(2622+=+x x x x B .)(y x a a ay ax +=++C .)2(51052--=+-x x x xD .)1(+-=+-y x a a ay ax4.下列因式分解中,正确的是( )A .)13(2262223---=-+-x x x x x xB .2)3(232+-=+-x x x xC .22)32(94-=-x xD .222)2(44y x y xy x --=-+- 5.把多项式2232235105b a b a b a -+-因式分解的结果是( )A .)2(522b a b a --B .)12(522---b a b aC .)12(522+--b a b aD .)2(522ab ab b a ab +--6.把多项式1872-+a a 因式分解的结果是( )A .)9)(2(+-a aB .)2)(9(+-a aC .)3)(6(-+a aD .)6)(3(-+a a7.给出下列六个多项式:① 22y x --;② 22964n mn m +-;③ 2241b ab a ++; ④ 2294b a +;⑤ 222y xy x --;⑥ 92+-x .其中能用公式法分解的多项式有( ) A .1个 B .2个 C .3个 D .4个8.已知2a b +=,则224a b b -+的值是( )A .2B .3C .4D .6 二、填空题(每空2分,共46分)8.计算:=÷47a a ; ()()=-⋅-32a a ;=+⋅⋅2332)(a a a a . 9. 计算:()=÷-243242b a ba ;=-÷-)2()24(2x x x . 10.计算:=⨯-6005985992 .11.计算:()23n m += ;()()b a b a 22+---= .教育(一) 12.b a b a ab 32231263--的公因式为 .13.把下列多项式分解因式:(1)=+33a ;(2)=+ab a 422 ;(3)=-+m bm am ;(4))()(m n b n m a -+-= .(5)=--+b a bc ac 22 ;(6)=-42a ;(7)=++2244b ab a ;(8)=-22169y x . (9)=+-229124b ab a ;(10)=+-812122x x ;14.多项式192+x 加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是 .15.如果4)1(2+++x k x 是某一个多项式的平方(完全平方式),则=k .16.若0946522=+--+ab a b a ,则=a ;=b . 三、解答题(共58分)17.(6分)先化简,再求值:[)8()2)(2()(2b a b b a b a b a -+-+-+])3(b -÷,其中2-=a ,3-=b .18.(8分)计算:(1)2)(c b a -+ (2))2)(2(z y x z y x +--+19.(8分)先将下列代数式分解因式,再求值:(1)()()a y a x ---222,其中50.=a ,51.=x ,2-=y .(2)ab ab b a -+2222,其中3=+b a ,2-=ab .教育(一)20.(24分)把下列多项式因式分解:(1)234ab a - (2)x x x 4423++ (3)x x x 1812223-+-(4)1)4)(2(+--x x (5))()(22m n b n m a -+- (6)416x -(7)84)2)(2(++-+x x x (8)25)(10)(2++++b a b a21.(6分)如图为贾宪三角系数表,也叫杨辉三角系数表,它的作用是指导读者按规律写出形如n b a )(+ (其中n 为正整数)展开式的系数,请你仔细观察下式中的规律,填出4)(b a +的展开式中所缺的系数.(1)b a b a +=+1)( ;2222b ab ab a ++=+)( ; 3223333b ab b a a b a +++=+)( ; +=+44a b a )( ++2236b a b a 43b ab + .(2)参照上述规律,写出5)(b a +与6)(b a +的展开式(即写成多项式的形式).22.(8分)观察下列各式:22131=+⨯ 23142=+⨯ 24153=+⨯ 25164=+⨯ …………(1)按此排列,第2011个等式应为: .(2)用含n (n 为正整数)的等式表示上述规律为: .(3)用你所学过的知识解释上述结论.23.拓展延伸:(20分)(1)阅读下面例题:分解因式:122222++-+-y x y xy x教育(一) 解:原式1)(2)(2+---=y x y x2)1(--=y x依照上述方法分解因式:4844422+++++y x y xy x = , = .(2)已知:x ,y 都是实数,且122++=xy x m ,24y xy n -=;试比较m 、n 的大小. (要写出比较过程,否则不给分)(3)已知:6=-b a ,2022=+b a ;求下列代数式的值:① ab ② 32232ab b a b a -+-③ b a +。
一、选择题1.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得: ()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.2.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.3.()()()2483212121+++···()32211++的个位数是( )A .4B .5C .6D .8C 解析:C【分析】原式中的3变形为22-1,反复利用平方差公式计算即可得到结果.【详解】解:3(22+1)(24+1)(28+1)…(232+1)+1=(22-1)(22+1)(24+1)(28+1)…(232+1)+1=(24-1)(24+1)(28+1)…(232+1)+1…=264-1+1=264,∵21=2,22=4,23=8,24=16,25=32,…,∴个位上数字以2,4,8,6为循环节循环,∵64÷4=16,∴264个位上数字为6,即原式个位上数字为6.故选:C .【点睛】本题考查了平方差公式,熟练掌握平方差公式是解本题的关键.4.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .6A 解析:A【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解.【详解】解:∵x 2-y 2=(x+y )(x-y )=24,∴6(x-y )=24,∴x-y=4,∴y-x=-4,故选:A .【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.5.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .98D 解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算. 6.下列各式计算正确的是( )A .224a a a +=B .236a a a ⋅=C .()22439a a -=D .22(1)1a a +=+ C解析:C【分析】根据合并同类项、完全平方公式、幂的乘方与积的乘方进行计算.【详解】解:A. 2222a a a +=,故选项A 计算错误;B. 235a a a ⋅=,故选项B 计算错误;C. ()22439a a -=,故选项C 计算正确;D. 22(11)2a a a +=++,故选项D 计算错误;故选:C【点睛】本题考查了合并同类项、完全平方公式、幂的乘方与积的乘方,熟记计算法则即可解题.7.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .解析:A【分析】利用完全平方公式计算即可得到答案.【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++=2()x y +=2=20,故选:A .【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.8.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= D 解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误; D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.9.下列计算正确的是( )A .224x x x +=B .222()x y x y -=-C .26()x y x y =3D .235x x x D 解析:D【分析】根据整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式分别计算进行判断.【详解】A 、2222x x x +=,故该项错误;B 、222()2x y x xy y -=-+,故该项错误;C 、2363()x y x y =,故该项错误;D 、235x x x ,故该项正确; 故选:D .【点睛】此题考查整式的计算,正确掌握整式的加法法则,乘法法则,积的乘方计算法则,完全平方公式是解题的关键.10.已知2|5213|(310)0x y x y +-+--=,则x y 的立方根为( )A .1B .1-C .2D .2- B 解析:B【分析】根据绝对值和平方式的非负性得到关于x 、y 的方程组,然后解方程组求得x 、y 值,代入求得x y 即可求解.【详解】解:由题意,得:521303100x y x y +-=⎧⎨--=⎩, 解得:31x y =⎧⎨=-⎩, ∴x y =(﹣1)3=﹣1,∴x y 的立方根为﹣1,故选:B .【点睛】本题考查解二元一次方程组、绝对值和平方式的非负性、代数式求值、立方根,正确列出方程组是解答的关键.二、填空题11.如果210x x m -+是一个完全平方式,那么m 的值是__________.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12.若()()253x x x bx c +-=++,则b+c=______.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可.【详解】解:∵()()253x x x bx c +-=++ ∴22+215x x x bx c -=++∴b=2,c=-15∴b+c=2-15=-13故答案为:-13.【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.13.若2330x x --=,则()()()123x x x x ---的值为______.15【分析】原式利用多项式乘以多项式以及单项式乘以多项式法则化简把已知等式代入计算即可求出值【详解】∵x2−3x−3=0∴x2=3x +3则原式=(x2−x )(x2−5x +6)=(2x+3)(−2x +解析:15【分析】原式利用多项式乘以多项式,以及单项式乘以多项式法则化简,把已知等式代入计算即可求出值.【详解】∵x 2−3x−3=0,∴x 2=3x +3,则原式=(x 2−x )(x 2−5x +6)=(2x +3)(−2x +9)=−4x 2+12x +27=−4(3x +3)+12x +27=−12x−12+12x +27=15.故答案为:15【点睛】此题考查了多项式乘多项式,以及单项式乘多项式,熟练掌握运算法则是解本题的关键. 14.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.15.计算:248(21)(21)(21)(21)1+++++=___________.216【分析】在原来的算式前面乘上(2-1)根据平方差公式进行计算即可求解【详解】原式======216故答案是:216【点睛】本题主要考查有理数的运算掌握平方差公式是解题的关键 解析:216【分析】在原来的算式前面乘上(2-1),根据平方差公式,进行计算,即可求解.【详解】原式=248(21)(21)(21)(21)(21)1-+++++=2248(21)(21)(21)(21)1-++++=448(21)(21)(21)1-+++=88(21)(21)1-++=16(21)1-+=216.故答案是:216.【点睛】本题主要考查有理数的运算,掌握平方差公式,是解题的关键.16.我们知道,同底数幂的乘法法则为m n m n a a a +⋅=(其中0a ≠,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:()()()h m n h m h n +=⋅;比如(2)3h =,则(4)(22)339h h =+=⨯=,若(2)(0)h k k =≠,那么(8)h =_______,(2)(2020)h n h ⋅=_______.kn+1010【分析】根据h (m+n )=h (m )•h (n )通过对所求式子变形然后根据同底数幂的乘法计算即可解答本题【详解】解:∵∴===∵===kn•k1010=kn+1010故答案为:kn+101解析:4k k n+1010【分析】根据h (m+n )=h (m )•h (n ),通过对所求式子变形,然后根据同底数幂的乘法计算即可解答本题.【详解】解:∵()()()h m n h m h n +=⋅,(2)(0)h k k =≠,∴(8)h =(2222)h +++=(2)(2)(2)(2)h h h h ⋅⋅⋅=4k ,∵(2)(0)h k k =≠,(2)(2020)h n h ⋅=(22...2)(22...2)h h +++⋅+++=(2)(2)...(2)(2)(2)...(2)h h h h h h ⋅⋅⨯⋅⋅=k n •k 1010=k n+1010,故答案为:4k ,k n+1010.【点睛】本题考查同底数幂的乘法、新定义,解答本题的关键是明确题意,利用新运算求出所求式子的值.17.已知102m =,103n =,则32210m n ++=_______.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==, ∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.18.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方熟练掌握法则是解题的关键解析:1【分析】根据积的乘方的逆运算和幂的乘方计算即可【详解】解:原式()()()()99992999999990.0450.04250.110425⎡⎤⨯-⨯⨯⎣===⎦== 故答案为:1【点睛】本题考查了积的乘方的逆运算和幂的乘方,熟练掌握法则是解题的关键19.因式分解:24ay a -=_______.【分析】先提取公因式a 再利用平方差公式分解因式【详解】=故答案为:【点睛】此题考查多项式的分解因式综合运用提公因式法和公式法分解因式掌握因式分解的方法是解题的关键解析:()()22a y y +-【分析】先提取公因式a ,再利用平方差公式分解因式.【详解】24ay a -=2)(4a y -=()()22a y y +-,故答案为:()()22a y y +-.【点睛】此题考查多项式的分解因式,综合运用提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.20.如图,两个阴影图形都是正方形,用两种方式表示这两个正方形的面积和,可以得到的等式为______.(a+b )2-2ab=a2+b2【分析】利用各图形的面积求解即可【详解】解:两个阴影图形的面积和可表示为:a2+b2或 (a+b )2-2ab 故可得: (a+b )2-2ab=a2+b2故答案为:(a+解析:(a+b )2-2ab = a 2+b 2【分析】利用各图形的面积求解即可.【详解】解:两个阴影图形的面积和可表示为:a 2+b 2或 (a+b )2-2ab ,故可得: (a+b )2-2ab = a 2+b 2故答案为:(a+b )2-2ab = a 2+b 2【点睛】本题主要考查了完全平方公式的几何背景,解题的关键是明确四块图形的面积.三、解答题21.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为500元(不含套餐成本).试销售一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.(1)若每份套餐售价定为9元,则该店每天的利润为 元;若每份套餐售价定为12元,则该店每天的利润为 元;(2)设每份套餐售价定为x 元,试求出该店每天的利润(用含x 的代数式表示,只要求列式,不必化简);(3)该店的老板要求每天的利润能达到1660元,他计划将每份套餐的售价定为:10元或11元或14元.请问应选择以上哪个套餐的售价既能保证达到利润要求又让顾客省钱?请说明理由.解析:(1)1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-;当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)选择11元,能保证达到利润要求又让顾客省钱.【分析】(1)根据题意,列出算式,即可求解;(2)分两种情况:当10x ≤时,当10x >时,分别列出代数式,即可;(3)把x=10,11,14分别代入第(2)小题的代数式,即可得到答案.【详解】解:(1)由题意得:(9-5)×400-500=1100(元),(12-5)×[400-(12-10)×40]-500=1740(元),故答案是:1100元,1740元;(2)当10x ≤时,利润为(5)400500x -⨯-,当10x >时,利润为[](5)400(10)40500x x ---⨯-;(3)∵当x =10时,(105)4005001500-⨯-=(元),当x =11时,[](115)400(1110)405001660---⨯-=(元),当x =14时,[](145)400(1410)405001660---⨯-=(元), ∴当x =11或14时,利润均为1660元.∵11<14,∴选择11元,能保证达到利润要求又让顾客省钱.【点睛】本题考查的是代数式的实际应用,解题的关键是根据题目中的数量关系列出代数式. 22.(1)计算:()()()()23232121a a a a a -++-+-(2)分解因式:244xy xy x -+ 解析:(1)10;(2)()22x y -【分析】(1)根据整式的乘法公式及运算法则即可求解;(2)先提取x ,再根据完全平方公式即可因式分解.【详解】(1)解:原式222366941a a a a a =-+++-+ 10=()2解:原式()244x y y =-+()22x y =-.【点睛】此题主要考查整式的运算与因式分解,解题的关键是熟知整式的运算法则及因式分解的方法.23.给出下列算式:2231842-==⨯; 22531644-==⨯;22752446-==⨯;22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔()3计算2220212019-=_ _,此时n =_ .解析:(1)两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)()()22212142n n n +•=-﹣;证明见解析;(3)8080,1010.【分析】(1)通过观察找出规律,可发现两个连续奇数的平方差等于夹在两个奇数之间的偶数的4倍;(2)由(1)进一步可得出第n 个等式为()()22212142n n n +-⋅=-.(3)利用前面得到的规律即可求得答案.【详解】(1)规律:两个连续奇数的平方差(大奇数的平方减去小奇数的平方),等于夹在两个奇数之间的偶数的4倍;(2)设1n n ≥()表示自然数,用关于n 的等式表示这个规律为: ()()22212142n n n +⋅﹣=-;证明:左边()()2244144142n n n n n =++--+=⋅=右边 ()()22212142n n n ∴+-⋅﹣=;(3)212021n +=,解得:1010n =, 22420212019101088200-=⨯=⨯∴.【点睛】此题考查数字的变化规律,根据数字的特点,得出运算的规律,利用规律解决问题. 24.分解因式:(1)25105x x ++(2)()()2249a x y b y x -+-解析:(1)()251x +;(2)()()()2323x y a b a b -+-【分析】(1)先提取公因式5,再利用完全平方公式分解因式;(2)先提公因式(x-y ),再利用平方差公式分解因式.【详解】(1)解:原式()2521x x =++ ()251x =+;(2)解:原式()()2249x y a b =--()()()2323x y a b a b =-+-.【点睛】此题考查因式分解:将多项式写成整式的积的形式,叫做将多项式因式分解,因式分解的方法:提公因式法和公式法,掌握因式分解的方法并熟练应用是解题的关键.25.计算:(1)()222--(2)()()2215105x y xy xy -÷-(3)()()()2321x x x -+--解析:(13;(2)32x y -+;(3)7x -【分析】(1)同时计算乘方、绝对值、算术平方根及开立方,再计算加减法;(2)用多项式除以单项式法则计算;(3)先根据多项式乘以多项式及完全平方公式计算,再合并同类项即可.【详解】(1)解:原式4232=--3=;(2)解:原式32x y =-+(3)解:原式2223621x x x x x =+---+-7x =-.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数的乘方、绝对值、算术平方根及开立方、加减法运算,整式的多项式乘以多项式及完全平方公式、多项式除以单项式法则是解题的关键.26.利用我们学过的知识,可以导出下面这个形式优美的等式:2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦,该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁、美观.(1)请你检验说明这个等式的正确性;(2)若ABC 的三边长分别为a ,b ,c ,当222a b c ab bc ca ++=++时,试判断ABC 的形状;(3)若327a b -=,227a c -=,且22241abc ++=,求22ab bc ac ++的值. 解析:(1)见详解;(2)ABC 为等边三角形;(3)4249【分析】 (1)利用完全平方公式将等式的右边展开,合并同类项后即可得出等式的左边,从而得出该等式成立;(2)由a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0,利用偶次方的非负性即可得出a =b =c ,从而得出该三角形为等边三角形;(3)先求出17b c -=-,结合第(1)题的结论,即可求解. 【详解】(1)等式右边=()22222221222x xy y y z x yz xz z -++++-+- =()222122x y z y xy xz z ⨯++--- =222x y z xy yz xz ++---=等式左边.∴等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立. (2)∵a 2+b 2+c 2−ab−bc−ac =12[(a−b )2+(b−c )2+(c−a )2]=0, ∴a−b =0,b−c =0,c−a =0,∴a =b =c ,∵a 、b 、c 分别是三角形的三条边,∴ABC 为等边三角形;(3)∵327a b -=,227a c -=, ∴17b c -=-, 又∵2222221(2)22(2)(2)()2a b c ab ac bc a b a c b c ⎡⎤++---=-+-+-⎣⎦, ∴2222221321(2)22()()()2777a b c ab ac bc ⎡⎤++---=⨯++-⎢⎥⎣⎦=749, ∵22241a b c ++=,∴22ab bc ac ++=1-749=4249. 【点睛】 本题考查了整式的运算、偶次方的非负性以及等边三角形的判定,利用完全平方的展开式证出等式2222221()()()2x y z xy yz xz x y y z x z ⎡⎤++---=-+-+-⎣⎦成立是解题的关键.27.若一个三位或三位以上的整数A 分成左、中、右三个数后满足:①中间数=左边数2-右边数2,则称中间数是A 的“吉祥数”.如231的“吉祥数”是3,4122的“吉样数”是12;②中间数=(左边数-右边数)2,则称中间数是A 的“如意数”.如143的“如意数”是4,5161和1165的“如意数”是16.(1)若一个三位数的“吉祥数”是5,则这个数是_________,若一个四位数的“如意数”是81,则这个数是____,(2)一个“吉祥数”与一个“如意数”的左边数均为m ,右边数均为n ,且这个“吉祥数”比这个“如意数”大12,求满足条件的“吉样数”.解析:(1)这个数是352,这个数是9810;(2)满足条件的“吉样数”是7481,5212,5163,7136.【分析】(1)设左边数为m ,右边数为n ,由题意225m n -=,分解为51m n m n +=⎧⎨-=⎩解方程组=32m n ⎧⎨=⎩即可求出,设左边数为m ,右边数为n ,由题意()281m n -=,直接开平方得9m n -=,直接确定m=9,n=0,即可写出这个数;(2)由题意得()22212m n m n -=-+化简得26mn n -=,因式分解()6n m n -=分别讨论n 与m-n 都是6的因式组成方程组,解之即可.【详解】(1)一个三位数的“吉祥数”是5,,设左边数为m ,右边数为n ,m 、n 均为正整数, 225m n -=,51m n m n +=⎧⎨-=⎩, =32m n ⎧⎨=⎩, 则这个数是352,一个四位数的“如意数”是81,设左边数为m ,右边数为n ,()281m n -=,9m n -=,m=9,n=0,则这个数是9810,故答案为:352;9810;(2)由题意得()22212m n m n -=-+, 26mn n -=,()6n m n -=,1=6n m n =⎧⎨-⎩,2=3n m n =⎧⎨-⎩,3=2n m n =⎧⎨-⎩,6=1n m n =⎧⎨-⎩, 17n m =⎧⎨=⎩,2=5n m =⎧⎨⎩,3=5n m =⎧⎨⎩,6=7n m =⎧⎨⎩, 求满足条件的“吉样数”是7481,5212,5163,7136.【点睛】本题考查是三位或三位以上的整数A 的新定义问题,认真学习题中的定义,掌握如意数与吉祥数的约定,会根据题中的要求列出等式,会解不定方程或方程组是解题关键. 28.阅读下列各式:222333444(),(),()a b a b a b a b a b a b ⋅=⋅=⋅=回答下列三个问题: ①验证:100122⎛⎫⨯= ⎪⎝⎭_________,100100122⎛⎫⨯= ⎪⎝⎭___________;②通过上述验证,归纳得出:()n a b ⋅=_________;()n a b c ⋅⋅=________;③请应用上述性质计算:201920182017(0.125)24-⨯⨯解析:①1,1;②n n a b ,n n n a b c ;③-132. 【分析】 ①把问题分别转化为1001和100100100122⨯处理即可; ②将猜到规律推广到n 次方和三个因数情形即可;③把2019(-0.125)和20182分别变形为20172(-0.125)(-0.125)⨯和20172⨯2就可逆用上述规律计算即可.【详解】①∵1001001212⎛⎫⨯= ⎪⎝⎭=1, ∴100122⎛⎫⨯= ⎪⎝⎭1; ∵100100122⎛⎫⨯= ⎪⎝⎭1001001001212⨯=, ∴100100122⎛⎫⨯= ⎪⎝⎭1,故依次填1,1;②∵100122⎛⎫⨯= ⎪⎝⎭1,100100122⎛⎫⨯= ⎪⎝⎭1, ∴100122⎛⎫⨯= ⎪⎝⎭100100122⎛⎫⨯ ⎪⎝⎭, 由此可得:()n a b ⋅=n n a b ;()n a b c ⋅⋅=n n n a b c ;故依次填n n a b ,n n n a b c ;③ ∵2019(-0.125)=20172(-0.125)(-0.125)⨯,201822017=2⨯2,∴201920182017(0.125)24-⨯⨯=20172(-0.125)(-0.125)⨯20172⨯⨯2×20174=20172(-0.12524)(-0.125)2⨯⨯⨯⨯ =1-32. 【点睛】本题考查了规律的验证,猜想和应用,熟练逆用同底数幂的乘法公式和发现的规律是解题的关键.。
八年级上数学周末自测班级 姓名 座号 成绩一、选择题(每小题2分,共10分)1.下列有理式中,是分式为 ( ) A.a 3 B. 2a C. 2b a + D. b a +-3 2.分式2-a a 有意义,则a 的取值范围是 ( ) A. 0≠a B. 2<a C. 2>a D. 2≠a3.下列分式的运算中,正确的是 ( ) A. y x y a x a =++ B.2631xx x = C.0=++b a b a D. 11+=+b a ab a 4.解方程5535-+=-x x x 的情况是 ( ) A .3-=x B .4-=x C .5=x D .无解5.在为受震灾区捐款活动中,甲、乙两班的捐款总额分别为900元和1000元;已知乙班的人数比甲班多5人,且两班的人均捐款数相同.求甲班的人数.设乙班的人数x 人,根据题意,下面所列方程中正确的是 ( )A .x x 90051000=-B .59001000-=x xC .59001000+=x xD .xx 90051000=+ 二、填空(每空3分,共30分)6.当x 时,分式421--x x 有意义.当x = 时,分式121+-x x 的的值是零. 7.计算: 233268y x y x -= ;3322ab a b ÷⎪⎭⎫ ⎝⎛-= ;a b b b a b a -+-+2= . 8.计算:=--1031220 ;=⋅--)()(2234b a b a .(结果用分式表示) 9.方程3111=+-x x 的解是 . 10.已知空气的单位体积质量约为0.001 24克∕厘米3,用科学记数法表示为 克∕厘米3.11.若31=+-aa ,则22-+a a = .三、解答题(共80分) 12.计算:(每题4分,共32分) (1)xy xy x xy xy x -++22 (2))1(1x x x x -÷+ (3)62369922+-÷++-m m m m m(4)21422---x x x (5)29131aa --+ (6)b a b b a ++-22(7)x x x x x ++-÷⎪⎭⎫ ⎝⎛+-22212121 (8)x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--13.解分式方程:(每题4分,共8分)(1)x x --=-31231 (2)12211x x x +=-+14.(8分)甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?15.(6分)先化简代数式41)4822(22-÷-++-x x x x x ,然后选一个你喜欢的x 的值代入求值.16.(8分)已知2 ,1=+-=b a ab ,求下列分式b a a b +的值:(1)b a 11+;(2)b a a b +.17.(4分)已知51=+xx ,且10<<x ,求下列各式的值: (1)221xx +; (2)x x 1-.18.A 、C 两地的距离是400千米,甲车以每小时x 千米的速度从A 地驶向C 地,行驶时间为y 小时.(1)甲车行驶时间y = 小时.(用含x 的代数式表示)(2分)(2)若B 、C 两地的距离为500千米,乙车的速度是甲车速度的1.6倍,且乙车从B 地到C 地所用的时间比甲车从A 地到C 地所用的时间少1小时45分钟,求甲车的速度。
八年级数学阶段性自测卷 完成时间:45分钟 总分:120分
班级 座号 姓名 成绩:
一、选择题(每小题3分,共18分)
1.下列计算中,正确的是( )
A .633x x x =⋅
B .633x x x =+ C.923)(x x = D.326x x x =÷
2.计算:224)(x x ÷的结果是( )
A .3x
B .4x C.5x D.6x
3.下列因式分解中,正确的是( )
A .)13(2262223---=-+-x x x x x x
B .2)3(232+-=+-x x x x
C .22)32(94-=-x x
D .222)2(44y x y xy x --=-+-
4.下列因式分解中,正确的是( )
A .22)3(9-=-x x
B . )(3333b a b a -=+-
C .222)(2y x y xy x --=-+-
D . a a a a a 3)2)(2(432--+=--
5.把多项式1872
-+a a 因式分解的结果是( )
A .)9)(2(+-a a
B .)2)(9(+-a a
C .)3)(6(-+a a
D .)6)(3(-+a a 6. 已知正方形的边长为a 厘米,如果它的一边长增加3厘米,另一边减少3厘米,那么它的面积( )
A.不变
B.减少9平方厘米
C.增加9平方厘米
D.不能确定
二、填空题(每空2分,共34分)
7.计算:(1)()=3210 ;(2)()=32
2b ,(3) a 7÷a 4 = 8.计算:(1)=⋅332ab b ;
(2)=÷+-x x x )(2 9.把下列多项式分解因式:
(1)=+62a ;(2)=+x x 2 ;
(3)=-+m bm am ;(4)=-42a ;
(5)=++2244b ab a ;(6)=-229y x ; (7)=-+1242x x .
10.一个长方形的面积为12x 2y -10x 3,宽为2x 2,则这个长方形的长为 .
11.多项式2
24y xy x ++加上单项式 后,可以分解成某个多项式的平方.(只要
填上一个你认为合适的单项式)
12.已知:5=+b a ,6-=ab ,
则代数式的值:(1)=+22b a ;(2)=-b a .
13.已知41=+x
x ,10<<x ,则x x 1-= . 三、解答题(共68分)
14.将下列各式因式分解: (每题4分,共24分)
(1) b a ab 22128- (2) )(4)(2b c c b a --- (3)a a 93
-
(4) x x x 4423++ (5) 962622--x x (6) 2
)6)(4(y y x y x +--
15.计算:(每题5分,共15分)
(1) )6()3(2---x x x (2)()()()y x y x y x +--+22
(3) )2)(2(z y x z y x +--+
16.先化简,再求值:(共6分)
(1) [)8()2)(2()(2b a b b a b a b a -+-+-+]b 3÷,其中2-=a ,3-=b .
17.( 6分)如图,(1)用含a 、b 的代数式表示图中阴影部分的面积;
(2)当21
=a ,2=b 时,求阴影部分的面积.
18.(8分)已知:4=+b a ,ab b a <+-)2)(1(,
(1)求a 的取值范围;
(2)若562222
2=--+-b a b ab a ,求b a -的值.
19.已知a ,b ,c 是△ABC 的三边长,若满足0222222=--++bc ab c b a ,试判断此三角形的形状.(共4分)
20.(共5分)如下图(1),(2)都是用四个相同的直角三角形(两条直角边分别为a ,b ,斜边为c )和一个小正方形拼成一个大正方形.
①根据上图(1)、(2)按不同方法求大正方形面积可以得到a 、b 、c 三边有什么关系?
请写出说明过程;(3分)
②若右图(2)中,大正方形的边长为13,每个直角三角形两直角边的和是17,求中间小正方形的面积.(2分)。